
University of Dayton
eCommons

Computer Science Faculty Publications Department of Computer Science

5-2017

HybridGuard: A Principal-based Permission and
Fine-Grained Policy Enforcement Framework for
Web-based Mobile Applications
Phu Huu Phung
University of Dayton, pphung1@udayton.edu

Abhinav Mohanty
University of North Carolina at Charlotte

Rahul Rachapalli
University of North Carolina at Charlotte

Meera Sridhar
University of North Carolina at Charlotte

Follow this and additional works at: https://ecommons.udayton.edu/cps_fac_pub

Part of the Graphics and Human Computer Interfaces Commons, and the Other Computer
Sciences Commons

This Conference Paper is brought to you for free and open access by the Department of Computer Science at eCommons. It has been accepted for
inclusion in Computer Science Faculty Publications by an authorized administrator of eCommons. For more information, please contact
frice1@udayton.edu, mschlangen1@udayton.edu.

eCommons Citation
Phung, Phu Huu; Mohanty, Abhinav; Rachapalli, Rahul; and Sridhar, Meera, "HybridGuard: A Principal-based Permission and Fine-
Grained Policy Enforcement Framework for Web-based Mobile Applications" (2017). Computer Science Faculty Publications. 138.
https://ecommons.udayton.edu/cps_fac_pub/138

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dayton

https://core.ac.uk/display/232833899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps_fac_pub/138?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu


HybridGuard: A Principal-based Permission and
Fine-Grained Policy Enforcement Framework for

Web-based Mobile Applications

Phu H. Phung1, Abhinav Mohanty2, Rahul Rachapalli2, and Meera Sridhar2

1 Intelligent Systems Security Lab

Department of Computer Science, University of Dayton, Dayton, OH, USA

http://academic.udayton.edu/PhuPhung/
2 Department of Software and Information Systems, UNC Charlotte, Charlotte, NC, USA

{amohant1,rrachapa,msridhar}@uncc.edu

Abstract—Web-based or hybrid mobile applications (apps) are
widely used and supported by various modern hybrid app devel-
opment frameworks. In this architecture, any JavaScript code,
local or remote, can access available APIs, including JavaScript
bridges provided by the hybrid framework, to access device
resources. This JavaScript inclusion capability is dangerous, since
there is no mechanism to determine the origin of the code to
control access, and any JavaScript code running in the mobile
app can access the device resources through the exposed APIs.
Previous solutions are either limited to a particular platform (e.g.,
Android) or a specific hybrid framework (e.g., Cordova) or only
protect the device resources and disregard the sensitive elements
in the web environment. Moreover, most of the solutions require
the modification of the base platform.

In this paper, we present HybridGuard, a novel policy en-
forcement framework that can enforce principal-based, state-
ful policies, on multiple origins without modifying the hybrid
frameworks or mobile platforms. In HybridGuard, hybrid app
developers can specify principal-based permissions, and define
fine-grained, and stateful policies that can mitigate a significant
class of attacks caused by potentially malicious JavaScript code
included from third-party domains, including ads running inside
the app. HybridGuard also provides a mechanism and policy
patterns for app developers to specify fine-grained policies for
multiple principals. HybridGuard is implemented in JavaScript;
therefore, it can be easily adapted for other hybrid frameworks
or mobile platforms without modification of these frameworks or
platforms. We present attack scenarios and report experimental
results to demonstrate how HybridGuard can thwart attacks
against hybrid mobile apps.

I. INTRODUCTION

Web-based mobile application (app) development is a

technology to develop mobile apps using the web platform

(i.e., HTML and JavaScript). Different from regular mobile app

development–where the code is written in a native programming

language such as Java for Android–the core business code of

web-based mobile apps is written in JavaScript and HTML as

webpages. The HTML and JavaScript code is then included

into a regular mobile app for a particular platform automatically

by a middle-tier web-based development framework such as

Cordova (https://cordova.apache.org/). Since these web-based

mobile apps contain web code (written by developers) and

code in a native programming language (normally generated

by a framework), they are also known as hybrid mobile apps.

Hybrid technology allows mobile apps to be write-once-run-
everywhere [23], saving time and human resources required

for the development process by generating the same app for

different mobile platforms (e.g., Android and iOS) with a single

development process. Write-once-run-everywhere substantially

increases revenue for developers because a hybrid app can

reach more users in different platforms with less effort. Such

advantages render web-based mobile app development a perva-

sive trend in the mobile industry. In April 2015, a survey of 178

IT organizations revealed that 65% organizations prefer to use

hybrid frameworks for mobile app development [28]. Besides

Cordova as the most popular one, there are more than seventy

such hybrid app frameworks [6] released in the last few years

such as Ionic (http://ionicframework.com), Onsen (http://onsen.

io), Intel-XDX (https://software.intel.com/en-us/intel-xdk), and

Sencha Touch (https://www.sencha.com/products/touch), to

name just a few. Only a few months back in July 2016,

Facebook released React Native [9], a JavaScript library that

is anticipated to be the future of hybrid app development due

to its high performance, ability to provide a highly responsive

and fluid-like UI, and third-party plug-in compatibility.

Unfortunately, the advent of web-based mobile application

technology only exacerbates the security problems of mobile

apps. A recent large-scale study of nearly one million web-

based mobile apps revealed that 28% of them (i.e., about

280,000 apps) have at least one vulnerability that attackers

can exploit to launch serious cyber-attacks [27]. Various other

studies have demonstrated that web-based mobile apps expose

the device to web-based vulnerabilities, which do not exist in

typical native mobile apps [11], [12], [18], [19]. For example,

hybrid mobile apps are vulnerable to cross-site scripting attacks

that can access the device resources and steal user’s sensitive

information [18].

In hybrid mobile apps, the core business code is implemented

in JavaScript and executed within an embedded browser. There

are JavaScript “bridge” APIs, typically provided by hybrid

2017 IEEE Symposium on Security and Privacy Workshops

© 2017, Phu H. Phung. Under license to IEEE.

DOI 10.1109/SPW.2017.34

147



frameworks, that allow the business JavaScript code to interact

with the native code to access the device resources and

functionalities such as geolocation, contact lists, SMS, and

others. The permission model in mobile platforms (i.e., grant

all or nothing) is too coarse-grained to prevent the misuse of

the JavaScript bridges. For example, let us consider a benign,

free hybrid app that has been downloaded to a device and

granted permission to access the device resources such as

geolocation and SMS. As a norm, this free app includes

advertisements (ads) to gain revenue as in the common ad

revenue business model [34]. These ads are usually written

in JavaScript and other web technologies, and therefore have

access to all the available JavaScript bridges [39]. Some hybrid

frameworks such as Cordova, provide a whitelist mechanism

to prevent access to and from untrusted domains. Content

Security Policy (CSP) [26] can be used in hybrid apps to

prevent code injection attacks and untrusted external JavaScript

code execution. However, these mechanisms do not apply in

the ad revenue model since the developer must allow the ad

code to run by whitelisting its domain. Usually, the ads are

checked by a very thorough screening process to ensure that

they are safe, however, the process is not air-tight. In practice,

there have been many incidents in the past where malicious

ads have made it through the screening process to the users’

smartphones [38]. There have also been cases where the entire

ad network was compromised, and malicious ads were supplied

to the user’s devices [2], [17], [8]. By default, any JavaScript

code running inside a hybrid app has access to these JavaScript

bridges if the user has granted the required permissions [3].

As there is no mechanism to prevent JavaScript code from

accessing the JavaScript bridges [39], malicious ads (JavaScript)

can e.g., steal users’ sensitive information such as geolocation,

contact lists transfer the data through phone channels such

as SMS. Adapting existing JavaScript security solutions (e.g.,

[31], [21], [1], [37], [30], [20], [40], [24], [32], [16]) is not

straightforward because JavaScript bridges are different from

the regular JavaScript APIs in the web, and there are many

phone-related channels such as SMS that cannot be captured

by regular web security solutions or CSP (We will discuss in

more detail about this in Section VIII).

Security issues of hybrid mobile apps recently get more

attention from the research community. However, these research

studies in hybrid mobile app security face at least one of the

following significant limitations. Some solutions focus on a

specific platform (e.g., WebView in Android), therefore they

do not work on other platforms [39], [13]. A few other works

provide platform-dependent solutions and focus on a specific

hybrid framework such as PhoneGap by modifying them [12],

[19]. Some of the solutions provide principal-based access

control for device resources [13], however, they do not protect

users’ sensitive information stored in the web environment.

PhoneWrap [11] can protect both device resources and users’

information but cannot enforce different policies for multiple

principals or origins.

In this work, we propose a robust, and extensible policy

enforcement framework for hybrid mobile apps that fills the

gaps in the literature mentioned above. Using our HybridGuard

framework, developers can define principal-based fine-grained

permissions for different origins and can enforce fine-grained,

stateful policies to prevent potential cyber-attacks as discussed

earlier. The policies will be defined at the development

stage in the web code and can be enforced at runtime. By

injecting policy code before deployment, our techniques can

precisely monitor all web code to ensure its security. The main

contributions of our work include:

• We develop a robust framework for hybrid mobile app

developers to specify and enforce useful security policies

to protect the users from potential cyber-attacks.

• We develop a novel principal-based permission access

control and fine-grained security policy specification for

hybrid mobile apps.

• We provide a wide-range of security policy patterns that

can be enforced in hybrid mobile apps to prevent real-

world attacks.

• We report a small-scale experimental evaluation of our

proposed framework on Android and iOS platforms.

The rest of this paper is organized as follows. The next

section presents the background for our work including the

hybrid mobile app architecture. In Section III, we identify

the threat model and present motivating attack scenarios.

Section IV introduces the overview of our technical approach.

The implementation of our framework is detailed in Section V,

where we also analyze the security properties our proposed

framework. Section VI classifies different policies patterns. We

report our experimental results in Section VII. Related work

is discussed in Section VIII and conclusion and discussion of

our work is presented in Section IX.

II. BACKGROUND

A. Hybrid Mobile Applications

A hybrid mobile app is built using web technologies –

developers uses a hybrid app framework to build the app

once using technologies such as HTML5, CSS and JavaScript,

and the framework provides mechanisms to instantly port to

various mobile platforms such as iOS, Android, Windows

Phone and others. The core business code of the app is written

in JavaScript and housed in a native container. The framework

supplies the app with necessary native code for API access to

the device resources. The ability to create a “write-once-run-

anywhere” app, with the capability of device access provides

the mobile developer unprecedented simplicity and flexibility,

simultaneously affording him the superior functionality and user

experience of native apps. An attractive advantage is that the

developer need not familiarize himself with tools or the skill-set

required for developing for a specific native platform [14].

Fig. 1 describes the basic architecture of a hybrid mobile app,

in the style of recent related work [13]. The embedded web

browser is used as a container to render web content, which can

include local web code, remote web code located on the app’s

web server, and third-party web code such as advertisements or

other external JavaScript code. The mobile platform provides

148



Fig. 1: Architecture of web-embedded mobile apps.

an infrastructure for the web content inside the app’s embedded

browser to communicate with device resources, such as the

microphone, camera, contact list, etc., through bridge code,

which consists of web APIs and native APIs.
The embedded browser provides web APIs (HTML5 and

JavaScript APIs) for the app’s web content to communicate

with the native APIs of the device. For example, naviga-
tor.geolocation is a read-only property of the web API

navigator which returns a Geolocation object that gives the

web content access to the device’s location. The web APIs

also allow the web code to manipulate the web content objects

– Document Object Model (DOM).

Native APIs are provided by the underlying operating

system and allow the app’s web content, via the web APIs,

to access the device resources. In Android, native APIs are in

Java, and in iOS they are in Objective C [15]. For instance,

android.preference is a native API that provides classes that

manage application preferences and implement the preferences

UI. The android.preference.CheckBoxPreference class is

used to provide checkbox widget functionality in an app.

B. Security in Hybrid Mobile Applications

Apache Cordova, one of the most widely used hybrid mobile

app frameworks, has certain security mechanisms in place to

reduce the attack surface.

1) Domain Whitelisting: Cordova provides this security

mechanism where developers can configure a security policy

to define which external domains can be accessed by the

hybrid app. The default setting allows access to any external

domain [5]. However, this whitelist mechanism is not applicable

for third-party JavaScript code within a whitelisted webpage,

e.g., the local webpage.

2) Iframes: If content is served in an iframe from a

whitelisted domain, that domain will have access to the Cordova

bridges. Therefore, if the app developer whitelists a third-party

advertising network and serves those ads through an iframe, it

is possible that a malicious ad could break out of the iframe

and perform malicious actions. Cordova advises not to use

iFrames for this reason [4].

3) Content Security Policy (CSP): CSP support is a native

browser capability that allows a developer to control exactly

what content his app can access and at a very granular level.

CSP is applied at page level for hybrid mobile apps by using

a meta tag. By default, applying a CSP disables both eval()
and inline scripts. Only domains defined in the CSP meta tag

can be used to load scripts from or communicating back from

the app. However, as CSP can only allow or disallow a certain

domain, this makes it coarse-grained. If the app developer

wants to load a third-party JavaScript, he has to whitelist this

third-party domain using the CSP meta but there is no way for

the developer to control the behavior of the third-party code,

which can be potential malicious.

III. THREAT MODEL AND RUNNING ATTACK SCENARIOS

A. Threat Model

In this work, we consider the scenarios that hybrid mobile

apps are legitimate and trusted by the users. We assume that

code injection attacks in hybrid apps [18] are prevented by the

Content Security Policy (CSP) [26] mechanism. The in-scope

threats we consider come from third-party JavaScript code that

the developers include in the hybrid apps. To function correctly,

these included scripts must be allowed in CSP by the developers.

However, once included in the apps, third-party JavaScript

code has the same privileges as the first-party code and the

developers have no mechanism to control their behaviors. In

this model, the third-party JavaScript could possibly be (1)

benign but may be under control of an attacker through e.g.,

a SQL injection or network attack on the third-party server,

or (2) malicious by intentions e.g., by luring the developers

to use its appealing functionalities. In the next subsection, we

list several motivating attack scenarios from this threat model.

B. Running Attack Scenarios

1) Misuse of mobile device resources: Consider a hybrid

mobile app that requires access to device resources such as

geolocation, SMS, Camera, Gallery, and File Storage. By

default, after a user grants the required permissions (could be at

the installation time or on the fly), any JavaScript code running

inside the application has access to these device resources [3].

If a third-party domain, which has been whitelisted by the

developer, is infected with malicious code controlled by an

attacker, the malicious code can access all the device resources

that the app has access to. For example, the malicious code can

access the device’s photo library or access the device’s camera

to capture the user’s actions live. In addition, the malicious code

can also manipulate the DOM of the hosting page including

the creation of new elements or the modification of existing

elements.

2) Sensitive information leakage: The malicious JavaScript

running inside a hybrid app can also read the user’s sensitive

information including device resources such as contact lists,

file storage and personal information such as social security

149



number that may be available on the hosting page. Although

the Content Security Policy mechanism disallows information

to be sent to any external domain not in the whitelist, any app

with access to APIs such as SMS and Email can use these

channels to leak the stolen sensitive information.

3) UI attacks: These attacks are known as clickjacking in

the web or touchjacking on smartphones [29]. Leveraging the

ability to create new elements in the hosting page as mentioned

previously, malicious JavaScript code in a hybrid app can

launch these attack by creating an invisible interface e.g., an

iframe on top of the app interface. When the user touch on

the app, he actually touch on the invisible interface, which can

lead to download a malicious application to the phone.

IV. OVERVIEW OF THE PROPOSED APPROACH

A. Overview

Our enforcement mechanism allows hybrid mobile app

developers to include each script code written in a *.js file

under a principal, which is the core for policy definition and

enforcement. As we mentioned in the attack scenarios, third-

party code is potentially malicious. Instead of including third-

party code directly into the main webpage of the hybrid app,

we provide an interface to load the third-party code under a

principal named by the developer for tracking purpose. The

developer can also load local JavaScript files under a named

principal so that he can define fine-grained policies for that

trusted principal as well. We manage the principal at runtime

so that all API calls from a principal can be tracked.

The second part of our framework is the monitor to control

the API execution. Our monitor will intercept security-relevant

API calls including access to the device resources and the

DOM. By deploying the monitor, any calls to the intercepted

APIs will be marked by a principal and checked by the monitor

code. The monitor code will invoke the policy engine to decide

whether to grant or deny the call based on the defined policies.

B. Inclusion of JavaScript Code

The conventional JavaScript code inclusion is through

<script> tag, which causes security issues as discussed previ-

ously. Our goal is to execute each JavaScript program (in a .js
file) under a principal so that the code execution will be marked

with that principal at runtime. As a result, we can differentiate

which principal calls a certain API. To achieve this, we provide

a new API call to load and execute a JavaScript program

file. This API allows the developer to assign a principal to a

JavaScript program and execute it without using conventional

JavaScript inclusion. At runtime, any code execution from this

program is marked with the assigned principal so that the

policy engine can enforce principal-based policies.

C. Principal Management and Tracking

JavaScript code is loaded and executed in sequence, in

order of appearance and “run-to-completion” [10]. However,

at runtime, the code can be generated and executed on the

fly. This code includes the one generated dynamically or the

code embedded into event handlers. In web-based mobile app

scenarios, there might be a trusted principal (local code) and

multiple third-party principals. Therefore, we must manage

the principals and track them when the context is changed

due to dynamic code generation and event triggers. We use a

local principal stack to keep track of the various principals at

runtime as the code is in the execution sequence. Whenever a

JavaScript code is executed by our interface, its principal is

pushed to the stack. When the code terminates, the principal is

popped from the stack. For dynamic code generation and event

handlers, we catch them explicitly and execute them under

the same principal that generates the code. When the dynamic

code or event handlers run, we are still able to attribute their

principal to enforce policy for the corresponding principal.

D. API Interception
HybridGuard enforces security policies based on principal

and its calls to JavaScript APIs in web-based mobile apps.

These APIs include device resource accesses and DOM

operations. We intercept these API calls by wrapping them

and checking the policy to determine if a call is allowed

or not. Our interception and policy code is implemented in

one single JavaScript file and included in a <script> tag in

the main HTML right after the JavaScript “bridge” APIs file

(e.g., cordova.js for Cordova framework). When executed,

it mediates all guarded JavaScript “bridge” APIs and DOM

APIs and then loads the required JavaScript code including the

local code as well as any remote, and third-party code that the

developer intends to include in the app. Loading the JS code

through our interface guarantees that this code cannot access

any resource via the original APIs but via our mediated APIs

so that we can control the execution based on defined policies.

E. Principal-based Permission and Fine-grained Security Poli-
cies

Our goal is to develop an enforcement framework that

allows developers to specify rules on how JavaScript code

from different principals and parties interact with device

resources and user’s sensitive information. To this end, our

policy specification supports the following.
a) Principal-based Permission: We extended the permis-

sion model in mobile architecture with principals. For each

resource access or action, the developer can define which

principal can be granted the access. We support not only

allowed/denied for each principal per resource but also provide

access qualifiers such as read, write, and create. We also

support policy input such as whitelist and bound in this

permission specification, which will be used to check fine-

grained policies.
b) Stafeful and Fine-grained Security Policies: Some

policies cannot be expressed in a static permission or access

control rules. For example, to prevent potential information

leakage to protect the users, the developer might want to enforce

a policy that disallows SMS send if an untrusted principal has

accessed the geolocation API. Our enforcement mechanism

allows the developer to define local security states based on

principals and to update the state so that such stateful and

fine-grained policies can be enforced at runtime.

150



c) Custom Policies: Since our framework is written in

JavaScript, the developer can express any custom policies that

can not be generalized in rules. For example, to prevent a

touchjacking attack mentioned in the attack scenarios (c.f.

Section III), the developer needs to intercept the UI actions

and check if it violates certain rules.

V. IMPLEMENTATION

Fig. 2: Conceptual architecture of our proposed framework.

The overview of our framework is illustrated in Fig. 2. A

JavaScript program written in a .js file will be loaded under

a principal by our new API so that any invocation from the

code is marked by that principal at runtime. Any invocation

to the guarded APIs will be forwarded to the monitor, which

consults the policy manager to check permission and then

security policies. If there is no violation, the invocation is

allowed and passed to the original API. In this section, we

describe the technical details of our implementation of the

approach introduced in the previous section.

A. Custom Script Execution with Principal

As discussed, the origin of JavaScript code in hybrid

mobile apps is not propagated therefore the app devel-

oper cannot enforce policy rules based on the real origin

of the invocation [39]. To solve this issue, we introduce

and implement a new JavaScript API loadJSwithPrinci-
pal(p, url) to replace the conventional script inclusion.

The app developer can use this API to load and exe-

cute a JavaScript file, local or remote, described in the

url argument under a principal p. For example, instead

using <script src="http://example.com/ad.js"></script>
to load the external JavaScript from example.com, the app

developer can use the loadJSwithPrincipal(..) to load the

code under a principal “example.com” as loadJSwithPrin-
cipal("example.com", "http://example.com/ad.js");.

We adapted a previous approach [31] to implement this

loadJSwithPrincipal API. Different from the previous ap-

proach, we use CORS (Cross-Origin Resource Sharing) (https:

//www.w3.org/TR/cors/) to retrieve the content of JavaScript file

in a string. Because CORS allows cross-domain communication

based on the XMLHttpRequest object, we can retrieve either

local files or any cross-domain remote file in the same way.

We then create a new Function object with the retrieved

JavaScript content. We then push the assigned principal p to a

local protected stack (simply implemented as an array), execute

the function, and pop the stack after the execution is complete.

B. JavaScript APIs Mediation

We provide a mechanism for the developer to moni-

tor JavaScript APIs including the DOM/HTML5 APIs and

JavaScript bridge APIs. We implement this monitoring mech-

anism by intercepting corresponding API calls so that any

invocation to these APIs will be dispatched to the monitor. The

monitor will invoke the policy engine to determine whether

to allow the invocation. This mechanism is inherited from

prior work [32], and depicted in Fig. 2. We note that we have

advanced the previous work by implementing mediation for

JavaScript bridge APIs and principal-based permission access

control, which does not exist in the state-of-the-art JavaScript

security solutions.

One challenge in this implementation is the complete

mediation of the interception to ensure that JavaScript code can

not access the guarded API directly but through the monitor.

For DOM/HTML5 APIs, this can be archived by capturing

all possible aliases of the guarded API through its prototype

inheritance chain in the monitor. There have been several known

vulnerabilities in JavaScript that can be exploited in JavaScript

interception implementation [25], [22]. We apply the secure

wrapper implementations in the literature [22] to ensure that

our monitor implementation is tamper-proof from potentially

malicious code.

For JavaScript bridge APIs, there might be several different

APIs provided by various plugins (JavaScript libraries) to access

a device resource. As the app developer includes plugins to

her app, she knows the specific APIs to intercept and enforce

policies. Each JavaScript bridge API typically uses an internal

function call to interact with the native API. For example, in

Cordova, exec is the internal function to interact with Java API.

To ensure that JavaScript code loaded by our framework cannot

interact the native APIs directly, we also need to intercept this

internal function.

Principal Propagation in Event Handlers and Dynamic Code
Generation: Like native mobile apps, hybrid ones are heavily

relied on events such as user touch to trigger its computation. In

our framework, we capture and intercept these event channels

such as addEventListener, attachEvent to wrap the handler

functions so that when the event is fired, e.g., a button is

touched, the handler function is executed under the same

principal of the parent code so that it will be enforced the

same policy for that principal. This approach is illustrated in

Listing 1

The same approach is applied for code generation on

the fly through DOM APIs such as document.write,
Node.insertBefore(..). As inline JavaScript code in HTML

is not allowed by default CSP, we only need to take care new

script node inclusions in the same way of events to ensure that

any code generated at runtime will be executed as the same

principal as the script created it.

C. Policy Management and Enforcement

As illustrated in Fig. 2, an invocation to a guarded API will

be dispatched together with its principal to the corresponding

monitor. The monitor then consults the policy manager; based

151



1 var eventguard = function(args, proceed) {
2 var principal = getTopofPrincipalStack();
3 var listener = args[1]; //the handler function
4 args[1] = function(){
5 //wrap the handler function to be executed
6 //with the same principal
7 return execWithPrincipal(principal,listener);
8 };
9 return proceed();//register the event handler

10 };
11 intercept(Element.prototype, ’addEventListener’, eventguard);
12 intercept(Node.prototype, ’addEventListener’, eventguard);

Listing 1: Principal Tracking for event handler

1 {"resources": [{
2 "name": "contacts",
3 "permissions": [{
4 "principal": "local",
5 "read": "true",
6 "write": "true"
7 },
8 {
9 "principal": "trusted.com",

10 "read": "true"
11 }]
12 //...
13 }

Listing 2: A principal-based permission example

on policy definition, the policy manager will decide whether

to proceed the invocation. As briefly outlined in the previous

section, our framework supports principal-based permission

and stateful policies. We design and implement the policy

specification for HybridGuard as follows.

1) Principal-based Permission: We use JavaScript Object

Notation (JSON) to specify principal-based permission for the

device resource access (including DOM and JavaScript bridge

APIs) by any JavaScript code running inside the app. The

device resources are specified as an array of objects inside the

JSON file, and each device resource object has an array of

permission objects of its own. The permissions to access the

device resources are defined by a principal. For each resource,

the app developer can specify which principal can be allowed

to read or write. For instance, Listing 2 illustrates an example

of principal-based permission that allows the local code (loaded

with principal “local”) to read and write on the contact resource,

while allows JavaScript code from “trusted.com” read only

permission. JavaScript code loaded with other principals is

denied access to this resource by default in this example.

This JSON specification can be defined and stored in a local

variable within the monitor code, however, to separate policy

definition from the code, we store it in a local JSON file and

load it using XMLHttpRequest to perform principal-based

permission check for the policy manager.

2) Custom and Fine-grained Security Policy Enforcement:
Principal-based permission can enforce if a principal is allowed

to access a resource; however, it cannot capture and prevent

potential malicious actions such as sensitive information

leakage or UI attacks as we discussed in the motivating attack

examples. In addition to the principal-based permission check,

our framework also allows the developer to define custom and

fine-grained policies such as whitelist specification, stateful, and

history-based policies. These policies can also be generalized in

a specification; however, we leave this for future work. In this

framework, these custom policies can be defined in JavaScript

code. For example, to prevent a potential information leakage,

the developer can define a policy that “after a principal read

the contact list (assume that the principal is allowed to read the

contact list in principal-based permission), it is not allowed to

send any SMS”. This policy is illustrated in Listing 3. We note

that this policy is also principal-based: the principal violating

the aforementioned example policy is denied to send SMS, but

other principals such the first-party code can still be allowed

to send SMS.

D. Security Analysis

As discussed earlier, potential code injections and informa-

tion leakage attacks by the web channels can be eliminated by

the standard Content Security Policy (CSP) in hybrid mobile

apps. Our HybridGuard framework provides an extra layer

of protection on JavaScript code that is allowed by CSP.

As required by default CSP, each JavaScript code must be

defined in a .js file, either first-party or third-party code.

HybridGuard provides a new JavaScript API to obtain the

content of these .js files and executed them under a principal.

This requires the HybridGuard’s code to run before other first-

party or third-party code in the app so that HybridGuard has

the highest priority to control the behaviors of the loaded

code. As described in the implementation, the HybridGuard’s

code and security states are protected within an anonymous

function, which is inaccessible from outside code outside.

Access to JSON policy specification files is prohibited from

unauthorized principals, enforced by the monitor. Therefore, the

integrity of HybridGuard is guaranteed. Adapted the known

techniques from prior work [22], HybridGuard ensures the

complete mediation of JavaScript web APIs by systematically

explores and mediates all their possible aliases and channels

generating JavaScript code on the fly. For JavaScript bridge

APIs provided by hybrid frameworks, we have to manually

identify the possible channels for each API to ensure it is

completed wrapped. As HybridGuard can control the behaviors

of the loaded code, any unauthorized access can be detected

and prevented.

VI. FINE-GRAINED SECURITY POLICIES

As discussed earlier, in addition to principal-based permis-

sion specification, our framework allows hybrid app developers

to define more fine-grained security policies. Implemented as a

reference monitor, our framework supports fine-grained security

policies satisfying safety property of execution, i.e., preventing

152



bad things happen. The app developer knows the functionality

of the app, which resources she will request permission from the

user as well as confidential information in the webpage of the

hybrid app. When including third-party code, the developer can,

therefore, define permission for each party through a principal.

In this section, we present some useful policy patterns that the

hybrid app developer can leverage to protect the end-users.

1 var contact_read_policy = function(args, proceed) {
2 var p = getTopofPrincipalStack();
3 if(!principal_permission_check(p,"contacts", "read"))
4 return; //no permission for this principal
5 toggle(contact_read);// update the contact read history
6 if(!bound_check(p, "contact", "read") return;
7 return proceed();//allow the invocation
8 };
9 var sms_send_policy = function(args, proceed) {

10 var p = getTopofPrincipalStack();
11 if(!principal_permission_check(p,"sms", "send"))
12 return; //no permission for this principal
13 if(contact_read) return;
14 if(!bound_check(p, "sms", "send") return;
15 if (!whitelist_check(p, "sms", "send", args[1])) return;
16 return proceed();//allow the invocation
17 };
18 intercept(sms, ’send’, sms_send_policy);
19 intercept(navigator.contacts, ’find’, contact_read_policy);

Listing 3: Example of “no SMS send after reading contact

list”

Resource bounds Policy: In general mobile apps, it is

alarming that apps overuse or abuse the resources by invoking

it a significant number of times [11]. In some scenarios, just

disallowing access to a resource is not an adequate policy. For

example, when including an advertisement code, the developer

needs to allow the advertisement to access the geolocation
resource; disallowing this access might break the functionality

of the ad code. However, the developer might want to limit

the number of times of access to the geolocation resource to

prevent potential information leakage attacks as malicious ads

can periodically read and send out geolocation information.

In HybridGuard, the developer can specify a bound limit

for each resource per principal in each resource access

action policy. We support the app developers by providing

a bound_check(principal, resource, action) function to

update the history of the access and check if it reaches the

bound limit. The use of this function is illustrated in the policies

in Listing 3.

Whitelist Policies: In some scenarios, a principal is

allowed to invoke an API with parameters. For example, to

send a text message, the code need to call sms.send with the

number to be sent together with other parameters. The developer

might want to limit that principal to send to a limited list of

receivers. This might prevent a user’s private information to

be leaked to unwanted recipients. In another example, the

developer might allow a third-party principal interact and

modify only a particular element in the DOM. To support

this, we have implemented a whitelist_check(principal,
resource, action, arg) to check if the argument is defined in

the corresponding whitelist for the action and the principal.

The app developer can invoke this check in the policy for a

certain API call when intercepting that API. An example of

using this function in policies is illustrated in Listing 3.

History-based Policies: A common attack in e.g., mali-

cious advertisements is to read sensitive user data and send it

to the attacker through different channels such as image source.

Although CSP policy can prevent some of these channels so

that the leakage can be limited, there are other channels specific

to a mobile device that are not captured by CSP such as SMS,

and email. The developer can prevent this potential information

leakage by monitoring the access to sensitive information and

preventing some certain APIs that is not captured by CSP. For

example, the developer can define a policy “no SMS sending

after contact list is read” by intercepting the contact read action

and toggle the contact read flag, which can be checked in the

policy for SMS send: if the flag is toggled, the SMS send

action is disabled. This whole policy is defined in Listing 3.

Custom Policies: There are several potential malicious

behaviors of third-party JavaScript code such as manipulating

the DOM and create UI attacks such as touchjacking (e.g., by

creating an invisible iframe) or open a webpage to launch a

phishing attack. In our framework, in addition to the supported

policies presented above, the app developer can implement any

custom policies in JavaScript when intercepting HTML5/DOM

APIs and JavaScript bridge APIs. In the touchjacking example,

the developer can enforce a policy that disables the creation

of an invisible iframe.

VII. EXPERIMENTAL RESULTS

In this section, we present the results of our experi-

mental evaluation. We have developed the core framework

within a JavaScript program inside an anonymous function

(function(){ /* code */})(); so that its code and security

states can be protected. The interception implementation and

policy engine are combined within this anonymous function

comprising of ~800 lines of JavaScript code. To deploy our

framework in a hybrid app, the developer just need to copy

this library together with the JSON permission specification

file to the www folder of the app, then include it (use

e.g., <script src="HybridGuard.js"></script>) to the main

HTML page, e.g., index.html right after the core JavaScript

library of the hybrid app (e.g., cordova.js in the case of

Cordova app). As introduced earlier, to include a JavaScript

program (in a file, local or remote) the developer can use

our API loadJSwithPrincipal(principal,url); to load and

execute code under a principal, instead of including these

programs as the conventional way of <script> tag. This loading

code can be implemented in a separated JavaScript file after

<script src="HybridGuard.js"></script>) or can be placed

at the end of "HybridGuard.js" file outside the anonymous

function. After assigning principals for different JavaScript

files, the developer can edit the policy JSON specification file

to define fine-grained permission for each principal. To evaluate

the effectiveness of HybridGuard, we have tested it within a

153



hybrid app developed by ourselves, and have deployed it to

several real-world Android apps from Google Play.

A. Testing on self-developed hybrid mobile app

We use Cordova framework (version 5.3.3) to develop the

testing app. We include several resource plugins listed in

Table I such as SMS, email, contacts, camera, geolocation,

accelerometer, File System and develop their functionality in

local JavaScript files, and load them with “local” principal using

loadJSwithPrincipal("local",<js-file>);. We also host simi-

lar JavaScript files remotely and load them with “remote” prin-

cipal using loadJSwithPrincipal("remote",<remote-js>);.
We specify the principal permission in the JSON file to

allow/disallow some access to the resource by a principal. We

have performed several minor modifications in the policy code

to make it consistent with the plugins and policies. All policies

introduced in the previous section have been implemented.

We use Cordova to build the app for both Android and iOS

platforms. For Android, we deploy the app directly to real

devices Nexus 5X and Nexus 6P running on the Android 7.1.1

(Nougat). For iOS, we use Xcode (version 7.2.1) to build and

deploy the app to an iPhone 6s Plus iOS 9.2 simulator. We turn

on the debug messages so that we can observe the principal

propagation is tracked correctly. The permissions to the device

resources are checked at runtime correctly based on principal.

Fine-grained policies such as information flow and history

based policies are soundly enforced. We note that Cordova

has been used for our testing; however, as HybridGuard is

developed in JavaScript, it can be easily adapted and applied for

other hybrid mobile frameworks with some minor modifications

in the enforcement and policy code.
TABLE I: List of Policies Enforced on Plugins

Resource PlugIn and Resource object Method Policy Enforced

Files
cordova-plugin-file
Object : window.requestFileSystem

requestFileSystem
Whitelist
History-based Policy

Camera
cordova-plugin-camera
Object : navigator.camera

getPicture No Send after read

Contacts
cordova-plugin-contacts
Object : navigator.contacts

find
Whitelist
History-based Policy
Resource bounds policy

Accelerometer
cordova-plugin-device-motion
Object : navigator.accelerometer

getCurrentAcceleration
watchAcceleration

Whitelist Enforcement

SMS
cordova-sms-plugin
Object : sms

send
Whitelist
History-based Policy
Resource bounds policy

Geo Location
cordova-plugin-geolocation
Object :navigator.geolocation

getCurrentPosition
watchPosition

History-based Policy
Resource bounds policy

Video Recording
cordova-plugin-media-capture
Object : navigator.device.capture

captureVideo
captureImage

Whitelist

Secure Storage
cordova-plugin-secure-storage
Object : cordova.plugins.SecureStorage

SecureStorage
SecureStorage.get
SecureStorage.set

History-based Policy
Whitelist

B. Testing on real-world Android hybrid apps

We have performed a small-scale evaluation on real-world

Android hybrid apps by manually download some Android

apps marked as a hybrid app from Google Play using

apkpure.com. We use a reverse engineering tool apktool
(https://github.com/iBotPeaches/Apktool) to decode resources

to nearly original form (use e.g., apktool decode -f -s
apkFile.apk). We include the framework library, i.e., Hy-
bridGuard.js and permission JSON file to the www folder,

and modify the main page to include the library and load the

core scripts. Similarly, in the testing app, we also do some

minor modification in policy code to adapt the APIs. After the

modifying the web in the www folder, we rebuild the app using

the apktool (use e.g., apktool build modifiedApkFolder/).
The app is then signed using jarsigner (use e.g., jarsigner
-verbose -keystore your.keystore modifiedApkFile.apk)
and is installed on the device.

We have downloaded ten hybrid application apks from

Google Play through apkpure.com and modified them by

manually including HybridGuard framework as described above.

A few apps that have been tested successfully are Parked Car

Locator, Web Ratio, Remote SMS Control, Graded, Fan React,

My Car Navigator. These applications access various system

resources like Camera, Geo Location, Accelerometer, Contacts,

or File System. Policies like limiting the access to resources or

send messages and location details only to whitelisted sources,

blocking SMS and email sending as soon as a content from a

file is read have been enforced. The tested apps will enforceable

security policies are listed in Table II.
TABLE II: List of tested hybrid mobile apps

Application Name Resources Accessed Policies
Parked Car Locator Geo Location Whitelist Enforcement

My Car Navigator
Geo Location
Accelerometer

Whitelist Enforcement
Resource bounds policy

Fan React
Contacts
SMS

Whitelist Enforcement
History-based Policy
Resource bounds policy

Graded
SMS
Contacts
File System

Whitelist Enforcement
History-based Policy
Resource bounds policy

Remote SMS Control
SMS
Contacts
File System

Resource bounds policy
Whitelist Enforcement
History-based Policy

Web Ratio
Contacts
File System

Whitelist
History-based Policy
Resource bounds policy

C. Performance

We have not yet tested the performance and overhead of our

framework, however, when testing the app, we did not notice

any significant delay. Prior work on JavaScript interception

have reported that the overhead of these implementations is

not significant [31], [37], [30], [24], [32].

VIII. RELATED WORK

A. Third-party JavaScript Isolation

There are various proposals in the literature to protect against

malicious third-party JavaScript, e.g., [16], [31], [37], [1], [20],

[21], [24], [30], [32], [40]. However, adapting these solutions to

hybrid mobile app environment is not a trivial task since there

are many phone-related resources and channels are not captured

by the existing approaches. Several proposed methods such

as [1], [31], [30] could be applied but required signification

modifications to capture these phone resources and channels.

Furthermore, none of these solutions provided principal-based

permission for mobile apps as we propose in HybridGuard.

JaTE [37] uses Proxy in ECMAScript 6 to isolate third-

party JavaScript with principals, however, Proxy has not

yet supported in embedded browsers in mobile platforms

(c.f. https://kangax.github.io/compat-table/es6/, March, 2017).

Approaches like Adsafe [16] can be applicable, however, it

must be extended with JavaScript bridge APIs and it requires

154



third-party JavaScript written in their JavaScript subset. In

contract, HybridGuard allows the full set of JavaScript and

bridge APIs provided by frameworks. ConScript [24] requires

browsers to be modified to enforce security policies. In this

case, the base mobile platform must be also modified; therefore

it limits the deployment of the protection. HybridGuard does

not require the modification of browsers, hybrid frameworks,

or the base platforms.

Adjail [20] and Webjail [40] use iframes to isolate third-

party content and provide a mechanism for cross-platform

interaction. However, these works cannot project against attacks

for JavaScript bridge APIs in hybrid apps because they are

accessible for any JavaScript code allowed to load in a hybrid

app.

B. Hybrid Mobile Application Security

The closest related work to HybridGuard is PhoneWrap [11],

which introduced a fine-grained ticket-based policy enforcement

into web-based mobile apps to control a bounded number of

accesses for each resource based on the user’s interaction with

the app. Resource accesses through JavaScript interfaces are

wrapped by a library, inspired by “self-protecting JavaScript”
approach [32]. However, PhoneWrap does not investigate

a multi-party scenario in web-based apps, and thus cannot

define and enforce separate policies for different origins

as we proposed in this work. POWERGATE [13] is an

access-control mechanism for Web-based system applications

where the developers can define principal-based access control

policies similar to our work. However, in contrast to the

policies implemented by POWERGATE which simply “allow

or disallow” a particular native object for each principal

such as “local code”, “third-party remote code”, HybridGuard

can enforce stateful policies for multiple principals on each

native object. In addition, the implementation of POWERGATE

requires the modification of the base system e.g., Firefox OS.

In [19], a fine-grained access control mechanism for web-

based mobile apps in Android, using frame-level access control

has been proposed. A permissions attribute is introduced

for the iframe tag used in WebView to specify the device

resources the frame has access to. It also introduces an access
tag that can be added to the Android manifest file to specify

resource access permissions to different origins. However, this

approach is specific to Android as it requires the modification

of the Android base system [19]. In contrast, our approach is

at the web layer, therefore it can be applicable to any mobile

platform without modification.

Another study proposes a context-aware permission control

system for web-based mobile apps [36]. This system can

enforce information flow policies to prevent the potential data

breach in web-based mobile apps. A page-level access control

mechanism has also been proposed in the past, which provides

a particular page access only to the device resources it requires,

to minimize the attack surface [35]. However, the solution is

only applicable to multi-page web-based mobile apps.

Draco [39] provides uniform and fine-grained access control

for web code running on Android in-app browsers. It provides

a declarative policy language for developers to define their

own fine-grained access control policies for multiple origins

and also provides the Draco runtime system (DRS) to enforce

these policies at runtime. However, the implementation the

framework modifies the Chromium Android System WebView

app.

RestrictedPath [33] enforces access control at both the

browser-level and at the system-level. Developers first define

intended paths of their apps; RestrictedPath subsequently

monitors all invocations made by the apps and determines

whether the app deviates from its intended path [33].

Several solutions focus on detecting code-injection attacks

in hybrid mobile apps. Jin et al. introduce the possibility of

code-injection attacks in hybrid mobile apps through non-

web channels peculiar to smartphones. These channels include

the camera in the form of a barcode scanner, SMS, Contact

List, Calendar, NFC and even Wi-Fi access points [18].

DroidCIA [7] extends the previous work and introduces a new

code-injection channel, where a malicious script can be injected

by using the HTML5 textbox input type along with doc-
ument.getElementByID(“TagID”).value [7]. Xiao et al.

introduce a new type of code-injection attack, where JavaScript

code is encoded in a human-unreadable format [41]. The

authors use machine learning algorithms to detect vulnerable

apps and also suggest an improved access control model that

uses a combination of page-based and frame-based techniques.

However, such code-injections can be mitigated by the use of

CSP and not allowing the execution of inline scripts. Our work

focuses on attacks that cannot be mitigated by CSP.

IX. CONCLUSION

We have presented the design and implementation of Hybrid-

Guard, a robust framework to specify and enforce principal-

based and fine-grained security policies to guard against attacks

in hybrid mobile apps originating from third-party JavaScript.

Our enforcement framework is platform independent as it is

developed in JavaScript; thus it can be deployed on various

mobile platforms and hybrid development frameworks without

modifying them. We have demonstrated the implementation of

the policy engine and specification of the principal-based and

fine-grained policies. We specify a wide range security policies

that the app developer can use to mitigate potential attacks.

We have conducted experiments to evaluate the framework and

policies on real hybrid apps and mobile devices.

Our in-scope threats come from potential malicious third-

party JavaScript code in a hybrid app that a developer explicitly

includes; therefore, our framework relies on developers on

defining security policies. In practice, the app users might be

in a right position to define desired security policies to protect

themselves. In future work, we also plan to extend the policy

system so that the app users can specify their policies on a

hybrid app. We also plan to construct a testbed of hybrid apps

and an ontology of possible attacks so that we can conduct a

large-scale evaluation of real-world hybrid apps and effective

security policies.

155



ACKNOWLEDGEMENTS

This research was supported in part by The University

of Dayton Research Council Seed Grant, the Department of

Software and Information Systems at the University of North

Carolina Charlotte, and NSF CRII award #1566321.

REFERENCES

[1] P. Agten, S. V. Acker, Y. Brondsema, P. H. Phung, L. Desmet, and
F. Piessens. JSand: Complete client-side sandboxing of third-party
JavaScript without browser modifications. In Proceedings of the 28th
Annual Computer Security Applications Conference (ACSAC), pages
1–10, December 2012.

[2] Alex Hern. Spotify hit by ’malvertising’ in app. https://www.theguardian.
com/technology/2016/oct/06/spotify-hit-by-malvertising-in-app, October
2016. Accessed: 2017-1-13.

[3] Apache Software Foundation. Cordova - Security Guide. https://cordova.
apache.org/docs/en/latest/guide/appdev/security/. Accessed: 2017-1-13.

[4] Cordova security guide. https://cordova.apache.org/docs/en/latest/guide/
appdev/security/. Accessed: 2017-1-13.

[5] Apache Software Foundation. Whitelist Guide. https://cordova.apache.
org/docs/en/latest/guide/appdev/whitelist/. Accessed: 2017-1-13.

[6] S. Arora. 10 best hybrid mobile app UI frame-
works: HTML5, CSS and JS. http://noeticforce.com/
best-hybrid-mobile-app-ui-frameworks-html5-js-css, September
2015. Accessed: 2016-11-11.

[7] Y. Chen, H. Lee, A. B. Jeng, and T. Wei. DroidCIA: A novel detection
method of code injection attacks on HTML5-based mobile apps. In
Proceedings of the 14th Trust, Security and Privacy in Computing and
Communications (TRUSTCOM), volume 01, pages 1014–1021, 2015.

[8] Dan Goodin. Millions exposed to malvertising that hid attack
code in banner pixels. http://arstechnica.com/security/2016/12/
millions-exposed-to-malvertising-that-hid-attack-code-in-banner-pixels/,
December 2016. Accessed: 2017-1-13.

[9] Facebook Inc. React - A JavaCript library for building user interfaces.
https://facebook.github.io/react/. Accessed: 2016-11-11.

[10] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly Media, 6th
edition, 2011.

[11] D. Franzen and D. Aspinall. PhoneWrap-injecting the "How Often"
into mobile apps. In The 1st International Workshop on Innovations in
Mobile Privacy and Security (IMPS), pages 11–19, 2011.

[12] M. Georgiev, S. Jana, and V. Shmatikov. Breaking and fixing origin-
based access control in hybrid web/mobile application frameworks. In
Proceedings of the 21st Annual Network and Distributed System Security
Symposium (NDSS), 2014.

[13] M. Georgiev, S. Jana, and V. Shmatikov. Rethinking security of web-
based system applications. In Proceedings of the 24th International
Conference on World Wide Web (WWW), pages 366–376, 2015.

[14] Native vs. html5 vs. hybrid apps. http://www.glowtouch.com/
native-vs-html5-vs-hybrid-apps/, June 2015.

[15] Google Inc. Android NDK Native APIs. https://developer.android.com/
ndk/guides/stable_apis.html. Accessed: 2016-11-11.

[16] Integral Ad Science, Inc. Effectively influence consumers everywhere.
https://integralads.com/. Accessed: 2016-11-12.

[17] Jeremy Kirk. Massive Malvertising Campaign
Hits MSN, Yahoo. http://www.bankinfosecurity.com/
massive-malvertising-campaign-hits-msn-yahoo-a-9583, December
2016. Accessed: 2017-1-13.

[18] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri. Code injection
attacks on HTML5-based mobile apps: Characterization, detection and
mitigation. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 66–77, 2014.

[19] X. Jin, L. Wang, T. Luo, and W. Du. Fine-grained access control for
HTML5-based mobile applications in Android. In Information Security
(ISC), pages 309–318. Springer, 2015.

[20] M. T. Louw, K. T. Ganesh, and V. N. Venkatakrishnan. AdJail:
Practical Enforcement of Confidentiality and Integrity Policies on Web
Advertisements. In Proceedings of USENIX Security’10, pages 24–41,
Berkeley, CA, USA, 2010. USENIX Association.

[21] M. T. Louw, P. H. Phung, R. Krishnamurti, and V. N. Venkatakrishnan.
SafeScript: JavaScript Transformation for Policy Enforcement. In
Proceedings of the 18th Nordic Conference on Secure IT Systems
(NordSec 2013), volume 8208 of Lecture Notes in Computer Science
(LNCS), pages 67–83. Springer Verlag, October 2013.

[22] J. Magazinius, P. H. Phung, and D. Sands. Safe wrappers and sane
policies for self protecting JavaScript. In Proceedings of the 15th Nordic
Conference in Secure IT Systems (NordSec), pages 239–255, October
2010.

[23] D. McCormick. Future of mobile app development is hybrid apps,
not native ones, says new survey. http://www.alphasoftware.com/blog/
hybrid-mobile-apps-not-native-ones-will-rule-says-new-survey/, 2015.
Accessed: 2016-11-11.

[24] L. A. Meyerovich and B. Livshits. ConScript: Specifying and enforcing
fine-grained security policies for Javascript in the browser. In 2010 IEEE
Symposium on Security and Privacy, pages 481–496. IEEE, 2010.

[25] L. A. Meyerovich and B. Livshits. ConScript: Specifying and Enforcing
Fine-Grained Security Policies for JavaScript in the Browser. In
Proceedings of 2010 IEEE Symposium on Security and Privacy, pages
481–496, May 2010.

[26] Mike West and Joseph Medley. Content Security Policy. https:
//developers.google.com/web/fundamentals/security/csp/. Accessed: 2017-
1-13.

[27] P. Mutchler, A. Doupé, J. Mitchell, C. Kruegel, and G. Vigna. A large-
scale study of mobile web app security. In Proceedings of the Mobile
Security Technologies Workshop (MoST), May 2015.

[28] State of applicaton development report: Mobility, custom apps a priority
for 2015. Technical report, April 2015.

[29] OWASP. Clickjacking. https://www.owasp.org/index.php/Clickjacking.
Accessed: 2017-1-13.

[30] P. H. Phung and L. Desmet. A two-tier sandbox architecture for untrusted
JavaScript. In Proceedings of the Workshop on JavaScript Tools (JSTools),
pages 1–10. ACM, June 2012.

[31] P. H. Phung, M. Monshizadeh, M. Sridhar, K. W. Hamlen, and
V. Venkatakrishnan. Between worlds: Securing mixed JavaScript/Action-
Script multi-party web content. IEEE Transactions on Dependable and
Secure Computing (TDSC), 12(4):443–457, July 2015.

[32] P. H. Phung, D. Sands, and A. Chudnov. Lightweight self-protecting
JavaScript. In Proceedings of the 4th International Symposium on
Information, Computer, and Communications Security (ASIACCS), pages
47–60, March 2009.

[33] S. Pooryousef and M. Amini. Fine-grained access control for hybrid
mobile applications in Android using restricted paths. In Proceedings
of the 13th International ISC Conference on Information Security and
Cryptology (ISCISC), 2016.

[34] Sean Butner. How Much in Advertising Revenue Can
a Mobile App Generate? http://smallbusiness.chron.com/
much-advertising-revenue-can-mobile-app-generate-76855.html.
Accessed: 2017-1-13.

[35] M. Shehab and A. AlJarrah. Reducing attack surface on cordova-based
hybrid mobile apps. In Proceedings of the 2nd International Workshop
on Mobile Development Lifecycle (MobileDeli), pages 1–8, 2014.

[36] K. Singh. Practical context-aware permission control for hybrid mobile
applications. In Proceedings of the 16th International Workshop on
Recent Advances in Intrusion Detection (RAID), pages 307–327, 2013.

[37] T. Tran, R. Pelizzi, and R. Sekar. JaTE: Transparent and Efficient
JavaScript Confinement. In Proceedings of the 31st Annual Computer
Security Applications Conference, ACSAC 2015, pages 151–160, New
York, NY, USA, 2015. ACM.

[38] TrendMicro. These ads are more than annoying: Android banking
malware to watch out for, August 2016. Accessed: 2017-3-15.

[39] G. S. Tuncay, S. Demetriou, and C. A. Gunter. Draco: A system for
uniform and fine-grained access control for web code on Android. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 104–115, 2016.

[40] S. Van Acker, P. De Ryck, L. Desmet, F. Piessens, and W. Joosen. WebJail:
Least-privilege Integration of Third-party Components in Web Mashups.
In Proceedings of the 27th Annual Computer Security Applications
Conference, ACSAC ’11, pages 307–316, New York, NY, USA, 2011.
ACM.

[41] X. Xiao, R. Yan, R. Ye, Q. Li, S. Peng, and Y. Jiang. Detection
and prevention of code injection attacks on HTML5-based apps. In
Proceedings of the 3rd International Conference on Advanced Cloud
and Big Data (CBD), pages 254–261, 2015.

156


	University of Dayton
	eCommons
	5-2017

	HybridGuard: A Principal-based Permission and Fine-Grained Policy Enforcement Framework for Web-based Mobile Applications
	Phu Huu Phung
	Abhinav Mohanty
	Rahul Rachapalli
	Meera Sridhar
	eCommons Citation


	HybridGuard: A Principal-Based Permission and Fine-Grained Policy Enforcement Framework for Web-Based Mobile Applications

