9 research outputs found

    Object Specific Trajectory Optimization for Industrial X-ray Computed Tomography

    Get PDF
    In industrial settings, X-ray computed tomography scans are a common tool for inspection of objects. Often the object can not be imaged using standard circular or helical trajectories because of constraints in space or time. Compared to medical applications the variance in size and materials is much larger. Adapting the acquisition trajectory to the object is beneficial and sometimes inevitable. There are currently no sophisticated methods for this adoption. Typically the operator places the object according to his best knowledge. We propose a detectability index based optimization algorithm which determines the scan trajectory on the basis of a CAD-model of the object. The detectability index is computed solely from simulated projections for multiple user defined features. By adapting the features the algorithm is adapted to different imaging tasks. Performance of simulated and measured data was qualitatively and quantitatively assessed. The results illustrate that our algorithm not only allows more accurate detection of features, but also delivers images with high overall quality in comparison to standard trajectory reconstructions. This work enables to reduce the number of projections and in consequence scan time by introducing an optimization algorithm to compose an object specific trajectory

    Sequential Experimental Design for X-Ray CT Using Deep Reinforcement Learning

    Full text link
    In X-ray Computed Tomography (CT), projections from many angles are acquired and used for 3D reconstruction. To make CT suitable for in-line quality control, reducing the number of angles while maintaining reconstruction quality is necessary. Sparse-angle tomography is a popular approach for obtaining 3D reconstructions from limited data. To optimize its performance, one can adapt scan angles sequentially to select the most informative angles for each scanned object. Mathematically, this corresponds to solving and optimal experimental design (OED) problem. OED problems are high-dimensional, non-convex, bi-level optimization problems that cannot be solved online, i.e., during the scan. To address these challenges, we pose the OED problem as a partially observable Markov decision process in a Bayesian framework, and solve it through deep reinforcement learning. The approach learns efficient non-greedy policies to solve a given class of OED problems through extensive offline training rather than solving a given OED problem directly via numerical optimization. As such, the trained policy can successfully find the most informative scan angles online. We use a policy training method based on the Actor-Critic approach and evaluate its performance on 2D tomography with synthetic data

    Ghosts in Discrete Tomography

    Get PDF

    Tomographie et géométrie discrètes avec la transformée Mojette

    Get PDF
    We explore through this thesis the insights of discrete tomography over classical tomography in continuous space. We use the Mojette transform, a discrete and exact form of the Radon transform, as a link between classical tomography and discrete tomography. We focus especially on the study of the discrete space induced by the Mojette transform operator through four research axis.Axis 1 focuses on the Mojette space properties in regards to discrete affine transforms of digital images. We provide tools to achieve affine transforms directly from the projections of a digital object, without preliminary tomographic reconstruction. This property is well-known for the continuous Radon transform but non-trivial for its sampled versions.Axis 2 seeks for some links between continuous-sampled projections related to medical imaging acquisition modalities and discrete projections derived by the Mojette transform. We implement interpolation schemes to estimate discrete projections from the continuous ones — on either synthetic or real data — and their reconstruction.In axis 3, we provide an algebraic framework for the description and inversion of the Mojette transform. The input data, the projections as well as the operators are modeled as polynomials. Within this framework, the Mojette projection operator advantageously reduce to a Vandermonde matrix.This thesis has been realized at both IRCCyN Lab and Keosys company within the Quanticardi FUI project. Axis 4 focuses on the design and the implementation of a clinical software for the absolute quantification of myocardial perfusion with positron emission tomography.Dans cette thèse, nous explorons les voies offertes par la tomographie discrète par rapport à la tomographie classique en milieu continu. Nous utilisons la transformée Mojette, version discrète et exacte de la transformée de Radon, que nous présentons comme un lien entre la tomographie classique et la tomographie discrète. Nous nous attachons à l’étude de l’espace sous-jacent à l’opérateur de transformée Mojette. Ce travail se décline suivant quatre axes de recherche.L’axe 1 est consacré au comportement de l’espace Mojette pour les transformations affines discrètes de l’image. Nous montrons qu’il est possible de réaliser certaines transformations affines directement à partir des projections discrètes d’un objet, sans reconstruction préalable.L’axe 2 consiste à examiner les liens entre les projections continues issues de modalités d’acquisitions en imagerie médicale et celles obtenues par transformée Mojette. Nous présentons différentes méthodes d’estimation des projections discrètes à partir de projections continues — réelles ou simulées — et leur reconstruction.L’axe 3 a pour objet l’inversion algébrique de la transformée Mojette. Les données d’entrée, les projections et les opérateurs sont modélisés par des polynômes. Ce formalisme, relevant de la tomographie discrète, permet d’exprimer la matrice de transformation Mojette sous forme Vandermonde.Cette thèse a été réalisée conjointement à l’IRCCyN et à Keosys dans le cadre du projet FUI Quanticardi. L’axe 4 est dédié à la conception et au développement d’un logiciel de quantification absolue de la perfusion myocardique en tomographie par émission de positons
    corecore