7,907 research outputs found

    Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions

    Full text link

    Background suppressing Gabor energy filtering

    Get PDF
    In the field of facial emotion recognition, early research advanced with the use of Gabor filters. However, these filters lack generalization and result in undesirably large feature vector size. In recent work, more attention has been given to other local appearance features. Two desired characteristics in a facial appearance feature are generalization capability, and the compactness of representation. In this paper, we propose a novel texture feature inspired by Gabor energy filters, called background suppressing Gabor energy filtering. The feature has a generalization component that removes background texture. It has a reduced feature vector size due to maximal representation and soft orientation histograms, and it is awhite box representation. We demonstrate improved performance on the non-trivial Audio/Visual Emotion Challenge 2012 grand-challenge dataset by a factor of 7.17 over the Gabor filter on the development set. We also demonstrate applicability of our approach beyond facial emotion recognition which yields improved classification rate over the Gabor filter for four bioimaging datasets by an average of 8.22%

    Objective Classes for Micro-Facial Expression Recognition

    Full text link
    Micro-expressions are brief spontaneous facial expressions that appear on a face when a person conceals an emotion, making them different to normal facial expressions in subtlety and duration. Currently, emotion classes within the CASME II dataset are based on Action Units and self-reports, creating conflicts during machine learning training. We will show that classifying expressions using Action Units, instead of predicted emotion, removes the potential bias of human reporting. The proposed classes are tested using LBP-TOP, HOOF and HOG 3D feature descriptors. The experiments are evaluated on two benchmark FACS coded datasets: CASME II and SAMM. The best result achieves 86.35\% accuracy when classifying the proposed 5 classes on CASME II using HOG 3D, outperforming the result of the state-of-the-art 5-class emotional-based classification in CASME II. Results indicate that classification based on Action Units provides an objective method to improve micro-expression recognition.Comment: 11 pages, 4 figures and 5 tables. This paper will be submitted for journal revie

    Facial Expression Recognition

    Get PDF

    A dynamic texture based approach to recognition of facial actions and their temporal models

    Get PDF
    In this work, we propose a dynamic texture-based approach to the recognition of facial Action Units (AUs, atomic facial gestures) and their temporal models (i.e., sequences of temporal segments: neutral, onset, apex, and offset) in near-frontal-view face videos. Two approaches to modeling the dynamics and the appearance in the face region of an input video are compared: an extended version of Motion History Images and a novel method based on Nonrigid Registration using Free-Form Deformations (FFDs). The extracted motion representation is used to derive motion orientation histogram descriptors in both the spatial and temporal domain. Per AU, a combination of discriminative, frame-based GentleBoost ensemble learners and dynamic, generative Hidden Markov Models detects the presence of the AU in question and its temporal segments in an input image sequence. When tested for recognition of all 27 lower and upper face AUs, occurring alone or in combination in 264 sequences from the MMI facial expression database, the proposed method achieved an average event recognition accuracy of 89.2 percent for the MHI method and 94.3 percent for the FFD method. The generalization performance of the FFD method has been tested using the Cohn-Kanade database. Finally, we also explored the performance on spontaneous expressions in the Sensitive Artificial Listener data set

    Micro-expression Recognition using Spatiotemporal Texture Map and Motion Magnification

    Get PDF
    Micro-expressions are short-lived, rapid facial expressions that are exhibited by individuals when they are in high stakes situations. Studying these micro-expressions is important as these cannot be modified by an individual and hence offer us a peek into what the individual is actually feeling and thinking as opposed to what he/she is trying to portray. The spotting and recognition of micro-expressions has applications in the fields of criminal investigation, psychotherapy, education etc. However due to micro-expressions’ short-lived and rapid nature; spotting, recognizing and classifying them is a major challenge. In this paper, we design a hybrid approach for spotting and recognizing micro-expressions by utilizing motion magnification using Eulerian Video Magnification and Spatiotemporal Texture Map (STTM). The validation of this approach was done on the spontaneous micro-expression dataset, CASMEII in comparison with the baseline. This approach achieved an accuracy of 80% viz. an increase by 5% as compared to the existing baseline by utilizing 10-fold cross validation using Support Vector Machines (SVM) with a linear kernel

    Efficient smile detection by Extreme Learning Machine

    Get PDF
    Smile detection is a specialized task in facial expression analysis with applications such as photo selection, user experience analysis, and patient monitoring. As one of the most important and informative expressions, smile conveys the underlying emotion status such as joy, happiness, and satisfaction. In this paper, an efficient smile detection approach is proposed based on Extreme Learning Machine (ELM). The faces are first detected and a holistic flow-based face registration is applied which does not need any manual labeling or key point detection. Then ELM is used to train the classifier. The proposed smile detector is tested with different feature descriptors on publicly available databases including real-world face images. The comparisons against benchmark classifiers including Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) suggest that the proposed ELM based smile detector in general performs better and is very efficient. Compared to state-of-the-art smile detector, the proposed method achieves competitive results without preprocessing and manual registration
    • …
    corecore