1,702 research outputs found

    Collision-aware Task Assignment for Multi-Robot Systems

    Full text link
    We propose a novel formulation of the collision-aware task assignment (CATA) problem and a decentralized auction-based algorithm to solve the problem with optimality bound. Using a collision cone, we predict potential collisions and introduce a binary decision variable into the local reward function for task bidding. We further improve CATA by implementing a receding collision horizon to address the stopping robot scenario, i.e. when robots are confined to their task location and become static obstacles to other moving robots. The auction-based algorithm encourages the robots to bid for tasks with collision mitigation considerations. We validate the improved task assignment solution with both simulation and experimental results, which show significant reduction of overlapping paths as well as deadlocks

    Trading Safety Versus Performance: Rapid Deployment of Robotic Swarms with Robust Performance Constraints

    Full text link
    In this paper we consider a stochastic deployment problem, where a robotic swarm is tasked with the objective of positioning at least one robot at each of a set of pre-assigned targets while meeting a temporal deadline. Travel times and failure rates are stochastic but related, inasmuch as failure rates increase with speed. To maximize chances of success while meeting the deadline, a control strategy has therefore to balance safety and performance. Our approach is to cast the problem within the theory of constrained Markov Decision Processes, whereby we seek to compute policies that maximize the probability of successful deployment while ensuring that the expected duration of the task is bounded by a given deadline. To account for uncertainties in the problem parameters, we consider a robust formulation and we propose efficient solution algorithms, which are of independent interest. Numerical experiments confirming our theoretical results are presented and discussed

    Mixed Initiative Systems for Human-Swarm Interaction: Opportunities and Challenges

    Full text link
    Human-swarm interaction (HSI) involves a number of human factors impacting human behaviour throughout the interaction. As the technologies used within HSI advance, it is more tempting to increase the level of swarm autonomy within the interaction to reduce the workload on humans. Yet, the prospective negative effects of high levels of autonomy on human situational awareness can hinder this process. Flexible autonomy aims at trading-off these effects by changing the level of autonomy within the interaction when required; with mixed-initiatives combining human preferences and automation's recommendations to select an appropriate level of autonomy at a certain point of time. However, the effective implementation of mixed-initiative systems raises fundamental questions on how to combine human preferences and automation recommendations, how to realise the selected level of autonomy, and what the future impacts on the cognitive states of a human are. We explore open challenges that hamper the process of developing effective flexible autonomy. We then highlight the potential benefits of using system modelling techniques in HSI by illustrating how they provide HSI designers with an opportunity to evaluate different strategies for assessing the state of the mission and for adapting the level of autonomy within the interaction to maximise mission success metrics.Comment: Author version, accepted at the 2018 IEEE Annual Systems Modelling Conference, Canberra, Australi

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible
    • …
    corecore