224 research outputs found

    Multi-Kernel Capsule Network for Schizophrenia Identification

    Get PDF
    Schizophrenia seriously affects the quality of life. To date, both simple (e.g., linear discriminant analysis) and complex (e.g., deep neural network) machine learning methods have been utilized to identify schizophrenia based on functional connectivity features. The existing simple methods need two separate steps (i.e., feature extraction and classification) to achieve the identification, which disables simultaneous tuning for the best feature extraction and classifier training. The complex methods integrate two steps and can be simultaneously tuned to achieve optimal performance, but these methods require a much larger amount of data for model training. To overcome the aforementioned drawbacks, we proposed a multi-kernel capsule network (MKCapsnet), which was developed by considering the brain anatomical structure. Kernels were set to match with partition sizes of brain anatomical structure in order to capture interregional connectivities at the varying scales. With the inspiration of widely-used dropout strategy in deep learning, we developed capsule dropout in the capsule layer to prevent overfitting of the model. The comparison results showed that the proposed method outperformed the state-of-the-art methods. Besides, we compared performances using different parameters and illustrated the routing process to reveal characteristics of the proposed method. MKCapsnet is promising for schizophrenia identification. Our study first utilized capsule neural network for analyzing functional connectivity of magnetic resonance imaging (MRI) and proposed a novel multi-kernel capsule structure with consideration of brain anatomical parcellation, which could be a new way to reveal brain mechanisms. In addition, we provided useful information in the parameter setting, which is informative for further studies using a capsule network for other neurophysiological signal classification

    Magnetoencephalography as a tool in psychiatric research: current status and perspective

    Get PDF
    The application of neuroimaging to provide mechanistic insights into circuit dysfunctions in major psychiatric conditions and the development of biomarkers are core challenges in current psychiatric research. In this review, we propose that recent technological and analytic advances in Magnetoencephalography (MEG), a technique which allows the measurement of neuronal events directly and non-invasively with millisecond resolution, provides novel opportunities to address these fundamental questions. Because of its potential in delineating normal and abnormal brain dynamics, we propose that MEG provides a crucial tool to advance our understanding of pathophysiological mechanisms of major neuropsychiatric conditions, such as Schizophrenia, Autism Spectrum Disorders, and the dementias. In our paper, we summarize the mechanisms underlying the generation of MEG signals and the tools available to reconstruct generators and underlying networks using advanced source-reconstruction techniques. We then survey recent studies that have utilized MEG to examine aberrant rhythmic activity in neuropsychiatric disorders. This is followed by links with preclinical research, which have highlighted possible neurobiological mechanisms, such as disturbances in excitation/inhibition parameters, which could account for measured changes in neural oscillations. In the final section of the paper, challenges as well as novel methodological developments are discussed which could pave the way for a widespread application of MEG in translational research with the aim of developing biomarkers for early detection and diagnosis

    Automated detection of Alzheimer disease using MRI images and deep neural networks- A review

    Full text link
    Early detection of Alzheimer disease is crucial for deploying interventions and slowing the disease progression. A lot of machine learning and deep learning algorithms have been explored in the past decade with the aim of building an automated detection for Alzheimer. Advancements in data augmentation techniques and advanced deep learning architectures have opened up new frontiers in this field, and research is moving at a rapid speed. Hence, the purpose of this survey is to provide an overview of recent research on deep learning models for Alzheimer disease diagnosis. In addition to categorizing the numerous data sources, neural network architectures, and commonly used assessment measures, we also classify implementation and reproducibility. Our objective is to assist interested researchers in keeping up with the newest developments and in reproducing earlier investigations as benchmarks. In addition, we also indicate future research directions for this topic.Comment: 22 Pages, 5 Figures, 7 Table

    DTCM: Deep Transformer Capsule Mutual Distillation for Multivariate Time Series Classification

    Get PDF
    This paper proposes a dual-network-based feature extractor, perceptive capsule network (PCapN), for multivariate time series classification (MTSC), including a local feature network (LFN) and a global relation network (GRN). The LFN has two heads (i.e., Head_A and Head_B), each containing two squash CNN blocks and one dynamic routing block to extract the local features from the data and mine the connections among them. The GRN consists of two capsule-based transformer blocks and one dynamic routing block to capture the global patterns of each variable and correlate the useful information of multiple variables. Unfortunately, it is difficult to directly deploy PCapN on mobile devices due to its strict requirement for computing resources. So, this paper designs a lightweight capsule network (LCapN) to mimic the cumbersome PCapN. To promote knowledge transfer from PCapN to LCapN, this paper proposes a deep transformer capsule mutual (DTCM) distillation method. It is targeted and offline, using one- and two-way operations to supervise the knowledge distillation process for the dual-network-based student and teacher models. Experimental results show that the proposed PCapN and DTCM achieve excellent performance on UEA2018 datasets regarding top-1 accuracy

    Introducing Vision Transformer for Alzheimer's Disease classification task with 3D input

    Full text link
    Many high-performance classification models utilize complex CNN-based architectures for Alzheimer's Disease classification. We aim to investigate two relevant questions regarding classification of Alzheimer's Disease using MRI: "Do Vision Transformer-based models perform better than CNN-based models?" and "Is it possible to use a shallow 3D CNN-based model to obtain satisfying results?" To achieve these goals, we propose two models that can take in and process 3D MRI scans: Convolutional Voxel Vision Transformer (CVVT) architecture, and ConvNet3D-4, a shallow 4-block 3D CNN-based model. Our results indicate that the shallow 3D CNN-based models are sufficient to achieve good classification results for Alzheimer's Disease using MRI scans

    Harnessing the power of artificial intelligence to transform hearing healthcare and research

    Get PDF
    The advances in artificial intelligence that are transforming many fields have yet to make an impact in hearing. Hearing healthcare continues to rely on a labour-intensive service model that fails to provide access to the majority of those in need, while hearing research suffers from a lack of computational tools with the capacity to match the complexities of auditory processing. This Perspective is a call for the artificial intelligence and hearing communities to come together to bring about a technological revolution in hearing. We describe opportunities for rapid clinical impact through the application of existing technologies and propose directions for the development of new technologies to create true artificial auditory systems. There is an urgent need to push hearing towards a future in which artificial intelligence provides critical support for the testing of hypotheses, the development of therapies and the effective delivery of care worldwide

    Auditory processing in patients with structural lesions of the brain.

    Get PDF
    This thesis investigated structure versus function in the central auditory nervous system (CANS) by using the lesion study approach and by utilising a validated clinical test battery for the assessment of auditory processing as well as self- or parent report measures. The central auditory test results were correlated with the macroscopical appearance of the CANS on brain MRI and with patient reported hearing difficulties. The two regions of interest for this study were the insula (first group of studies) and the interhemispheric pathway, comprised by the corpus callosum and the anterior commissure (second group of studies). First group of studies: Patients with a history of ischemic or haemorrhagic cerebral stroke of the CANS were identified by their scans. Exclusion criteria were significant psychiatric or expressive language disorders. Second group of studies: Adults and children with congenital aniridia and abnormality of the interhemispheric pathway due to a PAX6 mutation were recruited. The assessment included questionnaire of auditory capabilities, baseline audiometry (pure tone audiometry, tympanometry and otoacoustic emissions) and central auditory tests (speech and non-speech). The brain MRIs of these patients were visually inspected (1st and 2nd group of studies). The corpus callosum area was measured in the children participants of the 2nd group of studies

    Interpretable machine learning methods for predictions in systems biology from omics data

    Get PDF
    Machine learning has become a powerful tool for systems biologists, from diagnosing cancer to optimizing kinetic models and predicting the state, growth dynamics, or type of a cell. Potential predictions from complex biological data sets obtained by “omics” experiments seem endless, but are often not the main objective of biological research. Often we want to understand the molecular mechanisms of a disease to develop new therapies, or we need to justify a crucial decision that is derived from a prediction. In order to gain such knowledge from data, machine learning models need to be extended. A recent trend to achieve this is to design “interpretable” models. However, the notions around interpretability are sometimes ambiguous, and a universal recipe for building well-interpretable models is missing. With this work, we want to familiarize systems biologists with the concept of model interpretability in machine learning. We consider data sets, data preparation, machine learning methods, and software tools relevant to omics research in systems biology. Finally, we try to answer the question: “What is interpretability?” We introduce views from the interpretable machine learning community and propose a scheme for categorizing studies on omics data. We then apply these tools to review and categorize recent studies where predictive machine learning models have been constructed from non-sequential omics data

    Banknote Authentication and Medical Image Diagnosis Using Feature Descriptors and Deep Learning Methods

    Get PDF
    Banknote recognition and medical image analysis have been the foci of image processing and pattern recognition research. As counterfeiters have taken advantage of the innovation in print media technologies for reproducing fake monies, hence the need to design systems which can reassure and protect citizens of the authenticity of banknotes in circulation. Similarly, many physicians must interpret medical images. But image analysis by humans is susceptible to error due to wide variations across interpreters, lethargy, and human subjectivity. Computer-aided diagnosis is vital to improvements in medical analysis, as they facilitate the identification of findings that need treatment and assist the expert’s workflow. Thus, this thesis is organized around three such problems related to Banknote Authentication and Medical Image Diagnosis. In our first research problem, we proposed a new banknote recognition approach that classifies the principal components of extracted HOG features. We further experimented on computing HOG descriptors from cells created from image patch vertices of SURF points and designed a feature reduction approach based on a high correlation and low variance filter. In our second research problem, we developed a mobile app for banknote identification and counterfeit detection using the Unity 3D software and evaluated its performance based on a Cascaded Ensemble approach. The algorithm was then extended to a client-server architecture using SIFT and SURF features reduced by Bag of Words and high correlation-based HOG vectors. In our third research problem, experiments were conducted on a pre-trained mobile app for medical image diagnosis using three convolutional layers with an Ensemble Classifier comprising PCA and bagging of five base learners. Also, we implemented a Bidirectional Generative Adversarial Network to mitigate the effect of the Binary Cross Entropy loss based on a Deep Convolutional Generative Adversarial Network as the generator and encoder with Capsule Network as the discriminator while experimenting on images with random composition and translation inferences. Lastly, we proposed a variant of the Single Image Super-resolution for medical analysis by redesigning the Super Resolution Generative Adversarial Network to increase the Peak Signal to Noise Ratio during image reconstruction by incorporating a loss function based on the mean square error of pixel space and Super Resolution Convolutional Neural Network layers
    corecore