16,170 research outputs found

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Assistive technology design and development for acceptable robotics companions for ageing years

    Get PDF
    © 2013 Farshid Amirabdollahian et al., licensee Versita Sp. z o. o. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs license, which means that the text may be used for non-commercial purposes, provided credit is given to the author.A new stream of research and development responds to changes in life expectancy across the world. It includes technologies which enhance well-being of individuals, specifically for older people. The ACCOMPANY project focuses on home companion technologies and issues surrounding technology development for assistive purposes. The project responds to some overlooked aspects of technology design, divided into multiple areas such as empathic and social human-robot interaction, robot learning and memory visualisation, and monitoring persons’ activities at home. To bring these aspects together, a dedicated task is identified to ensure technological integration of these multiple approaches on an existing robotic platform, Care-O-BotÂź3 in the context of a smart-home environment utilising a multitude of sensor arrays. Formative and summative evaluation cycles are then used to assess the emerging prototype towards identifying acceptable behaviours and roles for the robot, for example role as a butler or a trainer, while also comparing user requirements to achieved progress. In a novel approach, the project considers ethical concerns and by highlighting principles such as autonomy, independence, enablement, safety and privacy, it embarks on providing a discussion medium where user views on these principles and the existing tension between some of these principles, for example tension between privacy and autonomy over safety, can be captured and considered in design cycles and throughout project developmentsPeer reviewe

    Enhancing the Transition-based RRT to deal with complex cost spaces

    Get PDF
    The Transition-based RRT (T-RRT) algorithm enables to solve motion planning problems involving configuration spaces over which cost functions are defined, or cost spaces for short. T-RRT has been successfully applied to diverse problems in robotics and structural biology. In this paper, we aim at enhancing T-RRT to solve ever more difficult problems involving larger and more complex cost spaces. We compare several variants of T-RRT by evaluating them on various motion planning problems involving different types of cost functions and different levels of geometrical complexity. First, we explain why applying as such classical extensions of RRT to T-RRT is not helpful, both in a mono-directional and in a bidirectional context. Then, we propose an efficient Bidirectional T-RRT, based on a bidirectional scheme tailored to cost spaces. Finally, we illustrate the new possibilities offered by the Bidirectional T-RRT on an industrial inspection problem

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available
    • 

    corecore