19 research outputs found

    VRBridge: a Constructivist Approach to Supporting Interaction Design and End-User Authoring in Virtual Reality

    Get PDF
    For any technology to become widely-used and accepted, it must support end-user authoring and customisation. This means making the technology accessible by enabling understanding of its design issues and reducing its technical barriers. Our interest is in enabling end-users to author dynamic virtual environments (VEs), specifically their interactions: player interactions with objects and the environment; and object interactions with each other and the environment. This thesis describes a method to create tools and design aids which enable end-users to design and implement interactions in a VE and assist them in building the requisite domain knowledge, while reducing the costs of learning a new set of skills. Our design method is based in constructivism, which is a theory that examines the acquisition and use of knowledge. It provides principles for managing complexity in knowledge acquisition: multiplicity of representations and perspectives; simplicity of basic components; encouragement of exploration; support for deep reflection; and providing users with control of their process as much as possible. We derived two main design aids from these principles: multiple, interactive and synchronised domain-specific representations of the design; and multiple forms of non-invasive and user-adaptable scaffolding. The method began with extensive research into representations and scaffolding, followed by investigation of the design strategies of experts, the needs of novices and how best to support them with software, and the requirements of the VR domain. We also conducted a classroom observation of the practices of non-programmers in VR design, to discover their specific problems with effectively conceptualising and communicating interactions in VR. Based on our findings in this research and our constructivist guidelines, we developed VRBridge, an interaction authoring tool. This contained a simple event-action interface for creating interactions using trigger-condition-action triads or Triggersets. We conducted two experimental evaluations during the design of VRBridge, to test the effectiveness of our design aids and the basic tool. The first tested the effectiveness of the Triggersets and additional representations: a Floorplan, a Sequence Diagram and Timelines. We used observation, interviews and task success to evaluate how effectively end-users could analyse and debug interactions created with VRBridge. We found that the Triggersets were effective and usable by novices to analyse an interaction design, and that the representations significantly improved end-user work and experience. The second experiment was large-scale (124 participants) and conducted over two weeks. Participants worked on authoring tasks which embodied typical interactions and complexities in the domain. We used a task exploration metric, questionnaires and computer logging to evaluate aspects of task performance: how effectively end-users could create interactions with VRBridge; how effectively they worked in the domain of VR authoring; how much enjoyment or satisfaction they experienced during the process; and how well they learned over time. This experiment tested the entire system and the effects of the scaffolding and representations. We found that all users were able to complete authoring tasks using VRBridge after very little experience with the system and domain; all users improved and felt more satisfaction over time; users with representations or scaffolding as a design aid completed the task more expertly, explored more effectively, felt more satisfaction and learned better than those without design aids; users with representations explored more effectively and felt more satisfaction than those with scaffolding; and users with both design aids learned better but did not improve in any other way over users with a single design aid. We also gained evidence about how the scaffolding, representations and basic tool were used during the evaluation. The contributions of this thesis are: an effective and efficient theory-based design method; a case study in the use of constructivism to structure a design process and deliver effective tools; a proof-of-concept prototype with which novices can create interactions in VR without traditional programming; evidence about the problems that novices face when designing interactions and dealing with unfamiliar programming concepts; empirical evidence about the relative effectiveness of additional representations and scaffolding as support for designing interactions; guidelines for supporting end-user authoring in general; and guidelines for the design of effective interaction authoring systems in general

    Spatial Displays and Spatial Instruments

    Get PDF
    The conference proceedings topics are divided into two main areas: (1) issues of spatial and picture perception raised by graphical electronic displays of spatial information; and (2) design questions raised by the practical experience of designers actually defining new spatial instruments for use in new aircraft and spacecraft. Each topic is considered from both a theoretical and an applied direction. Emphasis is placed on discussion of phenomena and determination of design principles

    Proceedings of the 1st European conference on disability, virtual reality and associated technologies (ECDVRAT 1996)

    Get PDF
    The proceedings of the conferenc

    Designing interfaces in public settings

    Get PDF
    The rapidly increasing reach of computation into our everyday public settings presents new and significant challenges for the design of interfaces. One key feature of these settings is the increased presence of third parties to interaction, watching or passing-by as conduct with an interface takes place. This thesis assumes a performative perspective on interaction in public, presenting a framework derived from four empirical studies of interaction in a diverse series of public places---museums and galleries, city streets and funfairs---as well as observations on a variety of computer science, art and sociological literatures. As these settings are explored, a number of basic framework concepts are built up: * The first study chapter presents a deployment of an interactive exhibit within an artistic installation, introducing a basic division of roles and the ways in which visitors may be seen as `audience' to manipulations of interactive devices by `participants'. It also examines how visitors in an audience role may transition to active participant and vice versa. * The second study chapter describes a storytelling event that employed a torch-based interface. This chapter makes a distinction between non-professional and professional members of settings, contrasting the role of `actor' with that of participants. * The third study chapter examines a series of scientific and artistic performance events that broadcast live telemetry data from a fairground ride to a watching audience. The study expands the roles introduced in previous chapters through making a further distinction between `behind-the-scenes'---in which `orchestrators' operate---and `centre-stage' settings---in which actors present the rider's experience to the audience. * The final study chapter presents a performance art game conducted on city streets, in which participants follow a series of often ambiguous clues in order to lead them to their goal. This chapter introduces a further `front-of-house' setting, the notion of a circumscribing performance `frame' in which the various roles are situated, and the additional role of the `bystander' as part of this. These observations are brought together into a design framework which analyses other literature to complement the earlier studies. This framework seeks to provide a new perspective on and language for human-computer interaction (HCI), introducing a series of sensitising concepts, constraints and strategies for design that may be employed in order to approach the various challenges presented by interaction in public settings

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 342)

    Get PDF
    This bibliography lists 208 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during October 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Enhancing our lives with immersive virtual reality

    Get PDF
    Virtual reality (VR) started about 50 years ago in a form we would recognize today [stereo head-mounted display (HMD), head tracking, computer graphics generated images] – although the hardware was completely different. In the 1980s and 1990s, VR emerged again based on a different generation of hardware (e.g., CRT displays rather than vector refresh, electromagnetic tracking instead of mechanical). This reached the attention of the public, and VR was hailed by many engineers, scientists, celebrities, and business people as the beginning of a new era, when VR would soon change the world for the better. Then, VR disappeared from public view and was rumored to be “dead.” In the intervening 25 years a huge amount of research has nevertheless been carried out across a vast range of applications – from medicine to business, from psychotherapy to industry, from sports to travel. Scientists, engineers, and people working in industry carried on with their research and applications using and exploring different forms of VR, not knowing that actually the topic had already passed away. The purpose of this article is to survey a range of VR applications where there is some evidence for, or at least debate about, its utility, mainly based on publications in peer-reviewed journals. Of course not every type of application has been covered, nor every scientific paper (about 186,000 papers in Google Scholar): in particular, in this review we have not covered applications in psychological or medical rehabilitation. The objective is that the reader becomes aware of what has been accomplished in VR, where the evidence is weaker or stronger, and what can be done. We start in Section 1 with an outline of what VR is and the major conceptual framework used to understand what happens when people experience it – the concept of “presence.” In Section 2, we review some areas where VR has been used in science – mostly psychology and neuroscience, the area of scientific visualization, and some remarks about its use in education and surgical training. In Section 3, we discuss how VR has been used in sports and exercise. In Section 4, we survey applications in social psychology and related areas – how VR has been used to throw light on some social phenomena, and how it can be used to tackle experimentally areas that cannot be studied experimentally in real life. We conclude with how it has been used in the preservation of and access to cultural heritage. In Section 5, we present the domain of moral behavior, including an example of how it might be used to train professionals such as medical doctors when confronting serious dilemmas with patients. In Section 6, we consider how VR has been and might be used in various aspects of travel, collaboration, and industry. In Section 7, we consider mainly the use of VR in news presentation and also discuss different types of VR. In the concluding Section 8, we briefly consider new ideas that have recently emerged – an impossible task since during the short time we have written this page even newer ideas have emerged! And, we conclude with some general considerations and speculations. Throughout and wherever possible we have stressed novel applications and approaches and how the real power of VR is not necessarily to produce a faithful reproduction of “reality” but rather that it offers the possibility to step outside of the normal bounds of reality and realize goals in a totally new and unexpected way. We hope that our article will provoke readers to think as paradigm changers, and advance VR to realize different worlds that might have a positive impact on the lives of millions of people worldwide, and maybe even help a little in saving the planet

    Multimodal Interaction for Enhancing Team Coordination on the Battlefield

    Get PDF
    Team coordination is vital to the success of team missions. On the battlefield and in other hazardous environments, mission outcomes are often very unpredictable because of unforeseen circumstances and complications encountered that adversely affect team coordination. In addition, the battlefield is constantly evolving as new technology, such as context-aware systems and unmanned drones, becomes available to assist teams in coordinating team efforts. As a result, we must re-evaluate the dynamics of teams that operate in high-stress, hazardous environments in order to learn how to use technology to enhance team coordination within this new context. In dangerous environments where multi-tasking is critical for the safety and success of the team operation, it is important to know what forms of interaction are most conducive to team tasks. We have explored interaction methods, including various types of user input and data feedback mediums that can assist teams in performing unified tasks on the battlefield. We’ve conducted an ethnographic analysis of Soldiers and researched technologies such as sketch recognition, physiological data classification, augmented reality, and haptics to come up with a set of core principles to be used when de- signing technological tools for these teams. This dissertation provides support for these principles and addresses outstanding problems of team connectivity, mobility, cognitive load, team awareness, and hands-free interaction in mobile military applications. This research has resulted in the development of a multimodal solution that enhances team coordination by allowing users to synchronize their tasks while keeping an overall awareness of team status and their environment. The set of solutions we’ve developed utilizes optimal interaction techniques implemented and evaluated in related projects; the ultimate goal of this research is to learn how to use technology to provide total situational awareness and team connectivity on the battlefield. This information can be used to aid the research and development of technological solutions for teams that operate in hazardous environments as more advanced resources become available

    NASA Tech Briefs, July 1991

    Get PDF
    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences
    corecore