664 research outputs found

    2HOT: An Improved Parallel Hashed Oct-Tree N-Body Algorithm for Cosmological Simulation

    Full text link
    We report on improvements made over the past two decades to our adaptive treecode N-body method (HOT). A mathematical and computational approach to the cosmological N-body problem is described, with performance and scalability measured up to 256k (2182^{18}) processors. We present error analysis and scientific application results from a series of more than ten 69 billion (409634096^3) particle cosmological simulations, accounting for 4Ă—10204 \times 10^{20} floating point operations. These results include the first simulations using the new constraints on the standard model of cosmology from the Planck satellite. Our simulations set a new standard for accuracy and scientific throughput, while meeting or exceeding the computational efficiency of the latest generation of hybrid TreePM N-body methods.Comment: 12 pages, 8 figures, 77 references; To appear in Proceedings of SC '1

    Adaptive Discontinuous Galerkin Finite Element Methods

    Get PDF
    The Discontinuous Galerkin Method is one variant of the Finite Element Methods for solving partial differential equations, which was first introduced by Reed and Hill in 1970’s [27]. Discontinuous GalerkinMethod (DGFEM) differs from the standard Galerkin FEMthat continuity constraints are not imposed on the inter-element boundaries. It results in a solution which is composed of totally piecewise discontinuous functions. The absence of continuity constraints on the inter-element boundaries implies that DG method has a great deal of flexibility at the cost of increasing the number of degrees of freedom. This flexibility is the source of many but not all of the advantages of the DGFEM method over the Continuous Galerkin (CGFEM) method that uses spaces of continuous piecewise polynomial functions and other ”less standard” methods such as nonconforming methods. As DGFEM method leads to bigger system to solve, theoretical and practical approaches to speed it up are our main focus in this dissertation. This research aims at designing and building an adaptive discontinuous Galerkin finite element method to solve partial differential equations with fast time for desired accuracy on modern architecture

    Adjoint computations by algorithmic differentiation of a parallel solver for time-dependent PDEs

    Get PDF
    A computational fluid dynamics code is differentiated using algorithmic differentiation (AD) in both tangent and adjoint modes. The two novelties of the present approach are 1) the adjoint code is obtained by letting the AD tool Tapenade invert the complete layer of message passing interface (MPI) communications, and 2) the adjoint code integrates time-dependent, non-linear and dissipative (hence physically irreversible) PDEs with an explicit time integration loop running for ca. 10610^{6} time steps. The approach relies on using the Adjoinable MPI library to reverse the non-blocking communication patterns in the original code, and by controlling the memory overhead induced by the time-stepping loop with binomial checkpointing. A description of the necessary code modifications is provided along with the validation of the computed derivatives and a performance comparison of the tangent and adjoint codes.Comment: Submitted to Journal of Computational Scienc

    The 1998 Center for Simulation of Dynamic Response in Materials Annual Technical Report

    Get PDF
    Introduction: This annual report describes research accomplishments for FY 98 of the Center for Simulation of Dynamic Response of Materials. The Center is constructing a virtual shock physics facility in which the full three dimensional response of a variety of target materials can be computed for a wide range of compressive, tensional, and shear loadings, including those produced by detonation of energetic materials. The goals are to facilitate computation of a variety of experiments in which strong shock and detonation waves are made to impinge on targets consisting of various combinations of materials, compute the subsequent dynamic response of the target materials, and validate these computations against experimental data

    A Tuned and Scalable Fast Multipole Method as a Preeminent Algorithm for Exascale Systems

    Full text link
    Among the algorithms that are likely to play a major role in future exascale computing, the fast multipole method (FMM) appears as a rising star. Our previous recent work showed scaling of an FMM on GPU clusters, with problem sizes in the order of billions of unknowns. That work led to an extremely parallel FMM, scaling to thousands of GPUs or tens of thousands of CPUs. This paper reports on a a campaign of performance tuning and scalability studies using multi-core CPUs, on the Kraken supercomputer. All kernels in the FMM were parallelized using OpenMP, and a test using 10^7 particles randomly distributed in a cube showed 78% efficiency on 8 threads. Tuning of the particle-to-particle kernel using SIMD instructions resulted in 4x speed-up of the overall algorithm on single-core tests with 10^3 - 10^7 particles. Parallel scalability was studied in both strong and weak scaling. The strong scaling test used 10^8 particles and resulted in 93% parallel efficiency on 2048 processes for the non-SIMD code and 54% for the SIMD-optimized code (which was still 2x faster). The weak scaling test used 10^6 particles per process, and resulted in 72% efficiency on 32,768 processes, with the largest calculation taking about 40 seconds to evaluate more than 32 billion unknowns. This work builds up evidence for our view that FMM is poised to play a leading role in exascale computing, and we end the paper with a discussion of the features that make it a particularly favorable algorithm for the emerging heterogeneous and massively parallel architectural landscape

    A survey of high level frameworks in block-structured adaptive mesh refinement packages

    Get PDF
    pre-printOver the last decade block-structured adaptive mesh refinement (SAMR) has found increasing use in large, publicly available codes and frameworks. SAMR frameworks have evolved along different paths. Some have stayed focused on specific domain areas, others have pursued a more general functionality, providing the building blocks for a larger variety of applications. In this survey paper we examine a representative set of SAMR packages and SAMR-based codes that have been in existence for half a decade or more, have a reasonably sized and active user base outside of their home institutions, and are publicly available. The set consists of a mix of SAMR packages and application codes that cover a broad range of scientific domains. We look at their high-level frameworks, their design trade-offs and their approach to dealing with the advent of radical changes in hardware architecture. The codes included in this survey are BoxLib, Cactus, Chombo, Enzo, FLASH, and Uintah
    • …
    corecore