
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

8-2009

Adaptive Discontinuous Galerkin Finite Element
Methods
Haihang You
University of Tennessee - Knoxville

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
You, Haihang, "Adaptive Discontinuous Galerkin Finite Element Methods. " PhD diss., University of Tennessee, 2009.
https://trace.tennessee.edu/utk_graddiss/86

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Haihang You entitled "Adaptive Discontinuous
Galerkin Finite Element Methods." I have examined the final electronic copy of this dissertation for form
and content and recommend that it be accepted in partial fulfillment of the requirements for the degree
of Doctor of Philosophy, with a major in Computer Science.

Jack Dongarra, Major Professor

We have read this dissertation and recommend its acceptance:

Ohannes Karakashian, James Plank, Michael Thomason, Shirley Moore

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Haihang You entitled “Adaptive Discontinuous
Galerkin Finite Element Methods.” I have examined the final electronic copy of this dissertation
for form and content and recommend that it be accepted in partial fulfillmentof the requirements
for the degree of Doctor of Philosophy, with a major in Computer Science.

Jack Dongarra, Major Professor

We have read this dissertation
and recommend its acceptance:

Ohannes Karakashian

James Plank

Michael Thomason

Shirley Moore

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of Graduate School

(Original signatures are on file with official student records.)

ADAPTIVE DISCONTINUOUS GALERKIN

FINITE ELEMENT METHODS

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Haihang You

August 2009

Copyright © 2009 by Haihang You

All rights reserved.

ii

Dedication
To Albert and Robert, I always love you!

To my father You Chenan, mother Li Helin, brother Yuanhang, sister Liangyu.

To my uncle Li Hefeng for looking after me when I was away from home for the first time.

To the memory of uncle Li Hebiao, I miss you all the time.

iii

Acknowledgments
I would like to express my immense gratitude to my advisors, Professor Jack Dongarra and Profes-

sor Ohannes Karakashian, for the inspiration, valuable comments and expert guidance throughout

the process of research. My sincere gratitude to my Dissertation Committee, Dr. James Plank, Dr.

Shirley Moore and Dr. Michael Thomason.

iv

Abstract
The Discontinuous Galerkin Method is one variant of the Finite Element Methods for solving par-

tial differential equations, which was first introduced by Reed and Hill in 1970’s [27]. Discontinu-

ous Galerkin Method (DGFEM) differs from the standard Galerkin FEM that continuity constraints

are not imposed on the inter-element boundaries. It results in a solution which is composed of to-

tally piecewise discontinuous functions. The absence of continuity constraints on the inter-element

boundaries implies that DG method has a great deal of flexibility at the cost ofincreasing the num-

ber of degrees of freedom. This flexibility is the source of many but not allof the advantages of the

DGFEM method over the Continuous Galerkin (CGFEM) method that uses spaces of continuous

piecewise polynomial functions and other ”less standard” methods such asnonconforming meth-

ods. As DGFEM method leads to bigger system to solve, theoretical and practical approaches to

speed it up are our main focus in this dissertation. This research aims at designing and building an

adaptive discontinuous Galerkin finite element method to solve partial differential equations with

fast time for desired accuracy on modern architecture.

v

Contents

1 Introduction . 1

2 Continuous Galerkin Method . 4

2.1 Introduction . 4

2.2 Poisson’s Equation . 4

2.3 Finite Element Spaces . 6

2.4 Standard Galerkin Formulation . 8

2.5 The Stiffness Matrix: To assemble or not to assemble 10

2.6 Experiment and Performance .. 15

3 Nonoverlapping Additive Schwarz Preconditioners 20

3.1 Introduction . 20

3.1.1 Preliminaries . 22

3.1.2 Sobolev Spaces . 22

3.1.3 Triangulations . 22

3.1.4 The discontinuous Galerkin approximation 24

3.1.5 Some useful results . 25

3.2 The non-overlapping Schwarz methods .. . 27

3.2.1 Formulation of the additive Schwarz preconditioner28

3.2.2 Condition number estimate for the additive Schwarz method 32

3.3 Experiments and Performance .38

4 Adaptive Algorithm .41

vi

4.1 Marking Algorithm . 42

4.1.1 D̈orfler Marking Algorithm . 42

4.1.2 Drastic Cutting Algorithm . 43

4.2 Accumulate SER Algorithm . 44

4.3 Experiments . 45

4.3.1 Smooth Solution Problem . 45

4.3.2 Oscillatory Solution Problem . 46

4.3.3 Singular Solution Problem . 49

4.3.4 Comparison with DGADPT . 49

4.4 Discussion . 56

5 Implementation and Data Structure . 59

5.1 Introduction . 59

5.2 Data Structure . 60

5.2.1 Vertex . 60

5.2.2 Edge . 61

5.2.3 Triangle . 64

5.2.4 PDE Data . 64

5.2.5 Mesh . 64

5.3 Reordering . 66

5.4 Embedding and Projection Operators .. 67

5.4.1 DG Embedding Operator . 68

5.4.2 CDG Embedding Operator . 71

5.5 Summary . 73

6 Parallel Implementation .74

6.1 Introduction . 74

6.2 Parallel Design and Data Structure .. 75

6.2.1 Domain Decomposition . 75

vii

6.2.2 METIS . 75

6.2.3 Parallel Iterative Solver . 76

6.2.4 Data Structure . 78

6.3 Experiment and Performance .. 81

7 Summary and Future Directions . 84

Bibliography .85

Appendix .91

A Affine Transformation .92

A.1 First Order Basis Functions .. 94

A.2 Second Order Basis Functions .. 95

Vita .98

viii

List of Tables

2.1 Machine Specifications . 17

3.1 Machine Specifications . 38

4.1 Comparison of Marking Algorithm: Problem4.6, r=247

4.2 Comparison of Marking Algorithm: Problem4.7, r=350

4.3 Comparison of Marking Algorithm: Problem4.8, r=252

5.1 CDG node mapping . 71

5.2 A example of CDG node mapping: CDG node mapping 72

ix

List of Figures

2.1 Linear basis functionφ(0)
K . 7

2.2 Quadratic basis functionsφ(0)
K andφ(3)

K . 7

2.3 Linear basis functions on a triangulated 2D mesh. 9

2.4 Mesh with indexing of vertices, triangles, and local vertex indexing of each triangle 13

2.5 Solution of Problem(2.19) on a mesh with 4096 triangles. 16

2.6 Comparison of computation time of CG method with CSR andRDRT matrix stor-

age format, degree of polynomial is 2 . 18

2.7 Comparison of computation time of CG method with CSR andRDRT matrix stor-

age format, degree of polynomial is 3 . 18

3.1 Conforming and non-conforming mesh .. 26

3.2 Comparison of computation time of iterative methods: CG and PCG 39

3.3 Number of iterations comparison of iterative methods: CG and PCG 40

4.1 Square Domain . 46

4.2 Residual Error: Problem4.6, r=2 .. . 47

4.3 Adaptive Meshes: Problem4.6, r=2 .. . 48

4.4 Residual Error: Problem4.7, r=3 .. . 50

4.5 Adaptive Meshes: Problem4.7, r=3 .. . 51

4.6 Notch Domain . 52

4.7 Residual Error: Problem4.8, r=2 .. . 53

4.8 Adaptive Meshes: Problem4.8, r=2 .. . 54

4.9 Performance comparison of DGADPT and ASER 55

x

4.10 Smooth problem: ASER algorithm . 57

4.11 Smooth problem: ASER algorithm with drastic cutting 57

4.12 Oscillatory problem: ASER algorithm . 57

4.13 Oscillatory problem: ASER algorithm with drastic cutting 58

4.14 Singular problem: ASER algorithm . 58

4.15 Singular problem: ASER algorithm with drastic cutting58

5.1 Diagram of ADFEM software. .60

5.2 Node structure . 61

5.3 Edge structure . 62

5.4 Edgedata structure . 62

5.5 Edge and child edges in fine mesh. .62

5.6 Local Ordering for TriangleK,{K0,K1,K2,K3} 63

5.7 Triangle structure . 65

5.8 Tridata structure . 65

5.9 Tree . 66

5.10 Comparison of non-reordered and reordered sparse matrices 67

5.11 Performance comparison of conjugate gradient method with non-reordered and re-

ordered sparse matrices . 68

5.12 A example of CDG node mapping: 2D mesh . 72

6.1 A mesh with 4 subdomains. 76

6.2 Data distribution of matrix-vector multiplication on processesP0, P1, P2, andP3 . . 78

6.3 Domain tree structure . 79

6.4 Domain interface structure . 80

6.5 Domain structure . 81

6.6 Solution of Problem(6.1). 82

6.7 Performance evaluation of parallel implementation on Jaguar: Time 82

6.8 Performance evaluation of parallel implementation on Jaguar: Iteration Numbers . 83

xi

A.1 Affine transformation between triangleK and reference trianglêK 93

A.2 Vertices of 1st order basis functions on a triangleK and reference trianglêK 94

A.3 Vertices of 2nd order basis functions on a triangleK and reference trianglêK . . . 96

xii

Chapter 1

Introduction

The Discontinuous Galerkin Method, first introduced by Reed and Hill in the1970’s [27], is one

variant of the Finite Element Methods for solving partial differential equations. The Discontinuous

Galerkin Method (DGFEM) differs from the standard or continuous Galerkin FEM (SGFEM or

CGFEM) in that continuity constraints are not imposed on the inter-element boundaries, resulting

in a solution that is composed of totally piecewise discontinuous functions. Theabsence of con-

tinuity constraints on the inter-element boundaries implies that the DGFEM has a great deal of

flexibility at the cost of increasing the number of degrees of freedom. Thisflexibility is the source

of many but not all of the advantages of the DGFEM method over the CGFEM.The CGFEM uses

spaces of continuous piecewise polynomial functions and other ”less standard” methods such as

nonconforming methods. Noncorforming methods are characterized by theimposition of continu-

ity at certain points on the inter-element boundaries.

As the DGFEM method results in larger linear systems than the other versions, theoretical

and practical approaches to speed it up become very important especiallywhen one wishes to

measure its competitiveness. Indeed, at the same time as theoretical and implementational aspects

of the DGFEM are developed, one must undertake comparative studies withother Finite Elements

methods especially in the area of efficiency. Indeed, a main theme of this research has been to

successfully incorporate some aspects of the standard Finite Element Methods into the DGFEM,

thus creating a hybrid and more efficient method.

1

The recently released TOP500 list [25] of the world’s fastest supercomputers depicts some im-

portant trends in the area of high performance computing: clusters represent the most common

architecture and multi-core processors represent the dominant chip architecture. These trends have

a big influence on research and development in high performance computing. To achieve high per-

formance on such systems, the software has to be 1) scalable on a distributed memory system with

tens of thousands of CPUs, 2) capable of on-chip parallelism, which takesadvantage of multi-core

chip architecture with shared memory threading, and 3) tuned to have better cache locality and en-

hance instruction level parallelism. The Discontinuous Galerkin Method with anadditive Schwartz

preconditioner shows its full potential at all these different levels of parallel optimization. First

of all, it is natural to split the whole problem into small pieces by domain decomposition for dis-

tributed computing. Such domain decomposition is relatively easy to carry out with the discontin-

uous scheme, since it does not require continuity along the boundary of elements. Secondly, each

domain maintains a row of blocked dense matrices, i.e. a diagonal block (the stiffness matrix of the

domain), and a list of non-diagonal blocks (flux and penalty terms along boundaries of domain),

and a list of small blocked sparse matrices (stiffness matrices of subdomains) if using domain de-

composition as preconditioner. The computational tasks for an iterative method for solving a linear

system are a list of sparse matrix vector products, which can be further parallelized on a multi-core

architecture. And at last, to achieve peak performance on modern systemswith new techniques

such as longer pipelines, deeper memory hierarchies, and hyper threading technologies, we have to

generate highly optimized libraries for dense and sparse linear algebra kernels [14, 35], [7], [38].

Typical transformations include loop blocking [31, 37], loop unrolling [2], and loop permutation,

fusion and distribution [5,24]. One aspect of the adaptivity of our software is its ability to generate

a computationally intense kernel as it is installed on one system. For example, solving huge sparse

linear systems with dense blocks is an important part of the Galerkin method. One can speed up

the sparse linear solver by generating a fast matrix vector multiplication function for the known

matrix size.

To summarize, the contributions of our research are the following:

• We have revisited an old aspect of the standard Galerkin method concerning the assembly

2

of the stiffness matrixA. As an alternative to explicitly formingA, we have used instead

a factorization ofA of the formRDRT and compared the relative efficiencies of perform-

ing matrix-vector multiplications withA versusRDRT . While it may be counterintuitive to

expect that replacing one such operation with three can be advantageous, it turns out that

exploiting the structures ofR and D results in a competitive algorithm that shows better

scalability and performance on multicore systems. This result is not only interesting in the

context of the standard Galerkin method itself, but also impacts the DGFEM since we also

use the matrixA as a preconditioner in solving the linear systems resulting from the DGFEM.

• We have developed a nonoverlapping additive Schwartz domain decomposition precondi-

tioning algorithm for the fast iterative solution of the linear systems for the DGFEM. The

main theme here is to use the CGFEM to precondition the DGFEM. The benefits of this ap-

proach are twofold. First, this preconditioner (the matrixA above) is smaller than its discon-

tinuous counterpart. Second, a difficulty caused by so-called penalty terms of the DGFEM

are bypassed resulting in an improvement in the condition number of the preconditioned sys-

tem. We include a new and rigorous analysis that shows that the condition number of the

preconditioned system is the expected (and optimal)O(H/h) whereH andh are a measure

of the coarse and fine meshes respectively.

• We have developed an adaptive finite element algorithm(ASER) based on aposteriori error

estimates developed earlier. This algorithm implements the ideas and techniques outlined

above and also implements a drastic cutting marking strategy resulting in a decrease in the

number adaptive cycles needed to achieve the prescribed tolerance.

”If we can enhance computational efficiency the method may in the end outperform state-of-the

art finite volume solvers, especially when DGFEM is combined with h- and p-adaptation.· · · We

believe therefore that DGFEM has a huge potential as a next generation flow solver technology. ”

— CENAERO(Centre of Excellence in Aeronautical Research) and its CFDMulti-physics group,

Swansea, UK, 4-6 April 2005.

3

Chapter 2

Continuous Galerkin Method

2.1 Introduction

In 1943, Richard Courant introduced the Finite Element Method [10] (FEM) for approximating

solutions of partial differential equations. Since then FEM has been studied and developed to be

a powerful and widely used method for numerical solutions of partial differential equations. In

this chapter we revisit the Continuous Galerkin Method and exploit an approach for performing

matrix-vector multiplications without actually forming the stiffness matrix.

2.2 Poisson’s Equation

Let us consider the following second order elliptic problem for Poisson’sequation:

−∆u = f in Ω, (2.1)

u = gD on ΓD, (2.2)

∇u·n = gN on ΓN. (2.3)

whereΩ ⊂ Rd, d = 2,3, ΓD denotes the Dirichlet boundary,ΓN denotes the Neumann boundary,

and∂Ω = ΓD ∪ΓN with n being the unit outward normal vector to∂Ω.

Let V = {v∈ H1(Ω) : v = 0 onΓD} be the space of so-calledtest functions. We can obtain a

4

weak formulation of the PDE above by multiplying Eq(2.1) withv∈V and integrating overΩ:

−

∫

Ω
(∆u)vdx=

∫

Ω
f vdx. (2.4)

Integrating the left side by parts and using the fact thatv = 0 onΓD and ∂u
∂n = gN on ΓN, we have

−

∫

Ω
(∆u)vdx=

∫

Ω
∇u·∇vdx−

∫

ΓN

gNvds (2.5)

Let u be the solution of Eq(2.1), thenu is also the solution of following variational problem: Find

u∈ H1(Ω) satisfyingu
∣

∣

ΓD
= gD such that

a(u,v) = F(v), ∀v∈V, (2.6)

where

a(u,v) =

∫

Ω
∇u·∇vdx (2.7)

F(v) =

∫

Ω
f vdx+

∫

ΓN

gNvds. (2.8)

There is an alternative way to calculateu which we shall use to formulate the standard Galerkin

formulation. Assume that we have a functiong∈ H1(Ω) that agrees with the Dirichlet datagD on

ΓD. Lettingu = g+ ũ with ũ∈V and using it in (2.6), there follows

a(ũ,v) = F(v)−
∫

Ω
∇g·∇vdx.

The advantage of this formulation is to work with ˜u which is in the same spaceV as the test

functions.

5

2.3 Finite Element Spaces

The Galerkin Finite Element Method consists in projecting the solution of a particular partial dif-

ferential equation into a finite dimensional space of functions and using the weak formulation

developed above. Typically, these spaces are constructed over a nonoverlapping partition ofΩ. We

usually call such a partition ameshand note that it is composed ofcells. These cells could be trian-

gles, rectangles, tetrahedra or other shapes. The commonly used termelementshould be reserved

to denote a specific association of a cell type with a family of function spaces.These functions

consist of piecewise polynomial functions, i.e., the restriction of such functions into any given cell

is a polynomial of a degree chosen by the user. This choice is motivated by the obvious ease of use

of polynomial functions. Another important characteristic of the Finite ElementMethod is that the

basis functions of these spaces have small supports, e.g. a small patch ofelements. The intended

effect is to obtain matrices that are sparse. Indeed, this is a feature that distinguishes the FEM (and

also the Finite Difference Method) from spectral methods.

The construction of finite element function spaces starts with that of so-called local basis func-

tions for the vector spacePq(K) of polynomials of total degreeq≥ 1 defined onK. These bases

are adapted to the type or shape of the particular elements or cells of the mesh.Since we will

restrict ourselves to triangles in 2-d, we shall use the Lagrangian basis functions. Depending on

the degree of polynomials used, these basis functions are naturally associated with certain points

of the triangle, or degrees of freedom [9].

Example: Linear Lagrange Elements. Denote the three vertices of a triangleK ∈ Th by

v0,v1,v2(see Figure 2.1). There exists a basis consisting of three affine functions φ(0)
K ,φ(1)

K ,φ(2)
K in

the variablesx,y such that

φ(i)
K (v j) = δi j , i, j = 0,1,2.

Example: Quadratic Lagrange Elements. In addition to the three vertices, letv3,v4,v5 be

the midpoints of sidesv0v1,v1v2,v2v0 respectively (see Figure 2.2) There exists a basis consisting

of six functionsφ(j)
K , j = 0, . . . ,5 satisfying

φ(i)
K (v j) = δi j , i, j = 0, . . . ,5.

6

b b

b

v0

v1 v2

K

Figure 2.1: Linear basis functionφ(0)
K

b b

b

bb

b

v0

v1 v2

v3

v4

v5K

(a) φ(0)
K

b b

b

bb

b

v0

v1 v2

v3

v4

v5K

(b) φ(3)
K

Figure 2.2: Quadratic basis functionsφ(0)
K andφ(3)

K

7

In general, the spacePq(K) of polynomials in(x,y) of total degreeq has dimensionmq =

1
2(q+ 1)(q+ 2). Lagrangian basis functions for each can be constructed. As shown inthe above

examples, these basis functions are associated with thelocal nodes x(j)
K , j = 0, . . . ,mq−1.

By extending these local functions by zero outside ofK, we obtain functions that are defined

on all of Ω).

2.4 Standard Galerkin Formulation

Let Th = {Ki : i = 1,2, ...,mh} be a mesh onΩ such thatΩ = ∪K∈ThK = K1∪K2∪ ...∪Kmh. We

assume thatTh is locally quasi-uniform and that each cell in it is starlike. (See section 3.1.3 for

definitions).

Using the local basis functions (local to each cell)φ(j)
K introduced above, we construct a global

space of continuous functions defined onTh. We let

Sq
h = {v | v

∣

∣

K ∈ Pq(K), K ∈ Th, v
∣

∣

ΓD
= 0}.

Basis functions for the spacesSq
h are easy to construct on conforming meshes. Let us recall that a

mesh is conforming if whenever two cells, say triangles, are adjacent, i.e. they share an edge, then

this edge is a full edge for both triangles. We also say that a conforming meshis characterized by

the absence ofhanging nodes. It is important to note that basis elements for the continuous spaces

Sq
h are extremely difficult or even impossible to construct for general nonconforming meshes. Thus,

whereas a standard Galerkin formulation can be defined on nonconforming meshes, the Galerkin

approximation cannot be calculated on such meshes due to the unavailability ofbases forSq
h. One

of the contributions of this work is to show a way to do this by constructing appropriate embedding

and projection operators/matrices.

Assuming that the mesh is conforming, we letN h denote the collection of all local degrees of

freedomx(j)
K , K ∈ Th. More precisely,

N h = {ν | ν = x(j)
K ,K ∈ Th, j = 0, . . . ,mq−1, andν /∈ ΓD}.

8

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

−1

0

1

(a) A triangulated 2D mesh.

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1

(b) Support of linearφ j

Figure 2.3: Linear basis functions on a triangulated 2D mesh.

Note that a given element inN h is identified with a set of local degrees of freedom. Also, note that

we do not include inN h nodes that belong toΓD since the Galerkin approximation is given bygD

on ΓD and the test functions vanish there.

We define the global basis functionsφν for Sq
h as follows: With eachν ∈ N h we associate a

basis functionφν satisfying

φν(µ) =











1 if ν = µ

0 if ν 6= µ
(2.9)

When basis functions are linear, Figure2.3(b) shows the support ofφ j consists of triangles that

share the common nodexi that is at the center of the mesh in Figure 2.3(a).

Now we can formulate the Standard Galerkin Method for Eq(2.1) from the variational formula-

tion Eq(2.6) as follows: Letgh ∈ H1(Ω) be a function which agrees withgD at the nodes belonging

to ΓD. We seek ˜uh ∈ Sq
h that satisfies

a(ũh,vh) = F(vh)−

∫

Ω
∇gh ·∇vh, ∀vh ∈ Sq

h. (2.10)

Then the standard Galerkin approximation is given byuh = ũh +gh. Indeed, a function such as

gh can be easily constructed by interpolating the datagD on the Dirichlet nodes. Furthermore,gh is

nonzero only on a thin layer adjacent toΓD.

9

This formulation can be recast as a linear system of equations that may be solved by a variety

of methods, typically iterative when the number of unknowns is large, say more than a thousand.

We express the finite element solutionuh defined by (2.10) as a linear combinationuh(x) =

∑N
j=1 ξ jφ j(x) of the basis functions ofSq

h. Using this expression in (2.10), we obtain the linear

system in the unknown vector

Aξ = b (2.11)

where

ai j =

∫

Ω
∇φ j ·∇φi dx (2.12)

bi = F(φi)−

∫

Ω
∇gh ·∇φi dx, (2.13)

A is called theStiffnessMatrix and is symmetric positive definite with each element defined in

Eq(2.12).

2.5 The Stiffness Matrix: To assemble or not to assemble

If a direct solver is to be used to solve the system (2.11), then the stiffnessmatrix A must be

explicitly formed. This is accomplished as follows. First, for each cellK ∈ Th, a mq×mq local

stiffnessmatrixAK is calculated according to

(AK)i j =

∫

K
∇φ(j)

K ·∇φ(i)
K dx

whereφ(j)
K are the basis functions local toK. Since the latter functions are polynomials onK,

the integrals can be evaluated exactly using some quadrature rule of sufficient accuracy. These

calculations can be performed efficiently on a so-called master or reference cell K̂ using affine

transformations between the cellK and the reference cell. (See Appendix A for more details).

Now noting that a global basis functionφi is a sum of some local basis functions,

φi =
∑

x(j)
K =xi

φ(j)
K ,

10

Initialize A to zero.1

for K ∈ Th do2

for i = 0, . . . ,mq−1 do3

for j = 0, . . . ,mq−1 do4

if x (i)
K /∈ ΓD andx(j)

K /∈ ΓD then5

Aνµ = Aνµ+(AK)i j whereν = x(i)
K , µ= x(j)

K6

end7

end8

end9

end10

Algorithm 1 : Assembly of the stiffness matrix

A is calculated (assembled) from the local blocksAK using Algorithm 1

When using an iterative method, especially one such as the Conjugate Gradient method that

involves matrix-vector multiplications, one has the option of not assembling the matrix A. Rather,

the matrix-vector multiplications are performed using the decomposition:

A = RDRT (2.14)

thus turning one matrix-vector multiplication withA into three matrix-vector multiplications. While

this idea is known to practitioners of the FEM, no experimental study of the relative efficiencies of

the two approaches exists to our knowledge. Later in this section we exhibit results of comparative

numerical experiments using up-to-date optimization techniques. But first, weneed to describe the

matricesD andR. As far as the dimensions of these matrices are concerned, let

|Th| = number of cells(triangles) inTh

mq = number of DOF’s per cell

N = number of global DOF’s

D is themq|Th|×mq|Th| block diagonal matrix such that themq×mq blocks along the diagonal

are precisely the local stiffness matricesAK . Indeed,D is A in unassembled form.

RT is themq|Th|×N matrix which identifies a global node or DOF to the set of its local coun-

terparts. To visualizeRT , we may think of it as|Th| slabs RT
K of mq rows each corresponding to cell

11

K and where

(RT
K)i j =

{

1 if x(i)
K = x j

0 otherwise.

Even though some of its rows (corresponding to Dirichlet nodes) are zero, the matrixRT has full

column rank. Another interpretation ofRT is to view it as a change of basis matrix between the

local bases and the global ones. Indeed, a given function inSq
h can be expressed as

∑

K∈Th

mq−1
∑

j=0

α(j)
K φ(j)

K and also as
N
∑

ν=1

βνφν.

RT satisfies

α = RTβ.

Figure 2.4 is a mesh with|Th| = 8 triangles:K0, K1, · · · , K7, with Dirichlet boundaryΓD and

Neumann boundaryΓN. There areN = 6 degree of freedoms denoted by boldface numbers. So

A is a 6×6 matrix. For simplicity, the linear basis functions are used for this example. As each

triangle’s vertex is given a index of 0 to 2,mq = 3 and the Dirichlet block matrixDi is a 3×3 matrix.

Each element ofA is assembled from corresponding Dirichlet block matrices. For example,

a33 = D1
11+D2

11+D3
11+D4

00+D6
22+D7

00 (2.15)

A can be factorized by Eq(2.14) with matrices:R, D, andRT . Matrix D is a 24×24 block diagonal

matrix with 3×3 diagonal blocks. MatrixR is a 6×24 sparse matrix with only 0 and 1.

12

ΓD

ΓN

ΓN

ΓN

K0

K1

K2

K3

K5

K4

K6

K7

b b

b b

b b

01

2
0 1

2
0

1

2

1 2

0

01

2
0 1

2
0

1

2

1 2

0

0 1

2

3

4 5

Figure 2.4: Mesh with indexing of vertices, triangles, and local vertex indexing of each triangle

13

A =

































a00 a01 a02 a03 a04 a05

a10 a11 a12 a13 a14 a15

a20 a21 a22 a23 a24 a25

a30 a31 a32 a33 a34 a35

a40 a41 a42 a43 a44 a45

a50 a51 a52 a53 a54 a55

































(2.16)

R=































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0

0 1 0

1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0































(2.17)

D =















































D0 0 0 0 0 0 0 0

0 D1 0 0 0 0 0 0

0 0 D2 0 0 0 0 0

0 0 0 D3 0 0 0 0

0 0 0 0 D4 0 0 0

0 0 0 0 0 D5 0 0

0 0 0 0 0 0 D6 0

0 0 0 0 0 0 0 D7















































(2.18)

With the most commonly used sparse matrix storage format, compressed sparserow(CSR),

the sparse matrix-vector multiplication usually runs at 10% or less of the machine’s peak perfor-

mance [34]. As researchers try to optimize the sparse matrix-vector multiplication by transform-

14

ing matrix storage format CSR to block compressed sparse row(BCSR), which allows optimiza-

tion techniques such as unrolling and register-level tiling of each block matrix-vector multiplica-

tion [19], the performance improvement is limited by the random memory access pattern of sparse

matrix multiplication. And this type of optimization sometimes is not practical as the transfor-

mation time is too long. With Eq(2.14) we turn a sparse matrix-vector multiplication into three

matrix-vector multiplications. ButRonly contains 1’s,R×x can be programed with additions, and

RT ×x can be programed with data stores, and we also can save memory space by not storing the

array of 1’s. AsD preserves the dense diagonal blocks, it has better data locality. We can apply

optimization techniques such as unrolling, register-level blocking, vector operations, and multi-

threading, which usually can not be applied easily to sparse matrix-vector multiplication due to

indirect indexing. We write the optimized version of diagonal block matrix-vector multiplication

written in assembly, and combine that with multi-threading on theRDRT format. The preliminary

results show encouraging speedup on Intel Quad core architectures.We believe that we can further

improve the performance with more aggressive tuning efforts similar to ATLAS[35].

2.6 Experiment and Performance

The following is a testing problem:

−∆u = 128π2sin(8πx)sin(8πy) in Ω (2.19)

u = 0 on∂Ω

The solution of Problem(2.19) is:u = sin(8πx)sin(8πy) as shown in Figure 2.5, which is a smooth

non-polynomial solution and oscillatory across the domain. We choose an iterative method as

our solver: conjugate gradient method [6], since the linear system is sparse symmetric positive-

definite. This method is one of the best iterative method for solving a symmetric, positive-definite

linear system. The pseudo code is given in Algorithm(2).

15

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 2.5: Solution of Problem(2.19) on a mesh with 4096 triangles.

Input : vectorx0 can be an approximate initial solution or 0
r0 = b−Ax0 ;1

p0 = r0 ;2

k = 0 ;3

while truedo4

αk =
r⊤k rk

p⊤k Apk
;5

xk+1 = xk +αkpk ;6

rk+1 = rk−αkApk ;7

if |rk+1| ≤ ε then8

exit9

end10

βk =
r⊤k+1rk+1

r⊤k rk
;11

pk+1 = rk+1 +βkpk ;12

k = k+1 ;13

end14

Output : xk+1
Algorithm 2 : Conjugate Gradient Method

16

Table 2.1: Machine Specifications

Feature Intel Xeon (Quad core)
Processor Speed 2.4GHz
L1 Cache 8KB
L2 Cache 8MB
Number of Sockets 4
Number of Cores 16
OS Linux
Compiler icc 11.0

We set up the experiment as following:

• The experiments are conducted on an Intel Xeon Quad core architecture with specifications

shown in Table 2.1.

• Initial triangulations usingtriangle were done using maximum area constrainta= 0.1, and

the finest mesh has 1048576 triangles.

• The iterative solver terminates at accuracy of 10−16.

We conduct experiments to compare the performance of CG method with three different matrix

multiplications:

• Matric Vector multiplication (MV) with sparse matrix CSR storage format.

• Reference MV withRDRT diagonal dense block format.

• Optimized MV with RDRT diagonal dense block format, written in assembly with SSE2

vector operations.

Experimental results in Figure 2.6 and Figure 2.7 show the total time spent for solution with

various number of threads enabled. Since most of SSE2 instructions require 16 byte alignment, we

chose to implement block diagonal matrix vector multiplication for degree of 2 and3 polynomial

basis functions for now. The block sizes are 6 and 10 respectively, soas long as the starting pointer

is 16-byte aligned, then all the matrix blocks that are consecutively allocatedwill be 16-byte aligned

17

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 1 2 4 8 16 32

T
im

e

Number of Threads

Time -- Quadcore Xeon(2.4 GHz, 4 Sockets, 16 cores)
 1048576 Triangles, 6291456 Dofs

diag_mv
manu_mv

spcsr

Figure 2.6: Comparison of computation time of CG method with CSR andRDRT matrix storage
format, degree of polynomial is 2

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1 2 4 8 16 32

T
im

e

Number of Threads

Time -- Quadcore Xeon(2.4 GHz, 4 Sockets, 16 cores)
 1048576 Triangles, 10485760 Dofs

diag_mv
manu_mv

spcsr

Figure 2.7: Comparison of computation time of CG method with CSR andRDRT matrix storage
format, degree of polynomial is 3

18

too. Implementation of block diagonal matrix vector multiplication for degrees of 1and 4 will be

our future work. We can see in the Figures that optimizedRDRT MV has better scalability on a

multicore system. On the other hand, sparse MV starts with good performancewith a single thread

compared withRDRT MV, but with poor data locality due to indirect memory access, it does not

scale well on a multicore system.

19

Chapter 3

Nonoverlapping Additive Schwarz

Preconditioners

3.1 Introduction

In the past fifteen years, extensive research has been done on developing domain decomposition

methods for solving the systems of algebraic equations that arise from various discretizations of

partial differential equations. The discretization methods that have been covered include finite

difference methods, finite volume methods, (conforming, nonconforming and mixed) finite element

methods, boundary element methods, spectral methods and mortar finite element methods (cf.

[16,26,33,36] and references therein). On the other hand, very few domain decomposition results

have been known in the literature for discontinuous Galerkin methods (cf. [17,23,29]).

The work we present here is an improvement on [17] at both theoretical and algorithmic lev-

els. First of all, the notation and proofs have been simplified and some unnecessary assumptions

removed, and a more general problem is treated. Secondly, the use of continuous coarse mesh

spaces leads to better preconditioning of the iterative solver of the linear systems and thus to faster

execution.

We begin by summarizing some concepts and facts introduced in earlier chapters that will be

used in this chapter. To begin, we recall that we are interested in solving thefollowing boundary

value problem:

20

Let Ω ⊂ Rd, d = 2,3, be a bounded open polyhedral domain. We consider the following

boundary value problem:

−∆u = f in Ω, (3.1)

u = gD on ΓD, (3.2)

∇u·n = gN on ΓN, (3.3)

where∂Ω := Γ = ΓD ∪ΓN andn is the unit normal vector exterior toΩ. We assume thatΓD has

positive measure,f ∈ L2(Ω), gN ∈ L2(ΓN).

The discontinuous Galerkin formulation for the above problem leads to a system of linear

equations of the form

Ax = b. (3.4)

It is not hard to show that the (2-norm) condition number ofA is of the orderO(h−2) whereh =

minK∈Th hK . Hence, the system (3.4) becomes ill-conditioned for smallh. The ill-conditioning

worsens in situations when local refinement leads to extremely small values ofh. In addition, the

size of the linear system becomes large. Consequently, it is not efficient tosolve it directly using

the classical iterative methods. On the other hand, if one can find a symmetric positive definite

matrix B (the preconditioner) such thatBA is well-conditioned, then any of the classical iterative

methods (in particular, the Conjugate Gradient method) works effectively on the preconditioned

system

BAx = Bb. (3.5)

Our goal here is to develop some additive Schwarz preconditioners, based on domain decom-

position, for the linear system (3.4) and to solve the preconditioned systems using the Conjugate

Gradient method. For background knowledge and a general theory onthe Schwarz method, we

refer to [26,33,36]. The major novelty of our approach is to use coarse mesh spaces of continuous

functions. The reason for preferring continuous spaces over discontinuous ones will be explained

later. We stress however that the overall method is still the discontinuous Galerkin method as im-

21

plemented on the working (fine mesh)Th, whereas continuous spaces are used only to construct

the preconditionerB.

3.1.1 Preliminaries

We introduce notation and list some basic facts that will be used often in this chapter. For appro-

priate definitions we refer to earlier chapters or the references quoted.

3.1.2 Sobolev Spaces

Let D⊂Rd, d = 2,3, be a bounded open polyhedral domain. For integerm≥ 0,Hm(D) will denote

the (Hilbert) Sobolev space with inner product

(u,v)m,D =
∑

|α|≤m

∫

D
DαuDαv and norm ‖u‖m,D = (u,u)

1/2
m,D.

(cf. [1]). To simplify the notation, we shall dropm when its value is zero. Also, we shall often

encounter functions that vanish on a subsetΓD of the boundary∂D. We thus let

H1
0,ΓD

= {v∈ H1(Ω),v = 0 onΓD}.

Extensive use will be made of edge/surface integrals. Therefore, fora (d− 1)-dimensional

subseteof Rd, we set

〈u,v〉e =

∫

e
uvds and |u|e = 〈u,u〉1/2

e .

3.1.3 Triangulations

LetTh = {Ki : i = 1,2, . . . ,mh}h> 0 be a family of star-like partitions (triangulations) of the domain

Ω parametrized by 0< h≤ 1. We assume the following:

(i) For all h > 0 ,the elements ofTh satisfy the minimal angle condition.

(ii) Th is locally quasiuniform; that is, if two elementsK j andKℓ areadjacent, i.e. their bound-

aries have a nonempty intersection, then diam(K j) ≈ diam(Kℓ).

22

The condition of local quasiuniformity, in contrast with global quasiuniformity, is compatible with

local refinement.

We defineE I
h andE B

h to be the set of all interior and boundary edges (faces in the cased = 3),

respectively, as follows:

E I
h = {e= ∂K j ∩∂Kℓ, µd−1(∂K j ∩∂Kℓ) > 0},

E B
h = {e= ∂K∩∂Ω, µd−1(∂K∩∂Ω) > 0}, Eh = E I

h∪E
B
h .

For eache∈ E I
h, we denote the two triangles that “share” it byK+ andK−, respectively. Which of

the two isK+ is completely arbitrary but not irrelevant! Ife∈ E B
h , thene= ∂K+∩∂Ω ≡ ∂K∩∂Ω.

We assume that for eache∈ E B
h , eithere⊂ ΓD or e⊂ ΓN. We then setE B

h = E D
h ∪E N

h , where

E D
h andE N

h are, respectively, the set of boundary edges onΓD and onΓN. From the previous

assumption, we haveE D
h ∩E N

h = /0.

Given a partition or meshTh of Ω, we find it convenient to use the so-calledbrokenor dis-

continuous Sobolev spacesHm(Th) = ΠK∈Th Hm(K). Elements of these spaces are not functions

in the proper sense given that they may be multivalued on interior edges/faces of the partitionTh.

However, since such edges have(d−1)-dimensional measure zero, we can still treat the elements

of these spaces as functions.

It is essential to be able to define values of functions inHm(Th) andVh on the edgese. Thus,

for v∈ Hm(Th), m≥ 1, ande∈ E I
h∪E

B
h , v+

e will denote the trace one of the restrictionv+ of v to

K+. Similarly we definev−e for e∈ E I
h.

We also definejumpsandaveragesof such traces as follows:

[v] = v+
e −v−e , e∈ E I

h, [v] = v+
e , e∈ E B

h ,

{v} = 1
2

(

v+
e +v−e

)

, e∈ E I
h, {v} = v+

e , e∈ E B
h .

23

Finally, for v ∈ H2(Th) and an interior edgee∈ E I
h, we define theaverageand jump of the

normal derivative ofv by

{∂nv}e =
1
2

(

∇v+ +∇v−
)

·n+ and [∂nv]e = ∇v+ ·n+−∇v− ·n+,

respectively, wheren+ is the unit outward normal toK+

3.1.4 The discontinuous Galerkin approximation

We define the bilinear formaγ
h(·, ·) : H2(Th)×H2(Th) → R by

aγ
h(u,v) =

∑

K∈Th

(∇u,∇v)K (3.6)

−
∑

e∈E I
h∪E

D
h

(

〈{∂nu} , [v]〉e+ 〈{∂nv} , [u]〉e− γh−1
e 〈[u] , [v]〉e

)

.

For the construction and motivation behind a variety of discontinuous Galerkin methods we

refer to the survey paper [3]. The above bilinear form is consistent withthe boundary value problem

(3.1)-(3.3) in the sense that ifu is a solution thereof, then using integration by parts one can show

that for allv∈ H1(Th),

aγ
h(u,v) = F(v) := (f ,v)+

∑

e∈E N
h

〈gN,v〉e−
〈

gD,∂nv− γh−1
e v
〉

e.

To define the discontinuous Galerkin formulation for the BVP (3.1)-(3.3), we introduce the

discontinuous finite element space

Vh = Pq(Th) := {v : v|K ∈ Pq(K), K ∈ Th, q≥ 1}

wherePq is the space of polynomial of degree less than or equal toq.

Then, we define the discontinuous Galerkin approximationuγ
h as the element inVh that satisfies

aγ
h(u

γ
h,v) = F(v), ∀v∈Vh. (3.7)

24

The bilinear formaγ
h is symmetric, continuous and coercive onVh. Specifically, if we define

the DG-norm

‖v‖DG =
{

∑

K∈Th

‖∇v‖2
K + γ

∑

e∈E I
h∪E

D
h

h−1
e |[v]|2e

}1/2
,

then

aγ
h(u,v) ≤ c‖u‖DG‖v‖DG, ∀u,v∈Vh. (3.8)

Furthermore, there exists a constantγ0 depending onq and the minimum angles of the cells

such that forγ ≥ γ0,

aγ
h(v,v) ≥ c‖v‖2

DG, ∀v∈Vh. (3.9)

Choosing a basis{φ j , j = 1, . . . ,J} for Vh, the above formulation leads to the system (3.4) withA

being theJ×J stiffnessmatrixAi j := aγ
h(φ j ,φi) and theJ-vectorb given bybi = F(φi). The matrix

A is symmetric sinceaγ
h is symmetric and positive definite as a consequence of (3.9).

3.1.5 Some useful results

Theorem 3.1.1.Let D be a starlike domain and let u∈ Hm(D) for some m≥ 0. Then there exists

a χ ∈ Pq(D) such that

|u−χ| j,D ≤ chi− j
D |u|i , 0≤ j ≤ i ≤ min{m,q+1}. (3.10)

This is a basic approximation property based on the Taylor polynomial. For a proof we refer

to [4] and [8].

The following two inequalities known as trace and inverse inequalities, respectively, are well

known in finite elements, and their proofs can be found in [8].

|v|2∂D ≤ c
(

h−1
D ‖v‖2

D +hD‖∇v‖2
D

)

∀v∈ H1(D), (3.11)

25

(a) Conforming mesh (b) Non-conforming mesh

Figure 3.1: Conforming and non-conforming mesh

wherehD = diam(D);

|v| j,D ≤ chi− j
D |v|i,D ∀v∈ Pq(D), 0≤ i ≤ j ≤ 2. (3.12)

A less standard property that has proved very useful in the context ofdiscontinuous Galerkin

methods concerns the approximation of discontinuous piecewise polynomials by continuous piece-

wise polynomials of the same degree.

We shall call a meshTh conformingif whenever two elements of the mesh share an edge (face

in 3 dimensions), the latter must be a full edge for both elements. Otherwise the mesh will be called

nonconforming. See Figure 3.1

Theorem 3.1.2. Let Th be a conforming or nonconforming mesh consisting of triangles when

d = 2, and tetrahedra when d= 3. Then for any vh ∈Vh the following approximation results hold:

(i) There existsχh ∈Vh∩H1(Ω) satisfying

∑

K∈Th

ξK‖vh−χh‖
2
K ≤ c

∑

e∈E I
h

ξKhe|[vh]|
2
e, (3.13)

∑

K∈Th

ζK‖∇(vh−χh)‖
2
K ≤ c

∑

e∈E I
h

ζKh−1
e |[vh]|

2
e, (3.14)

26

(ii) There existsχh ∈Vh∩H1
0,ΓD

satisfying

∑

K∈Th

ξK‖vh−χh‖
2
K ≤ c

∑

e∈E I∪D
h

ξKhe|[vh]|
2
e, (3.15)

∑

K∈Th

ζK‖∇(vh−χh)‖
2
K ≤ c

∑

e∈E I∪D
h

ζKh−1
e |[vh]|

2
e. (3.16)

Here,E I∪D
h = E I

h∪E
D
h is the collection of interior and Dirichlet type boundary edges.ξK andζK

are quantities that will be chosen appropriately and so that they vary in a locally quasi uniform

manner similar to hK and he.

3.2 The non-overlapping Schwarz methods

In this section, we develop some two-level non-overlapping additive Schwarz preconditioners for

the discontinuous Galerkin method. Similar results were obtained in [17] with important differ-

ences from the treatment presented herein which we enumerate now

1. The problem treated in [17] involved the simpler case of the homogeneousDirichlet bound-

ary condition.

2. The subspace used in [17] for the coarse mesh correction was largeenough to include piece-

wise constant functions. Here we aim at using a much smaller space consisting of piecewise

linear functions that are continuous inΩ and that vanish on the Dirichlet type boundaryΓD.

The benefits of working with a smaller space are twofold. First, the resulting matrix is much

smaller. More significantly, the incompatibility resulting from the penalty terms is totally

eliminated. We explain this point in detail later.

3. The proofs are considerably simplified. In some cases, e.g. Proposition 3.2.1, a restrictive

assumption is removed via a a new and direct treatment.

27

3.2.1 Formulation of the additive Schwarz preconditioner

It is well-known (cf. [33, 36]) that the first step towards constructing additive Schwarz precondi-

tioners is to have a valid subspace decomposition of the finite element spaceVh. For the discon-

tinuous Galerkin method considered in this paper, sinceVh ⊂ L2(Ω) and no continuity constraints

are imposed on the functions inVh, it is easy to construct such a space decomposition. This is in

sharp contrast with the situation in the standard as well as nonconforming Galerkin formulation

(cf. [18,28]).

Let TS denote a partition ofΩ into p non-overlapping subdomainsΩ j , j = 1, . . . , p. We assume

thatTS is aligned withTh in the sense that eachΩ j is some union of cells inTh. Therefore to each

subdomainΩ j we associate in a natural way a subspaceVj of Vh given by

Vj = {v∈Vh|v = 0 in Ω\Ω j}.

In other words,Vj is simply the restriction ofVh to Ω j . Also, given the discontinuous nature of the

functions inVh, we have the following direct sum decomposition

Vh = V1⊕V2⊕·· ·⊕Vp. (3.17)

The above subspace decomposition will not produce a good preconditioner. What is needed

is a coarse meshTH and a corresponding coarse subspaceVH (or preferablyV0) of Vh where the

residuals will be ”projected and corrected” just as in a multigrid method. This is referred to as the

coarse-mesh correction. Since the novelty of our approach resides in the choice ofV0, we make a

detailed list of the properties ofTH .

(A1) TH is aligned with bothTh andTS in the sense that every cell inTS is a union of cells inTH

and every cell inTH is a union of cells inTh. In particular, for eachD ∈ TH , there is a subset

TD of Th such thatD = ∪K∈TDK.

28

(A2) D is starlike in the sense that there existsx0 ∈ D and a constantcD > 0 such that

(x−x0) ·n ≥ cD for almost all x ∈ ∂D, (3.18)

wheren denotes the unit outward normal vector to∂D. Furthermore for some constant

c = O(1),

cD ≥ cHD

whereHD is the diameter ofD.

(A3) The partitionTD is quasi-uniform in the sense that the cells fromTh that make upD are all

of similar sizes. In particular, for a givenD ∈ TH , we let

hD = max
K∈TD

hK .

Remark 3.2.1. Assumption (A2) implies that D is not too ”thin”; indeed D satisfies the minimum

angle condition. However we are not assuming that D is convex. Also to allow for local refinement

of Th, two cells in two different D’s may be of vastly different sizes.

Remark 3.2.2. Assumption (A2) and the fact that elements ofTh satisfy the minimum angle condi-

tion imply that the number of cells in any given D is bounded by(HD/hD)d.

We now introduce the coarse mesh subspaceV0 of Vh

V0 = {v∈ P1(TH), v∈C0(Ω), v = 0 onΓD},

In other words, elements ofV0 are continuous piecewise linear functions that vanish onΓD.

With the subspacesV0,V1, . . . ,Vp at hand, we define local or subdomain bilinear formsai(·, ·), j =

1, . . . , p and a coarse space bilinear forma0(·, ·) as the restrictions ofaγ
h(·, ·) to the subspaces

V0,V1, . . . ,Vp respectively; i.e.

a j(u,v) = aγ
h(u,v), ∀u,v∈Vj , j = 0,1, . . . , p. (3.19)

29

It is clear that these bilinear forms inherit the symmetry and coercivity properties of aγ
h(·, ·).

Hence the corresponding (stiffness) matricesA0,A1, . . . ,Ap are symmetric, positive definite.A0 is

similar in structure to the matrixA corresponding to the formaγ
h(·, ·) but of course much smaller.

On the other hand, the matricesA1, . . . ,Ap are closely related toA in that they are indeed the Jacobi

blocks ofA corresponding to the individual subdomains.

At this juncture, we are able to motivate the reason for requiring the coarsespace functions to

be continuous. We defined the coarse space bilinear forma0(u,v) to be equal toaγ
h(u,v) whenever

u andv belong to the coarse spaceV0. When we examine the penalty terms, we realize that in order

for equality to hold the parameterγ in a0(u,v) must be larger than theγ in aγ
h(u,v) to compensate

for the differences in the respective edge lengthshe,e∈ E I
H ∪E D

H andhe,e∈ E I
h∪E

D
h . This can be

done in the case of uniform refinement but not when the mesh is locally refined. The continuity of

the elements ofV0 completely eliminates this problem.

The next Lemma, whose proof is obvious, exhibits a relation betweenaγ
h and the subdomain

bilinear forms paralleling the direct sum decomposition (3.17) and also illuminatesthe previous

comment.

Lemma 3.2.1. For u,v∈Vh, let ui ,vi ∈Vi , i = 1, . . . , p be given (uniquely) by u=
∑p

i=1ui , v =

∑p
i=1vi . Then, the following identity holds

aγ
h(u,v) =

p
∑

i=1

ai(ui ,vi)+ I(u,v), (3.20)

whereI(·, ·) is theinterfacebilinear form given by

I(u,v) =
∑

e∈S

(1
2

〈

∂nu+,v−
〉

e−
1
2

〈

∂nu−,v+
〉

e− γh−1
e

〈

u+,v−
〉

e

+
1
2

〈

∂nv+,u−
〉

e−
1
2

〈

∂nv−,u+
〉

e− γh−1
e

〈

v+,u−
〉

e

)

, (3.21)

andS is the “skeleton” of the subdomain partition defined by

S = {e∈ E I
h ande∈ ∂Ωi for somei}.

30

In essence, the interface bilinear formI(·, ·) contains those edge integrals inaγ
h(·, ·) that are not

contained in all the subdomain bilinear formsai(·, ·). Also, contrary to the latter, the formI(·, ·)

will not be involved in the calculations but will prove useful in the analysis and the method.

In order to construct the additive Schwarz preconditioner, we introduce the projection operators

Tj : Vh →Vj , j = 0, . . . , p according to

a j(Tju,v) = aγ
h(u,v) ∀v∈Vj , j = 0,1,2, · · · , p. (3.22)

These operators are well defined since the bilinear forms involved are coercive. The additive

Schwarz operatorT is defined by

T = T0 +T1 + · · ·+Tp. (3.23)

Following the framework given in [16, 33, 36], the additive Schwarz method consists in replacing

the discrete problem 3.4 by the equation

Tu= g, g =

p
∑

j=0

g j , (3.24)

whereg j = Tju is defined as the solution of

a j(g j ,v) = F(v) ∀v∈Vh
j , j = 0,1,2, · · · , p. (3.25)

In matrix notation, the additive Schwarz preconditioner corresponds to choosing the matrixB

(3.5) as

B = RT
0 A−1

0 R0 +(RT
1 A1R1 + · · ·+RT

pApRp)
−1 (3.26)

whereA j is the stiffness matrix corresponding toa j(·, ·) andRT
j is the matrix representation of the

embedding operatori : Vh
j →Vh, j = 0, . . . , p.

Now the question is whether the preconditioned system (3.24) is well-conditioned, in particular,

31

whether the condition number ofT, or equivalently that of the matrixBA, depends “favorably” on

the mesh sizesh andH. These questions will be addressed in the next subsection.

3.2.2 Condition number estimate for the additive Schwarz method

To estimate the condition number ofT, we shall use the general abstract convergence theory of

Schwarz methods given in [33]. We shall do so by verifying that a set ofthreeAssumptionsare

satisfied and by estimating the constantsC2
0,ρ(E) andω appearing there in terms of the parameters

of our method. (cf. page 155 of [33])

The verification of the first assumption requires showing that for allu∈Vh

p
∑

i=0

ai(ui ,ui) ≤C2
0aγ

h(u,u), (3.27)

for somerepresentationu =
∑p

i=0ui .

To establish (3.27), we will need some preliminary results. The first result concerns a trace

inequality that holds on the boundary ofD ∈ TH . Its proof is found in [17].

Lemma 3.2.1. For any u∈ H1(TD), there holds the following trace inequality

|u|2∂D ≤ cH−1
D ‖u‖2

D +cHD

(

∑

K∈TD

‖∇u‖2
K +

∑

e∈E I
h(D)

h−1
e |[u]|2e

)

. (3.28)

The next preliminary result concerns the approximation a discontinuous function by a (glob-

ally) constant function. This was proved in [17] under a convexity assumption. The proof we

present herein is new and more direct and avoids this assumption.

Proposition 3.2.1. Let D∈ TH satisfy assumptions (A1)-(A3) and let u∈ H1(TD). Then, there

exists a functionv which is constant on D and such that

‖u−v‖D ≤ c = cHD

{

∑

K∈TD

‖∇u‖2
K +

∑

e∈E I
h(D)

h−1
e |[u]|2e

}1/2

(3.29)

whereE I
h(D) denotes the set of edges inTD in the interior of D.

32

Proof. We first approximateu by a functionv which is piecewise constant onTD. Indeed, for

K ∈ TD, let vK = v|K be a constant function that approximatesu|K according to the general approx-

imation result 3.10; namely‖u−vK‖K ≤ chK‖∇u‖K . Thus,

‖u−v‖2
D ≤ c

∑

K∈TD

h2
K‖∇u‖2

K . (3.30)

Let the value ofv onK be denoted byαK . The average of theα′
Ks is given byβ =

1
|TD|

∑

K∈TD
αK ,

where|TD| is the number of cells inTD. Lettingv be the constant function onD with valueβ, we

have

‖v−v‖2
D =

∑

K∈TD

‖v−v‖2
K =

∑

K∈TD

measure(K)|αK −β|2.

Since cells inD are of similar diameterhD, we have measure(K) = c(hD)d. Thus,

‖v−v‖2
D = c(hD)d

∑

K∈TD

|αK −β|2. (3.31)

Now for anyK ∈ TD,

|αK −β|2 =
1

|TD|2

∣

∣

∣

∣

∣

∑

K′∈TD

|αK −αK′ |

∣

∣

∣

∣

∣

2

.

We now make two important observations: In view of assumptions (A1)-(A3)and the fact that

cells inTD are of similar sizehD, the number|TD| of cells inD is about(HD
hD

)d. Furthermore, given

any pairK,K′ ∈ TD, there exists a pathπ(K,K′) = {K1, . . . ,K|π(K,K′)|} of cells inTD such that

(i) Ki andKi+1 share an edgee; so we may think of the path as a set of edges inE I
h(D).

(ii) The number|π(K,K′)| of cells, i.e. edges, in the path isO(HD/hD).

Hence, using the discrete Cauchy-Shwarz inequality, we get

|αK −β|2 ≤
|π(K,K′)|

|TD|2

∑

K′∈TD

∑

e∈π(K,K′)

|[α]|2,

where [α] is the difference of the values ofα′s across the edgee; i.e. if e = ∂K+ ∩ ∂K− then

33

[α] = αK+ −αK− . Hence, summing overK we obtain

∑

K∈TD

|αK −β|2 ≤
|π(K,K′)|

|TD|2

∑

K∈TD

∑

K′∈TD

∑

e∈π(K,K′)

|[α]|2

≤ c

(

HD

hD

)2
∑

e∈E I
h(D)

|[α]|2.

We now observe that fore∈ E I
h(D), [α] = [v]e, i.e. the jump ofv acrosse. Furthermore,|[α]|2 =

h1−d
D |[v]|2e. Hence,

∑

K∈TD

|αK −β|2 ≤ c

(

HD

hD

)2

h2−d
D

∑

e∈E I
h(D)

h−1
e |[v]|2e. (3.32)

Using (3.32) in (3.31) we obtain

‖v−v‖2
D ≤ H2

D

∑

e∈E I
h(D)

h−1
e |[v]|2e. (3.33)

It remains to estimate the term
∑

e∈E I
h(D) h−1

e |[v]|2e in terms ofu. Writing [v] = v+−u+ +[u]+u−−

v−, we have from the trace inequality (3.11)

h−1
e |[v]|2e ≤ 3h−1

e

(

|v+−u+|2e + |[u]|2e + |u−−v−|2e
)

≤ ch−1
e |[u]|2e +ch−1

e

∑

K=K+,K−

(

h−1
e ‖v−u‖2

K +he‖∇(v−u)‖2
K

)

.

Sincev is piecewise constant,∇v = 0. Hence, using (3.30) we obtain

h−1
e |[v]|2e ≤ ch−1

e |[u]|2e +
(

‖∇u‖2
K+ +‖∇u‖2

K−

)

. (3.34)

The conclusion now follows from (3.30),(3.33), (3.34) and the triangle inequality.

We next obtain a bound for the interface bilinear formI .

Proposition 3.2.2. There exists a constant c such that for any w∈Vh

34

|I(w,w)| ≤ c
∑

D∈TH

{

H−1
D h−1

D

∑

K∈TD

‖w‖2
K (3.35)

+HDh−1
D

(

∑

K∈TD

‖∇w‖2
K +

∑

e∈E I
h(D)

h−1
e |[w]|2e

)}

.

Proof. Using the definition (3.21), we have

I(w,w) =
∑

e∈S

(

〈

∂nw+,w−
〉

e−
〈

∂nw−,w+
〉

e−2γh−1
e

〈

w+,w−
〉

e

)

. (3.36)

Using the Cauchy-Schwarz inequality, the trace and inverse inequalities (3.11), (3.12) and the

a.g.m.i., we get

|I(w,w)| ≤
∑

K∈Th

‖∇w‖2
K +cγ

∑

e∈S

h−1
e

(

|w+|2e + |w−|2e
)

. (3.37)

Since bothTh andTH are aligned withTS, eache∈ S belongs to the boundary of someD in TH .

Thus,

|I(w,w)| ≤
∑

K∈Th

‖∇w‖2
K +cγ

∑

D∈TH

h−1
d |w|2∂D. (3.38)

The result now follows from the trace estimate in Lemma 2.2

We can now verify assumption (3.27).

Theorem 3.2.1.For any u∈ Vh there exists a decomposition u=
∑p

j=0u j , u j ∈ Vj , j = 0, . . . , p

for which(3.27)holds with C2
0 =

H
h

.

Proof. The main task here is to constructu0. This is done in two stages. First, we letv be the

piecewise constant function onTH that approximatesu on eachD in TH in the sense of (3.29).

We then letu0 be the element of the coarse mesh spaceV0 which approximatesv in the sense of

Theorem 3.1.2. We then defineu1, . . . ,up as uniquely given by

u−u0 = u1 + · · ·+up.

35

Now from (3.20) we have

aγ
h(u−u0,u−u0) =

p
∑

j=1

a j(u j ,u j)+ I(u−u0,u−u0).

Hence, using Schwarz’s inequality on the bilinear forms and the fact thata0(u0,u0) = aγ
h(u0,u0),

we have

p
∑

j=0

a j(u j ,u j) = aγ
h(u−u0,u−u0)+aγ

h(u0,u0)− I(u−u0,u−u0)

≤ 2aγ
h(u,u)+3aγ

h(u0,u0)+ |I(u−u0,u−u0)|. (3.39)

Now sinceu0 is continuous onΩ and vanishes onΓD,

aγ
h(u0,u0) =

∑

K∈Th

‖∇u0‖
2
K =

∑

D∈TH

‖∇u0‖
2
D =

∑

D∈TH

‖∇(u0−v‖2
D (3.40)

sincev is piecewise constant onTH . Using the approximation property (3.16) withξK = 1 and with

TH instead ofTh, we have

∑

D∈TH

‖∇(u0−v‖2
D ≤ c

∑

e∈E I
H∪E

D
H

h−1
e |[v]|2e ≤ c

∑

D∈TH

H−1
D

∑

e∈Eh∩∂D

|[v]|2e

≤ c
∑

D∈TH

H−1
D

∑

e∈Eh∩∂D

(

|[u]|2e + |[u−v]|2e
)

. (3.41)

Now the term
∑

D∈TH
H−1

D

∑

e∈Eh∩∂D |[u]|2e is certainly bounded byaγ
h(u,u). Also, using the trace

inequality (3.28) and the approximation property (3.29) and noting that[v] = 0 for e∈ E I
h(D), we

have
∑

D∈TH

H−1
D

∑

e∈Eh∩∂D

|[u−v]|2e ≤
∑

k∈Th

‖∇u‖2
K +c

∑

e∈E I
h∪E

D
h

h−1
e |[u]|2e ≤ caγ

h(u,u).

Thus from (3.40) and (3.41) we obtain

aγ
h(u0,u0) ≤ caγ

h(u,u). (3.42)

36

It remains to bound the termI(u−u0,u−u0). To do this, we use the bound (3.35) of Proposition

(3.2.2) withw = u−u0 to get

∣

∣

∣
I(u−u0,u−u0)

∣

∣

∣
≤ c

∑

D∈TH

HD

hD

(

∑

K∈TD

‖∇u‖2
K +

∑

e∈E I
h(D)

h−1
e |[u]|2e

)

≤ c
H
h

aγ
h(u,u). (3.43)

The conclusion of the theorem now follows from (3.39), (3.42) and (3.43).

Verifying Assumption 2consists in obtaining a bound for the spectral radiusρ(E) of the p× p

matrixE given as follows: Let 0≤ E i j ≤ C̃ be the minimal values such that

|aγ
h(ui ,u j)| ≤ E i j a

γ
h(ui ,ui)

1
2 aγ

h(u j ,u j)
1
2 , ui ∈Vi , u j ∈Vj , i, j = 1, · · · , p.

That such values exist is a consequence of the continuity and coercivityof aγ
h(·, ·) as expressed

in (3.8) and (3.9). The important thing however is to obtain a small bound onρ. To do so, we

observe that if two subdomainsΩi andΩ j are not adjacent, thenaγ
h(ui ,u j) = 0 for ui ∈V i , u j ∈V j .

For the remaining cases, we takeE i j = C̃, the constant in (3.8). We also letν be the maximum

number of adjacent subdomains any one given subdomain may have. Thus, if follows at once from

Gershgorin’s circle theorem that

ρ(E) ≤ C̃(1+ν). (3.44)

In practiceν is usually≤ 5. Even for “unusual” subdomain partitions, this number is not expected

to be large.

As for Assumption 3, Let ω ∈ (0,1] be the minimum constant such that

aγ
h(ui ,ui) ≤ ωai(ui ,ui), ∀ui ∈Vh

i , i = 0, . . . , p. (3.45)

Recall that we defined the subdomain bilinear formsai(·, ·) precisely byai(ui ,ui) = aγ
h(ui ,ui), i =

0, . . . , p; thus (3.45) holds trivially withω = 1.

With this, the central result of the chapter is at hand:

37

Table 3.1: Machine Specifications

Feature Intel Xeon (Quad core)
Processor Speed 2.66GHz
L1 Cache 8KB
L2 Cache 8MB
Number of Sockets 4
Number of Cores 8
OS Linux
Compiler icc 11.0

Theorem 3.2.1.The condition numberκ of the operator T and equivalently of the matrix BA of

the additive Schwarz method defined in this section satisfies

κ ≤ c
H
h

. (3.46)

Proof. This is an immediate consequence of Lemma 3 in chapter 5 of [33] and our estimates (3.27),

(3.44) and (3.45).

3.3 Experiments and Performance

The following is a testing problem:

−∆u = 128π2sin(8πx)sin(8πy) in Ω (3.47)

u = 0 on∂Ω

The solution of Problem(3.47) is:u = sin(8πx)sin(8πy), which is a smooth non-polynomial solu-

tion and oscillatory across the domain.

The experiments are set up as follows:

• The experiments are conducted on an Intel Xeon Quad core architecture with specifications

shown in Table 3.1.

• Initial triangulations usingtriangle were done using maximum area constrainta= 0.1, and

38

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 6 6.5 7 7.5 8

Ti
m

e

Level

Performance of Preconditioned Conjugate Gradient Method(Time) -- QuadCore(2.66 GHz)

DG-cgSV
DG-DG-pcgSV
DG-CG-pcgSV

Figure 3.2: Comparison of computation time of iterative methods: CG and PCG

the finest mesh has 1048576 triangles.

• The iterative solver terminates at accuracy of 10−16.

We conduct experiments to compare the performance of CG and PCG methodsin term of number

of iterations and compute time. See Figure 3.2 and 3.3:

• DG-cgSV is for Conjugate Gradient method.

• DG-DG-pcgSV is for Preconditioned Conjugate Gradient method with discontinuous Galerkin

coarse mesh correction.

• DG-CG-pcgSV is for Preconditioned Conjugate Gradient method with continuous Galerkin

coarse mesh correction.

We observe from Figure 3.3 that number of iterations for the conjugate gradient method increases

exponentially as the problem size increases. As we indicated at the beginning of this chapter, each

time the mesh is refined it leads to small value ofh = minK∈Th hK . Consequently the (2-norm)

condition number of the linear system 3.4 increases, being of orderO(h−2). On the other hand, the

number of iterations stays roughly the same for the preconditioned conjugategradient method, in

39

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 6 6.5 7 7.5 8

Ite
rs

Level

Performance of Preconditioned Conjugate Gradient Method(Iters) -- QuadCore(2.66 GHz)

DG-cgSV
DG-DG-pcgSV
DG-CG-pcgSV

Figure 3.3: Number of iterations comparison of iterative methods: CG and PCG

agreement with Theorem 3.2.1. From Figure 3.2, we can see that PCG methods are much faster

than CG method. PCG method with continuous Galerkin coarse mesh correction isfaster than PCG

method with discontinuous Galerkin coarse mesh correction. The difference is due to the fact that

the linear system of continuous Galerkin FEM is much smaller than that of discontinuous Galerkin

FEM.

40

Chapter 4

Adaptive Algorithm

Adaptive methods based on reliable a posteriori error estimates are essential for many large scale

computations. An adaptive algorithm is basically an iterative algorithm consisting of a number of

cycles of the form:Solve⇒ Estimate⇒ Mark⇒ Re f ine

1. Given a mesh, compute a solution on this mesh;

2. Estimate the error using an a posteriori error estimator, if the error tolerance reached, then

STOP;

3. Make/Refine the mesh;

4. Repeat steps 1 to 3 until the error is reduced to the desired level.

To achieve the prescribed error level, after each cycle of computation thea posteriori estimator3

provides information for the mesh refinement. The a posteriori estimator provides bounds by in-

equalities on both sides for the true error. The upper estimate can be used as the stopping criterion,

while the lower estimate shows the precision of the estimator. This method produces a relatively

much smaller linear system to solve while reaching the same level of accuracy.Given the set of

local error estimates for every triangleK of the triangulationT , the process to obtain a new triangu-

lation has two parts: 1) selecting triangles to be refined(marking strategy) and 2) construction of the

new triangulation(refinement strategy). We chose uniform refinement for each selected triangle in

41

the software. We compare two marking algorithms in the following section: dörfler algorithm [15]

and drastic cutting algorithm.

4.1 Marking Algorithm

Let T0 be the initial triangulation which is fine enough to start with. At each adaptive iteration, let

{ηK : all K ∈ Th} be the error estimates computed. The global estimated error is:

ηT 2 =
∑

K∈Th

ηK
2 (4.1)

and the largest error estimate is:

ηmax= max
K∈Th

ηK (4.2)

4.1.1 D̈orfler Marking Algorithm

The Dörfler marking algorithm (see Algorithm(3)) constructs a set of elementsS⊂ Th that is as

small as possible satisfyingηS
2 ≥ θηT 2. The choice ofθ determines the fraction of the global

estimator that one wants to refine. Choosingθ close to one would produce uniform refinement,

i.e., all K ∈ Th are refined. Choosingθ small would only choose a few elements to be marked

each adaptive iteration, thus resulting in many adaptive iterations (and many solves) to reach the

desired tolerancehtol. Whenθ is small, one will usually obtain a more optimal mesh, but at a very

large cost in adaptive iterations and overall solving time. Choosing a value from 0 to 1 for variable

ν determines how fine the procedure will work. Smaller values ofν allow the marking strategy

to step through the range of the estimator with finer step size. However, it is not necessary if all

elements are sorted by their error estimates. The complete adaptive processstops whenηT ≤ htol

or S= /0.

42

Chooseθ ∈ (0,1) ;1

Chooseν ∈ (0,1) ;2

S= /0 ;3

sum:= 0 ;4

τ := 1 ;5

while sum< θηT 2 do6

τ := τ−ν ;7

foreachK ∈ Th do8

if K is not markedthen9

if ηK > τηmax then10

Mark K, S= S+K ;11

sum= sum+ηK
2 ;12

end13

end14

end15

end16

Output : S
Algorithm 3 : Dörfler marking algorithm

4.1.2 Drastic Cutting Algorithm

We now present another marking strategy: drastic cutting marking algorithm (see Algorithm(4)).

Let |K| denote the area of a triangle, and let|Ω| denote the area of the domain. To reach the

condition:
∑

K ||∇e||2K ≤ htol2, it is sufficient to distribute errors as follows:

||∇e||K ≤

√

|K|

|Ω|
htol (4.3)

The a priori estimation in the energy norm converges with the rateO(hq−1) [20]. For each triangle

in the meshTh with error estimateηK , to achieve the condition shown in Eq. 4.4 we can predict

the level of uniform refinement to apply on the triangle.

ηK ≤

√

|K|

|Ω|
htol (4.4)

43

And the level of refinement is

re f lvl = (int)
log2(

√

|Ω|
|K|

ηK
htol)

log2(2
1

r−1)
(4.5)

The complete adaptive process stops whenηT ≤ htol or S= /0.

S= /0 ;1

foreachK ∈ Th do2

di f f =
√

|Ω|
|K|

ηK
htol ;3

if di f f ≥ 1 then4

re f lvl = (int)log2(di f f
1

r−1) ;5

if re f lvl = 0 then6

re f lvl = 1 ;7

end8

Mark K(re f lvl), S= S+K ;9

end10

end11

Output : S
Algorithm 4 : Drastic cutting marking algorithm

4.2 Accumulate SER Algorithm

As mentioned above, an adaptive algorithm is basically an iterative algorithm inthe form:Solve⇒

Estimate⇒ Mark ⇒ Re f ine. For a PDE problem, the linear system is sparse symmetric positive

and definite. Iterative methods such as conjugate gradient or preconditioned conjugate gradient

are popular choices for solving the system at each adaptive iteration. Usually the initial guess

for an iterative solver is azerovector. Instead of using azerovector, we take the result vector

from previous iteration, embed it onto finer space of the current iteration,and use it as our initial

guess vector for the iterative linear solver. We also can set the stopping condition for the iterative

solver according to tolerance of the adaptive method. TheAccumulate SER Algorithmis shown in

Algorithm(5).

44

Let T0 be initial triangulation ;1

tol = 10−12 ;2

v0 = IterSolve(T0, 0, tol) ;3

η0 = ErrorEst(T0, v0) ;4

i = 0 ;5

while ηi < htol do6

T i+1 = MarkRefine(T i , vi , ηi) ;7

x0
i+1 = Embed(vi , T i , T i+1) ;8

vi+1 = IterSolve(T i , x0
i+1, htol) ;9

ηi+1 = ErrorEst(T i+1, vi+1) ;10

i = i +1 ;11

end12

Output : v
Algorithm 5 : Accumulate SER algorithm

4.3 Experiments

Now let us show that the proposed drastic cutting marking strategy, compared with the D̈orfler

marking algorithm, speeds up the overall adaptive algorithm. The test problems are smooth, oscil-

latory, and singular respectively. For each experiment, we show our results in a table, which has

entries:CPUTimeis the wall clock time of whole adaptive process;Computetimeis the time spent

on solving the system at all iterative steps;est is the calculated error estimate;||e|| and||∇e|| are

errors comparing with real solution;|Th| is the number of triangles at the end of process;do f is

number of degrees of freedom at the end of process;SER iteris total number of adaptive iterations;

Lvl is the deepest level of mesh that the adaptive process reached. We alsoshow the final mesh that

the adaptive method generates. All the experiments were carried out on a machine with 2.66GHz

Intel® Xeon™Quadcore CPUs with 4MB of L2 cache.

4.3.1 Smooth Solution Problem

DomainΩ: Figure 4.1

−∆u = 2π2sin(πx)sin(πy) in Ω

u = 0 onΓD (4.6)

45

x1

x2

(1,1)

1

1

0

ΩΓD ΓD

ΓD

ΓD

Figure 4.1: Square Domain

Exact solution:u = sin(πx)sin(πy).

The problem has homogeneous Dirichlet boundary conditions and the solution is solely driven

by the forcing function. The domain is a 1×1 box. Initial triangulation is done with maximum

area constrainta = 0.1.

For ther = 2 case, we setγ = 5 and the target adaptive tolerance ishtol = 4.5e−2. See Table

4.1, Figure 4.2 and Figure 4.3.

4.3.2 Oscillatory Solution Problem

DomainΩ: Figure 4.1

−∆u = 128π2sin(8πx)sin(8πy) in Ω

u = 0 onΓD (4.7)

Exact solution:u = sin(8πx)sin(8πy).

This problem has a smooth non-polynomial solution which is oscillatory acrossthe domain. The

46

Table 4.1: Comparison of Marking Algorithm: Problem4.6, r=2
θ = 0.5 θ = 0.7 θ = 0.9 DC

CPU time(sec) 7.43 5.80 4.45 3.19
Compute time(sec) 0.321 0.255 0.196 0.297

est 4.4352e-02 4.0369e-02 4.2811e-02 4.4670e-02
||e|| 2.1115e-3 2.1095e-3 1.5598e-3 8.5283e-3
||∇e|| 0.0230 0.0210 0.0213 0.0474
|Th| 37552 43894 40234 39469
dof 112656 131682 120702 118407

SER iter 33 17 9 5
Lvl 6 6 6 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20 25 30 35

E
rr

or

aIters

Residual Error

drastic cutting
theta=0.5
theta=0.7
theta=0.9

Figure 4.2: Residual Error: Problem4.6, r=2

47

(a) θ = 0.5, r = 2 (b) θ = 0.7, r = 2

(c) θ = 0.9, r = 2 (d) Drastic Cutting,r = 2

Figure 4.3: Adaptive Meshes: Problem4.6, r=2

48

problem has homogeneous Dirichlet boundary conditions and the solution issolely driven by the

forcing function. For ther = 3 case, we setγ = 4 and the target adaptive tolerance ishtol = 0.25.

See Table 4.2, Figure 4.4 and Figure 4.5.

4.3.3 Singular Solution Problem

DomainΩ: Figure 4.6

−∆u = 0 in Ω

u = r2/3sin(2/3θ) on ΓD (4.8)

Exact solution:u = r2/3sin(2/3φ).

This problem has a point singularity in the first derivative at the origin. This problem really stresses

how well the adaptive algorithms work. Note also that the solution to this problemis solely driven

by the trace of the solution on the boundary. For ther = 2 case, we setγ = 7 and the target adaptive

tolerance ishtol = 0.01. See Table 4.3, Figure 4.7 and Figure 4.8.

4.3.4 Comparison with DGADPT

DGADPT is an adaptive discontinuous galerkin finite element software package written by Michael

Saum [30]. The following is the list of results of performance comparisonsbetween our implemen-

tation(ASER) and DGADPT which shows that ASER is two to four times faster than DGADPT,

see Figure 4.9. These tests were made on a 2.13GHz Intel® Core™2 Duo with 4MB of L2 cache.

• Smooth Solution Problem(Eqn. 4.6):r = 2, htol = 0.03,γ = 25;

• Oscillatory Solution Problem(Eqn. 4.7):r = 3, htol = 0.1, γ = 25;

• Singular Solution Problem(Eqn. 4.8):r = 2, htol = 0.01,γ = 25;

49

Table 4.2: Comparison of Marking Algorithm: Problem4.7, r=3
θ = 0.5 θ = 0.7 θ = 0.9 DC

CPU time(sec) 11.6 8.05 7.30 5.39
Compute time(sec) 0.723 0.45 0.391 0.535

est 2.3617e-01 2.3040e-1 1.9306e-1 2.5068e-1
||e|| 5.2401e-3 3.7737e-3 5.5286e-3 1.2549e-2
||∇e|| 0.0954 0.117 0.157 0.556
|Th| 31663 33190 39580 47938
dof 189978 199140 237480 287628

SER iter 40 19 10 6
Lvl 6 6 6 8

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40

E
rr

or

aIters

Residual Error

drastic cutting
theta=0.5
theta=0.7
theta=0.9

Figure 4.4: Residual Error: Problem4.7, r=3

50

(a) θ = 0.5, r = 3 (b) θ = 0.7, r = 3

(c) θ = 0.9, r = 3 (d) Drastic Cutting,r = 3

Figure 4.5: Adaptive Meshes: Problem4.7, r=3

51

Ω(0,0)

(0.5,0.5)

ΓD

ΓD

ΓD

ΓD

ΓD

Figure 4.6: Notch Domain

Table 4.3: Comparison of Marking Algorithm: Problem4.8, r=2
θ = 0.5 θ = 0.7 θ = 0.9 DC

CPU time(sec) 4.82 4.35 3.58 3.54
Compute time(sec) 0.42 0.4 0.2 0.38

est 1.0064e-02 8.6360e-03 9.6333e-03 9.8907e-03
||e|| 2.6660e-4 3.8521e-4 1.9695e-4 3.4549e-4
||∇e|| 5.37e-3 5.03e-3 5.07e-3 5.65e-3
|Th| 17727 23694 24804 23211
dof 53181 71082 74412 69633

SER iter 28 16 10 5
Lvl 15 15 9 12

52

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25 30

E
rr

or

aIters

Residual Error

drastic cutting
theta=0.5
theta=0.7
theta=0.9

Figure 4.7: Residual Error: Problem4.8, r=2

53

(a) θ = 0.5, r = 2 (b) θ = 0.7, r = 2

(c) θ = 0.9, r = 2 (d) Drastic Cutting,r = 2

Figure 4.8: Adaptive Meshes: Problem4.8, r=2

54

DGADPT
ASER

 0

 5

 10

 15

 20

 25

 30

Smooth Oscillatory Singular

T
im

e(
se

c)

Figure 4.9: Performance comparison of DGADPT and ASER

55

4.4 Discussion

We can see that the Accumulate SER Algorithm does a pretty good job in terms of performance,

see Figure 4.10 to Figure 4.15. Especially the application of adaptive tolerance to the iterative

solver dramatically lowers the number of iterations.

• The adaptive algorithm intends to lower the size of problem at each adaptive iteration, so the

pcg iterative solver does not show much performance improvement compared with the cg

iterative solver. The reason is thatpcgpays the penalty as it does the preconditioning includ-

ing solving coarse mesh correction, a series of subdomains, and embedding and projection

operations.

• When we have to solve the problem at a very fine level, thepcgiterative solver is still a better

choice since the savings in the number of iterations will offset the penalty. Each iteration of

the iterative solver costs a lot more when the linear system’s size increases.

• Embedding the result from the previous adaptive iteration is not as effective as tailoring the

iterative solver with adaptive tolerancehtol. Performance is even better when we combine

both together. ASER lowers the number of iterations of thecg method so dramatically that

it is comparable withpcg. The performance of ASER withcgmethod is overall the best.

• ASER with Drastic cutting outperforms the fixedθ marking approach. As we put a lot of

effort into optimizing the algorithm and code for fast solver at each adaptive level, the mesh

refinement and memory management is becoming the most time-consuming part. From

Figure 4.2, 4.4 and 4.7, we can see that drastic cutting dramatically lowers the number of

adaptive iterations, saving time on mesh generation, but it takes more time for computing the

solution as the previous result is not that close to the solution at the currentlevel.

56

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 2 3 4 5 6 7 8 9

Ite
rs

a-iter

Performance of ASER Algorithm -- Iters(Smooth Problem)-- QuadCore(2.66 GHz)

DG-cgSV-em0-stop0-theta0.9
DG-cgSV-em1-stop0-theta0.9
DG-cgSV-em0-stop1-theta0.9
DG-cgSV-em1-stop1-theta0.9

DG-pcgSV-em0-stop0-theta0.9
DG-pcgSV-em1-stop0-theta0.9
DG-pcgSV-em0-stop1-theta0.9
DG-pcgSV-em1-stop1-theta0.9

(a) Smooth problem withθ = 0.9, number of itera-
tions at each adaptive step

3.1e-05

9.8e-04

3.1e-02

1.0e+00

3.2e+01

1.0e+03

3.3e+04

 1 2 3 4 5 6 7 8 9

C
om

pu
te

 T
im

e

a-iter

Performance of ASER Algorithm -- Time(Smooth Problem) -- QuadCore(2.66 GHz)

DG-cgSV-em0-stop0-theta0.9
DG-cgSV-em1-stop0-theta0.9
DG-cgSV-em0-stop1-theta0.9
DG-cgSV-em1-stop1-theta0.9

DG-pcgSV-em0-stop0-theta0.9
DG-pcgSV-em1-stop0-theta0.9
DG-pcgSV-em0-stop1-theta0.9
DG-pcgSV-em1-stop1-theta0.9

(b) Smooth problem withθ = 0.9, compute time at
each adaptive step

Figure 4.10: Smooth problem: ASER algorithm

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 1.5 2 2.5 3 3.5 4 4.5 5

Ite
rs

a-iter

Performance of ASER Algorithm -- Iters(Smooth Problem) -- QuadCore(2.66 GHz)

DG-cgSV-em0-stop0-DC
DG-cgSV-em1-stop0-DC
DG-cgSV-em0-stop1-DC
DG-cgSV-em1-stop1-DC

DG-pcgSV-em0-stop0-DC
DG-pcgSV-em1-stop0-DC
DG-pcgSV-em0-stop1-DC
DG-pcgSV-em1-stop1-DC

(a) Smooth problem with drastic cutting, number of
iterations at each adaptive step

3.1e-05

9.8e-04

3.1e-02

1.0e+00

3.2e+01

1.0e+03

3.3e+04

 1 1.5 2 2.5 3 3.5 4 4.5 5

C
om

pu
te

 T
im

e

a-iter

Performance of ASER Algorithm -- Time(Smooth Problem) -- QuadCore(2.66 GHz)

DG-cgSV-em0-stop0-DC
DG-cgSV-em1-stop0-DC
DG-cgSV-em0-stop1-DC
DG-cgSV-em1-stop1-DC

DG-pcgSV-em0-stop0-DC
DG-pcgSV-em1-stop0-DC
DG-pcgSV-em0-stop1-DC
DG-pcgSV-em1-stop1-DC

(b) Smooth problem with drastic cutting, compute
time at each adaptive step

Figure 4.11: Smooth problem: ASER algorithm with drastic cutting

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 2 3 4 5 6 7 8 9 10

Ite
rs

a-iter

Performance of ASER Algorithm -- Iters(Oscillatory Problem)-- QuadCore(2.66 GHz)

DG-cgSV-em0-stop0-theta0.9
DG-cgSV-em1-stop0-theta0.9
DG-cgSV-em0-stop1-theta0.9
DG-cgSV-em1-stop1-theta0.9

DG-pcgSV-em0-stop0-theta0.9
DG-pcgSV-em1-stop0-theta0.9
DG-pcgSV-em0-stop1-theta0.9
DG-pcgSV-em1-stop1-theta0.9

(a) Oscillatory problem withθ = 0.9, number of it-
erations at each adaptive step

3.1e-05

9.8e-04

3.1e-02

1.0e+00

3.2e+01

1.0e+03

3.3e+04

 1 2 3 4 5 6 7 8 9 10

C
om

pu
te

 T
im

e

a-iter

Performance of ASER Algorithm -- Time(Oscillatory Problem) -- QuadCore(2.66 GHz)

DG-cgSV-em0-stop0-theta0.9
DG-cgSV-em1-stop0-theta0.9
DG-cgSV-em0-stop1-theta0.9
DG-cgSV-em1-stop1-theta0.9

DG-pcgSV-em0-stop0-theta0.9
DG-pcgSV-em1-stop0-theta0.9
DG-pcgSV-em0-stop1-theta0.9
DG-pcgSV-em1-stop1-theta0.9

(b) Oscillatory problem withθ = 0.9, compute time
at each adaptive step

Figure 4.12: Oscillatory problem: ASER algorithm

57

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 1.5 2 2.5 3 3.5 4 4.5 5

Ite
rs

a-iter

Performance of ASER Algorithm -- Iters(Oscillatory Problem) -- QuadCore(2.66 GHz)

DG-cgSV-em0-stop0-DC
DG-cgSV-em1-stop0-DC
DG-cgSV-em0-stop1-DC
DG-cgSV-em1-stop1-DC

DG-pcgSV-em0-stop0-DC
DG-pcgSV-em1-stop0-DC
DG-pcgSV-em0-stop1-DC
DG-pcgSV-em1-stop1-DC

(a) Oscillatory problem with drastic cutting, number
of iterations at each adaptive step

3.1e-05

9.8e-04

3.1e-02

1.0e+00

3.2e+01

1.0e+03

3.3e+04

 1 1.5 2 2.5 3 3.5 4 4.5 5

C
om

pu
te

 T
im

e

a-iter

Performance of ASER Algorithm -- Time(Oscillatory Problem) -- QuadCore(2.66 GHz)

DG-cgSV-em0-stop0-DC
DG-cgSV-em1-stop0-DC
DG-cgSV-em0-stop1-DC
DG-cgSV-em1-stop1-DC

DG-pcgSV-em0-stop0-DC
DG-pcgSV-em1-stop0-DC
DG-pcgSV-em0-stop1-DC
DG-pcgSV-em1-stop1-DC

(b) Oscillatory problem with drastic cutting, com-
pute time at each adaptive step

Figure 4.13: Oscillatory problem: ASER algorithm with drastic cutting

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 2 3 4 5 6 7 8 9 10

Ite
rs

a-iter

Performance of ASER Algorithm -- Iters(Singular Problem)-- QuadCore(2.66 GHz)

DG-cgSV-em0-stop0-theta0.9
DG-cgSV-em1-stop0-theta0.9
DG-cgSV-em0-stop1-theta0.9
DG-cgSV-em1-stop1-theta0.9

DG-pcgSV-em0-stop0-theta0.9
DG-pcgSV-em1-stop0-theta0.9
DG-pcgSV-em0-stop1-theta0.9
DG-pcgSV-em1-stop1-theta0.9

(a) Singular problem withθ = 0.9, number of itera-
tions at each adaptive step

3.1e-05

9.8e-04

3.1e-02

1.0e+00

3.2e+01

1.0e+03

3.3e+04

 1 2 3 4 5 6 7 8 9 10

C
om

pu
te

 T
im

e

a-iter

Performance of ASER Algorithm -- Time(Singular Problem) -- QuadCore(2.66 GHz)

DG-cgSV-em0-stop0-theta0.9
DG-cgSV-em1-stop0-theta0.9
DG-cgSV-em0-stop1-theta0.9
DG-cgSV-em1-stop1-theta0.9

DG-pcgSV-em0-stop0-theta0.9
DG-pcgSV-em1-stop0-theta0.9
DG-pcgSV-em0-stop1-theta0.9
DG-pcgSV-em1-stop1-theta0.9

(b) Singular problem withθ = 0.9, compute time at
each adaptive step

Figure 4.14: Singular problem: ASER algorithm

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 2 3 4 5 6 7

Ite
rs

a-iter

Performance of ASER Algorithm -- Iters(Singular Problem) -- QuadCore(2.66 GHz)

DG-cgSV-em0-stop0-DC
DG-cgSV-em1-stop0-DC
DG-cgSV-em0-stop1-DC
DG-cgSV-em1-stop1-DC

DG-pcgSV-em0-stop0-DC
DG-pcgSV-em1-stop0-DC
DG-pcgSV-em0-stop1-DC
DG-pcgSV-em1-stop1-DC

(a) Singular problem with drastic cutting, number of
iterations at each adaptive step

3.1e-05

9.8e-04

3.1e-02

1.0e+00

3.2e+01

1.0e+03

3.3e+04

 1 2 3 4 5 6 7

C
om

pu
te

 T
im

e

a-iter

Performance of ASER Algorithm -- Time(Singular Problem) -- QuadCore(2.66 GHz)

DG-cgSV-em0-stop0-DC
DG-cgSV-em1-stop0-DC
DG-cgSV-em0-stop1-DC
DG-cgSV-em1-stop1-DC

DG-pcgSV-em0-stop0-DC
DG-pcgSV-em1-stop0-DC
DG-pcgSV-em0-stop1-DC
DG-pcgSV-em1-stop1-DC

(b) Singular problem with drastic cutting, compute
time at each adaptive step

Figure 4.15: Singular problem: ASER algorithm with drastic cutting

58

Chapter 5

Implementation and Data Structure

5.1 Introduction

This chapter describes the design and implementation of Adaptive Finite ElementMethod software.

The program is written in the C programming language. Our main goal of this research is to develop

software for solving PDE problem as fast as possible on a wide variety ofplatforms. The modular

design allows us to test different algorithms and implementations as a researchproject, as well as

maintain the code stability. Figure 5.1 shows the diagram of the software.

The Mesh Generator component takes a geometry description input file, generates meshes with

vertices, edges, and triangles, and stores information in a database. It also calculates a numerical

data block for each geometric object, which is used to build the linear system for solution. At ini-

tialization stage, it utilizes the triangulation software: Triangle [32], which is a Two-Dimensional

quality mesh generator and Delaunay triangulator. This component is invoked at every iterative

step. The Linear System Generator component goes through elements in thecurrent mesh, gath-

ers numerical data blocks and assembles the linear system. The Reordering tool module reduces

the bandwidth of sparse symmetric matrices. The Domain decomposition module generates sub-

matrices used as the preconditioner. The Solver component solves a linearsystem with conjugate

gradient method or preconditioned conjugate gradient method. The Adaptive Error Estimator and

Refinement modules take a solution and calculate the error. If the error is lessthan the termination

59

Figure 5.1: Diagram of ADFEM software.

condition, these modules output the solution; otherwise the mark elements to be refined and feed

them to the Mesh Generator.

In the rest of the chapter, we describe basic data structures and components of the software.

5.2 Data Structure

Given a 2D domainΩ ⊂ R2, we can have a quasi uniform triangular mesh that coversΩ. The mesh

consists of a set of non-overlapped triangles, and basic components are vertex, edge, and triangles.

5.2.1 Vertex

Structure NODET, see Figure 5.2, is the data structure we defined for a vertex.x andy are coordi-

nates of the vertex. We also assign each vertex a uniqueid for sorting and searching purpose. Each

60

typedef struct nodestruct {
double x;
double y;
unsigned int lvl;
unsigned int id;
short bm;
double value;

} NODE_T;

Figure 5.2: Node structure

time the mesh is refined new vertices are generated that will be part of futuremesh too. We uselvl

to indicate the level on which each vertex is created.valueis to record the solution of the PDE.

5.2.2 Edge

Structure EDGET, see Figure 5.3, is the data structure we defined for edge. There are two types

of edges: internal and boundary. Fieldtype indicates that the edge is internal or boundary, and

also Dirichlet or Neumann boundary. At initialization time we calculate the length ofan edge and

its normal, which is stored in structure EDGEDATAGT, see Figure 5.4 . Fieldin f o point to the

EDGEDATAG T whenlvl is 0, otherwise it points to EDGET at level 0. Figure 5.5(b) shows that

e0, e1, e2 ande3 from one level finer mesh are half length ofe, and maintain the same normal except

that the normal ofe3 has opposite direction, as indicated by fieldsign. We uselvl to indicate the

level on which each edge is created. The actual length of an edge on level lvl is 1/2lvl times the

length of its original ancestor edge in the initial mesh. For a given mesh, Figure 5.5(a) shows that

an internal edge is an edge of two triangles:K+ andK−. K+ is the triangle that edge normal point

outward, andK− is the triangle that edge normal point toward. Note thatK− is NULL if the edge

on the boundary.KplocandKmlocindicates the position of the edge on trianglesK+ andK− (see

Figure 5.6(a)).

61

typedef struct edgestruct {
void *info;
struct tristruct *Kplus, *Kminus;
NODE_T *endp[2];
NODE_T *midpt;
unsigned Kploc : 4;
unsigned Kmloc : 4;
unsigned type : 2;
unsigned leaf : 1;
unsigned new : 1;
unsigned dedge : 1;
unsigned : 3;
unsigned int bm : 6;
unsigned int bidx : 24;
unsigned int : 2;
unsigned int lvl;
short refine, sign;
unsigned int id, idx;
struct edgestruct *child, *parent, *prev, *next;
double *off;

} EDGE_T;

Figure 5.3: Edge structure

typedef struct edggeomdata {
double edgelen;
double norml[2];

} EDGDATAG_T;

Figure 5.4: Edgedata structure

e
n

K+

K−

(a) Edgeeand its normal

e
n

e0
n0

e1
n1

e2
n2

e3

n3

(b) e0, e1, e2, e3

Figure 5.5: Edge and child edges in fine mesh.

62

K

0

1

2

e0e1

e2

e3 = e00

e4 = e01e5 = e10

e6 = e11

e7 = e20 e8 = e21

(a) K

K0
0

1

2

K1
0

1

2

K2
0

1

2

K3
0

1

2

(b) {K0,K1,K2,K3}

Figure 5.6: Local Ordering for TriangleK,{K0,K1,K2,K3}

63

5.2.3 Triangle

Figure 5.7, is the data structure we defined for triangle. At initialization time we calculate the area

of a triangle and its affine transformation matrix, which is stored in structure TRIDATAG T, see

Figure 5.8 . Fieldin f o points to the TRIDATAGT when lvl is 0, otherwise it points to TRIAN-

GLE T at level 0. Figure 5.6(b) shows thatK0, K1, K2 andK3 from one level finer mesh are a

quarter of area ofK in Figure 5.6(a), and maintain the same affine transformation matrix except

thatK3 has opposite direction, which is indicated by fieldsign. TRIANGLE T maintains pointers

to 3 vertices and 3 edges of a triangle.lvl indicates the level on which the triangle is created. The

actual area of a triangle on levellvl is 1/4lvl times the area of its original ancestor triangle in the

initial mesh.

5.2.4 PDE Data

Each interior edge has an off-diagonal matrix block that describes the interaction between elements

along the edge. Each triangle structure maintains a symmetric positive stiffnessmatrix block that

describes the interactions of degrees of freedom (dof) of the element. These data blocks are N by

N matrices. The third type of data object is simply one or more vectors of length n(dof) associated

with each element, used to maintain the solution obtained during the solve processand element

right hand side (RHS) vectors.

5.2.5 Mesh

Given a domain description we have an initial mesh with vertices, edges and triangles. As showed

in Figure 5.9, we build up a tree to store every element(triangle). Each trianglein the initial mesh is

a root node of the tree, and they are also put into link list for quick access. Each triangle is refined by

regular subdivision which creates four children triangles by connectingthe midpoints of the three

edges of the parent triangle . All children triangles are similar to the parent triangle (see Figure

5.6(b)). Every child triangle has a link to its parent, and parent links toK0. There is also a link list

of child triangles. We also create a tree for edges since edges has the samehierarchical structure

as triangles (see Figure 5.5(b)). In edge and triangle structures, Figure 5.3 and 5.7, pointers:child,

64

typedef struct tristruct {
void *info;
EDGE_T *edges[3];
NODE_T *corners[3];
unsigned int lvl;
unsigned leaf : 1;
unsigned recalc : 1;
unsigned nbrstate : 1;
unsigned new : 1;
unsigned cid : 2;
unsigned bm : 2;
unsigned refine: 6;
unsigned visited: 2;
short sign;
unsigned int id, idx, didx, lidx;
struct tristruct *child, *parent, *prev, *next;
double *sd[2], *rhs, *x, estp;

} TRIANGLE_T;

Figure 5.7: Triangle structure

typedef struct trigeomdata {
double area2;
double atrf[2][2];

} TRIDATAG_T;

Figure 5.8: Tridata structure

65

Figure 5.9: Tree

parent, prevandnext, are used to build the tree system. Although the mesh data structure keeps

a record of all geometric data structures, we only generate PDE data block, matrices and vectors

as needed to solve the problem at certain level. In practice, a dynamic mesh structure is created

by gathering all the leaves from the edge and triangle tree, and matrix(LHS)and vector(RHS) are

assembled.

5.3 Reordering

The variational formulation of a PDE problem produces a large sparse symmetric positive definite

linear system that needs to be solved at each adaptive iteration. The sparsity and symmetry of

the linear system make it an easy choice of an iterative solver such as conjugate gradient method

and preconditioned conjugate gradient method [6]. The performance ofthese iterative methods

is bounded by sparse matrix vector multiplication. Figure 5.10(a) shows that each non-zero entry

scatters everywhere, causing bad data spatial locality. As a result, the number of cache misses is

high and performance suffers. Reordering is the treatment we apply to reduce the bandwidth of the

matrix; consequently the data locality is greatly improved (see Figure 5.10(b)). Proposed in 1969,

Cuthill-McKee algorithm is a popular and the simplest method for reducing bandwidth of sparse

66

0 5000 10000 15000

0

2000

4000

6000

8000

10000

12000

14000

16000

nz = 65280

(a) Sparse matrix

0 5000 10000 15000

0

2000

4000

6000

8000

10000

12000

14000

16000

nz = 65280

(b) Reordered sparse matrix

Figure 5.10: Comparison of non-reordered and reordered sparse matrices

Input : Choose a peripheral vertexx and setR := x.
while i < |R| and|R| < N do1

Construct the adjacency setAi of Ri , whereRi is thei-th component ofR, and exclude2

the vertices we already have inR ;
Ai := Adj(Ri)\R ;3

SortAi with ascending vertex order ;4

AppendAi to the setR ;5

end6

Output : R
Algorithm 6 : Cuthill-McKee Algorithm

matrices. A mesh can be visualized as a graph with each triangle as a vertex and each edge as a

linkage. The Cuthill-McKee algorithm, described in Algorithm(6), is a reindexing process of the

vertices of the graph, and it reduces the bandwidth of the corresponding matrix. Figure 5.11 shows

that performance of the conjugate gradient method with a reordered matrix isabout 10% better

than with the non-reordered matrix. There is a total of 16384 triangles in the mesh. The bandwidth

is reduced from 12288 to 129 after reordering.

67

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5

N
or

m
al

iz
ed

 T
im

e

Degree of Freedom

Performanc of Conjugate Gradient Method with Reordering

non-reorder
reorder

Figure 5.11: Performance comparison of conjugate gradient method with non-reordered and re-
ordered sparse matrices

5.4 Embedding and Projection Operators

The PCG method, specifically the preconditioned conjugate gradient method described in Algo-

rithm (7), requires coarse mesh corrections by solving the error problem Ae= r. As we transfer

data(vector) between finite element spaces, there are two different types of operators: 1) Embed-

ding operator, also called interpolation operator, is defined as translating avector from a lower

dimensional subspace into a higher dimensional subspace; 2) Projection operator, also called re-

striction operator, is defined as translating a vector from a higher dimensional subspace into a lower

dimensional subspace. LetIh
H denote the embedding operator andIH

h denote the projection oper-

ator, whereIH
h = Ih

H
T
. We define two embedding operators in the software. The first one works

within discontinuous subspaces at the level of coarse and fine meshes; we call it DG Embedding

Operator. The second one works between continuous and discontinuous subspaces at the same

level of mesh; we call it CDG Embedding Operator.

68

5.4.1 DG Embedding Operator

Let {xi : i = 0, ...N−1} denote the(x,y) coordinates of theN degrees of freedom on the reference

elementK̂ and {φi : i = 0, ...N− 1} denote the corresponding basis functions on the reference

elementK̂. Let {xk, j : k = 0, ...3; j = 0, ...N− 1} denote the(x,y) coordinates of theN degrees

of freedom on the four children of̂K, {K̂0, K̂1, K̂2, K̂3}, see Figure 5.6. The embedding process

is the interpolation of values of basis functions onK̂ to children ofK̂. Eq(5.1) defines the matrix

of embedding operator. For example, with degree of one basis functions we can calculate the

embedding operator, see Eq(5.2). We can see thatIh
H is a 4N×N matrix with eachN×N block

corresponding to a child triangle. It maps a vectoru∈ R
N into a vectorv∈ R

4N.

r0 := b−Ax0 ;1

z0 := M−1r0 ;2

p0 := z0 ;3

k := 0 ;4

while truedo5

αk :=
rT

k zk

pT
k Apk

;6

xk+1 := xk +αkpk ;7

r k+1 := r k−αkApk ;8

if |rk+1| ≤ ε then9

exit10

end11

zk+1 := M−1r k+1 ;12

βk :=
rT

k+1zk+1

rT
k zk

;13

pk+1 := zk+1 +βkpk ;14

k := k+1 ;15

end16

Output : xk+1
Algorithm 7 : Preconditioned Conjugate Gradient Method

69

Ih
H =





















































































φ0(x0,0) φ0(x0,1) · · · φ0(x0,N−1)

φ1(x0,0) φ1(x0,1) · · · φ1(x0,N−1)

...
...

...
...

φN−1(x0,0) φN−1(x0,1) · · · φN−1(x0,N−1)

φ0(x1,0) φ0(x1,1) · · · φ0(x1,N−1)

φ1(x1,0) φ1(x1,1) · · · φ1(x1,N−1)

...
...

...
...

φN−1(x1,0) φN−1(x1,1) · · · φN−1(x1,N−1)

φ0(x2,0) φ0(x2,1) · · · φ0(x2,N−1)

...
...

...
...

φN−1(x2,0) φN−1(x2,1) · · · φN−1(x2,N−1)

φ0(x3,0) φ0(x3,1) · · · φ0(x3,N−1)

...
...

...
...

φN−1(x3,0) φN−1(x3,1) · · · φN−1(x3,N−1)





















































































(5.1)

Ih
H1 =





































































1.00 0.00 0.00

0.50 0.50 0.00

0.50 0.00 0.50

0.50 0.50 0.00

0.00 1.00 0.00

0.00 0.50 0.50

0.50 0.00 0.50

0.00 0.50 0.50

0.00 0.00 1.00

0.00 0.50 0.50

0.50 0.00 0.50

0.50 0.50 0.00





































































(5.2)

70

5.4.2 CDG Embedding Operator

Continuous and Discontinuous Galerkin Methods are node-based and element-based methods re-

spectively. LetIDXcg = {ni : i = 0, ...L} denote indexes of all the nodes in the mesh. Let{K j :

j = 0, ...M} denote all the elements, each element is a triangle in 2D case,{n j,k ∈ IDXcg : j =

0, ...M;k = 0, ...N} denote indexes of each degree of freedom of a triangle (see Table 5.1). Thus

we can build an embedding operator by putting 1 at rowj ×N+k and columnn j,k. It is aMN×L

matrix, whereM is number of triangles,N is number of degree of freedom of each triangle, andL

is number of nodes on the mesh.Ih
H maps a vectoru∈ R

L into a vectorv∈ R
MN. Given a 2D mesh

showed in Figure 5.12 and degree of one basis functions, we can have anode mapping table, see

Table 5.2. In this example, we build a CDG embedding operatorIh
H1, Eq(5.3), which is a 24×9

sparse matrix with 1 for non-zeros.

Table 5.1: CDG node mapping

0 1 · · · N
K0 n0,0 n0,1 · · · n0,N

K1 n1,0 n1,1 · · · n1,N
...

...
...

...
...

KM nM,0 nM,1 · · · nM,N

71

n0

n1

n2

n3

n4

n5

n6

n7

n8

K0

K1

K2

K3

K6

K5

K4

K7

0

1

2

0 1

2

0

1

2

0 1

2

0

1

2

0 1

2

0

1

2

0 1

2

Figure 5.12: A example of CDG node mapping: 2D mesh

Table 5.2: A example of CDG node mapping: CDG node mapping
0 1 2

K0 n0 n1 n2

K1 n1 n4 n2

K2 n1 n3 n4

K3 n2 n4 n5

K4 n4 n7 n5

K5 n4 n6 n7

K6 n3 n6 n4

K7 n6 n8 n7

72

Ih
H 1 =

















































































































































1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

















































































































































(5.3)

5.5 Summary

To summarize, we have designed and implemented a fast adaptive discontinuous Galerkin FEM

software package that has approximately 60000 line of codes. It includes data structure, algo-

rithm designs, dense and sparse linear algebra, multi-thread and MPI programming, performance

analysis, etc.

73

Chapter 6

Parallel Implementation

6.1 Introduction

The recently released TOP500 list [25] of the world’s fastest supercomputers depicts some im-

portant trends in the area of high performance computing: clusters represent the most common

architecture and multi-core processors represent the dominant chip architecture. These trends have

a big influence on research and development in high performance computing. To achieve high per-

formance on such systems, the software has to be scalable on a distributed memory system with

tens of thousands of CPUs, capable of on-chip parallelism that takes advantage of multi-core chip

architecture using shared memory threading, and tuned to have better cache locality and enhanced

instruction level parallelism. The Discontinuous Galerkin Method with a domain decomposition

preconditioner shows its full potential at all these different levels of parallel optimization. Fist

of all, it is natural to split the whole problem into small pieces by domain decomposition for

distributed computing. This domain decomposition is relatively easy to carry outwith the discon-

tinuous scheme, since it does not require continuity along the boundary of elements. Secondly,

each domain maintains a row of blocked sparse matrices, i.e. a diagonal block(the stiffness ma-

trix of the domain), and a list of non-diagonal blocks (flux and penalty termsalong boundaries of

domain), and a list of small blocked sparse matrices (stiffness matrices of subdomains) if using

domain decomposition as a preconditioner. Then on each node, the computational tasks for an

74

iterative method of solving a linear system are a list of sparse matrix vector products, which can be

further parallelized on a multi-core architecture with multi-threaded programming.

Currently the Message Passing Interface(MPI) standard is the de-facto parallel computing stan-

dard. It is widely used by many scientific programs as their communication layer. To reach good

performance on a massive parallel machine, it is important to design the software to overlap com-

putation and communication. In the rest of this chapter, we show the parallel implementation of the

discontinuous Galerkin finite element method with data structures, parallel iterative method, and

its performance.

6.2 Parallel Design and Data Structure

6.2.1 Domain Decomposition

Domain decomposition is a popular technique to make use of parallel computers.Coupled with

Message Passing Interface(MPI), it has become a widely used technique to design software for dis-

tributed memory architectures. This technique divides the whole computation intomany smaller

tasks. Each task contains a local computation part, which is a standalone computation without

interprocessor communication, and another part communicates with its neighbors and distant pro-

cessors for exchanging data. Domain decomposition, which we describedin Chapter 3, is a method

to divide the large linear system into smaller problems and produce a preconditioner to speed up

solving the entire system. In this chapter, domain decomposition refers to data decomposition;

see [13], [11], and [12] for more details.

6.2.2 METIS

”METIS is a family of programs for partitioning unstructured graphs and hypergraphs and for

computing fill-reducing orderings of sparse matrices. The underlying algorithms used by METIS

are based on a state-of-the-art multilevel paradigm that has been shownto produce high quality

results and scale to very large problems.” — http://glaros.dtc.umn.edu/gkhome/views/metis

For a given 2D domainΩ ⊂ R2, we can generate a quasi uniform triangular mesh that coversΩ.

75

Figure 6.1: A mesh with 4 subdomains.

The mesh consists of a set of non-overlapped triangles, and basic components are vertex, edge, and

triangles. We divide the whole domain into subdomains. Then a mesh consists ofa set of non-

overlapped subdomains, and a subdomain contains basic components. It isan intermediate level

between mesh and basic components. In some sense we can treat a subdomain as a mesh object,

simplifying the process of parallel implementation. METIS is freely available graph partitioning

software that generates subdomains that satisfy our requirements. Figure 6.1 shows an example of

four subdomains produced by METIS. See [22], [21] for more aboutMETIS.

6.2.3 Parallel Iterative Solver

As we mentioned in previous chapters, Galerkin finite element methods producea symmetric pos-

itive definite linear system. We use iterative solvers such as conjugate gradient and preconditioned

conjugate gradient method for solving the linear system. It is straight-forward to parallelize the

CG method by distributing the matrix and vectors and computing the vector operations and matrix-

vector multiplication in parallel. We list the pseudo-code for conjugate gradient method in Algo-

rithm 8.

We can group all computations into three categories:

76

Input : vectorx can be an approximate initial solution or 0
r = Ax ;1

r = b− r ;2

p = r ;3

k = 0 ;4

γ = r⊤r ;5

while sqrt(γ) > ε do6

v = Ap ;7

δ = v⊤p ;8

α = γ
δ ;9

x = x+αp ;10

r = r −αv ;11

γ0 = γ ;12

γ = r⊤r ;13

β = γ
γ0

;14

p = r +βp ;15

k = k+1 ;16

end17

Output : x
Algorithm 8 : Pseudo-code for Conjugate Gradient Method

1. Local computation:

• scalar operations: line 4, 6, 9, 12, 14 and 16;

• vector operations: line 2, 3, 10, 11, 15;

2. Local computation with communication to combine local results: line 5, 8, 13;

3. Parallel computation: line 1, 7;

The computations listed in the second category are dot products, which require communication

to combine local results to the global value. We choose the collective operationMPI ALLREDUCE

provided by MPI for such communication. Parallel implementation of matrix-vector product is the

key to make the iterative method scalable.

Figure 6.2(a) is an example of partitioning of a given domain with four subdomainsΩ0, · · · , Ω3

and necessary communication between adjacent subdomains. We have four processorsP0, · · · , P3,

and each process corresponds to a subdomain. Figure 6.2(b) is a global view of data distribution of

matrix and vector on four processes. Each colored row of matrixA and vectorvi is generated from

77

Ω2 Ω3

Ω0 Ω1

(a) Ω0, Ω1, Ω2, andΩ3

A

P0 v0

P1 v1

P2 v2

P3 v3

(b) ProcessesP0, P1, P2, P3, and local data

Figure 6.2: Data distribution of matrix-vector multiplication on processesP0, P1, P2, andP3

the local mesh without communication, since discontinuous Galerkin method is a triangle based

method. So data exchange is limited between processes that correspond to adjacent subdomains,

minimizing the global communication. As the matrix-vector multiplication proceeds, the only

communication comes from each subdomain’s neighbors.

6.2.4 Data Structure

As shown in Chapter 5, we create a tree structure to store geometric data foredges, triangles, etc.

For the parallel implementation, we maintain such a hierarchical structure for each subdomain.

Each subdomain has a copy of the initial mesh and creates a sub-tree by refining the elements

belonging to the subdomain. Since refinement, PDE data block and matrix generation is local, this

approach minimizes the global communication. Figure 6.3 shows the tree structure of the parallel

implementation, with each colored sub-tree belonging to a separate subdomain.

Domain Interface Structure

Figure 6.4 is the data structure we defined for the interface of a subdomain toits adjacent subdo-

main. It contains information about the edges and triangles along the interface of a subdomain.

78

Figure 6.3: Domain tree structure

79

typedef struct dg_interface_domain_t {
int id;
int nbr_id;
int nbr_sidx;
int nbr_totT;
int numBE;
int *betidx;
EDGE_T **bearray;
int numBIT;
int *bitidx;
TRIANGLE_T **bitarray;
int numBOT;
int *botidx;
TRIANGLE_T **botarray;
SPMV_BCSR *spm;

} DG_INTERFACE_DOMAIN_T;

Figure 6.4: Domain interface structure

Field id is the subdomain’s id, andnbr id is the id of the subdomain on the other side of the inter-

face. Fieldnbr sidxis the starting global index of the neighboring subdomain’s triangles, and Field

nbr totT is the total number of triangles in the neighboring subdomain.numBEis the number of

the edges on the interface.numBIT andnumBOTare the number of triangles inside subdomain

and outside the subdomain along the interface accordingly.betidx, bitidx andbotidxare the local

indices of edges, and triangles along the interface.spmis the off-diagonal matrix block shown in

Figure 6.2(b).

Domain Structure

Figure 6.5 is the data structure we defined for a subdomain. Fieldid is the subdomain id. Field

level indicates the level of mesh to which the subdomain belongs. Fieldsidx is the starting global

index of the subdomain’s triangles. FieldstotT, totE, andtotBEare the number of triangles, edges,

and boundary edges of the subdomain. FieldstotIF andIFlist are the number of interfaces of the

subdomain and the list of interfaces, respectively.gtotT andgtotEare the total number of triangles

and edges, respectively, of the whole mesh at the current level.meshand dmeshare the local

copy of the initial mesh.cddomainand f ddomainare the subdomains on the coarse and fine level

accordingly.

80

typedef struct dg_dynamic_domain_t {
int id;
int level;
int sidx;
int totT, totE, totBE, totIF;
int *totTs, *totEs;
int gtotT, gtotE;
DG_MESH_T *mesh;
DG_DYNMESH_T *ddmesh;
DG_INTERFACE_DOMAIN_T *IFlist;
struct dg_dynamic_domain_t *cddomain;
struct dg_dynamic_domain_t *fddomain;

} DG_DYNDOMAIN_T;

Figure 6.5: Domain structure

6.3 Experiment and Performance

The following is a testing problem:

−∆u = 2x(1−x)+2y(1−y) in Ω (6.1)

u = 0 on∂Ω

The solution of Problem(6.1) is:u= xy(1−x)(1−y) as shown in Figure 6.6, which is a smooth

polynomial solution across the domain.

We carried out our experiments on the parallel computer Jaguar1at Oak Ridge National Labora-

tory. Jaguar is a Cray XT4 system with 7832 XT4 compute nodes. Go to http://www.nccs.gov/computing-

resources/jaguar for more information. We ran our experiments with 4 nodes up to 128 nodes, and

results are shown in Figure 6.7 and 6.8.

Here are the observations:

• We can see that the conjugate gradient method can scale perfectly.

– localizing data and limiting the communication to each subdomain’s neighbors;

1This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory,
which is supported by the Office of Science of the Department of Energyunder Contract DE-AC05-00OR22725.

81

0

0.5

10 0.2 0.4 0.6 0.8 1

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 6.6: Solution of Problem(6.1).

 4

 8

 16

 32

 64

 128

 256

 512

 4 8 16 32 64 128

T
im

e

Number of Nodes

Performance Evaluation of Parallel Implementation

cg
pcg

Figure 6.7: Performance evaluation of parallel implementation on Jaguar: Time

82

 32

 64

 128

 256

 512

 1024

 2048

 4096

 0 1 2

Ite
ra

tio
n

N
um

be
r

Performance Evaluation of Parallel Implementation

cg
pcg

Figure 6.8: Performance evaluation of parallel implementation on Jaguar: Iteration Numbers

– Using MPI non-blocking sendrecv operations to overlap communication andcomputa-

tion for dot product and matrix-vector multiplication;

– Using MPI collective operation.

– fast inter-node connection.

• The preconditioned conjugate gradient method takes much less time to finish thejob com-

pared to the CG method, and it scales sublinearly.

– As we proved in Chapter 3, the condition number of PCG is a constant. Figure6.8

shows the number of iterations of PCG is much smaller than CG’s, and we see better

performance of PCG consequently;

– We chose a direct solver for the coarse mesh correction of the preconditioner. For our

parallel implementation, the reason for not choosing the CG method is that the linear

system of coarse mesh correction is a small linear system for which it is not beneficial

to use a parallel CG method. Since each subdomain computes its own coarse mesh

correction, it is actually a sequential part of the whole process. By Amdahl’s law, it has

a negative impact on scalability.

83

Chapter 7

Summary and Future Directions

Discontinuous Galerkin FEM has been an active research area for years. Since there are no con-

tinuity constraints such as exist in standard Galerkin FEM, DGFEM has great advantages such as

high-order accuracy on unstructured meshes, localhp-refinement, weak imposition of boundary

conditions and local conservation. The drawback is that it requires oneto solve for a larger number

of unknowns than continuous Galerkin FEM. This research tackles the performance issue from

both theoretical and computational fields and has achieved satisfactory results. We notice that the

performance of computation has been improved so much that marking and refinement of adaptive

FEM are becoming more time consuming. Hence, better memory management and implementa-

tion are needed for that part, and we are convinced there is much room for improvements. As new

computer architectures are emerging such as multi-core, many-core, GPU,FPU, etc., we believe

that DGFEM and our proposedRDRformat CGFEM, as well as the mixed scheme DG-CGFEM we

propose in this research, can do very well on these architectures. Precise embedding and projection

operators will be needed for the non-conforming adaptive meshes in the mixed scheme however.

In conclusion, this research has provided an opportunity to explore the mathematical theory and

to exercise in a spectrum of computational fields such as linear algebra (dense and sparse), code

optimization (auto-tuning and SSE assembly coding), multi-threading, MPI, algorithm design, etc.

As a result, software consisting of 60000 lines of code has been produced.

84

Bibliography

85

Bibliography

[1] R. A. Adams.Sobolev Spaces. Academic Press, New York, 1975.

[2] Randy Allen and Ken Kennedy.Optimizing Compilers for Modern Architectures. Morgan

Kaufmann Publishers, 2002.

[3] D. Arnold, F. Brezzi, B. Cockburn, and D. Marini. Discontinuous Galerkin methods for

elliptic problems. In B. Cockburn, G.E. karniadakis, and C.-W. Shu, editors, Proceedings

of the International Symposium on the discontinuous Galerkin method, volume 11, pages

89–101. Springer lecture notes in Computational Science and Engineering, 2000.

[4] G. A. Baker, W. N. Jureidini, and O. A. Karakashian. Piecewise solenoidal vector fields and

the Stokes problems.SIAM J. Numer. Anal., 27:1466–1485, 1990.

[5] Utpal Banerjee. A Theory of Loop Permutations. InSelected Papers of the Second Workshop

on Languages and Compilers for Parallel Computing, pages 54–74. Pitman Publishing, 1990.

[6] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, and H. Van der Vorst.Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.

[7] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and James Demmel. Optimizing Matrix

Multiply Using PHiPAC: A Portable, High-Performance, ANSI C Coding Methodology. In

International Conference on Supercomputing, pages 340–347, 1997.

[8] S. Brenner and R. Scott.The Mathematical Theory of Finite Element Methods. Springer-

Verlag, New York, 1994.

86

[9] P. G. Ciarlet.The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam,

1978.

[10] R. Courant. Variational methods for the solutions of equilibrium and vibrations.Bull. Amer.

Math. Soc., pages 1–23, 1943.

[11] L. C. Cowsar, E. J. Dean, R. Glowinski, P. Le Tallec, C. H. Li, J. Periaux, and M. F. Wheeler.

Decomposition principles and their applications in scientific computing. In J. Dongarra,

K. Kennedy, P. Messina, D. Sorensen, and R. Voigt, editors,Proceedings of the Fifth SIAM

Conference on Parallel Processing for Scientific Computing, pages 213–237, 1992.

[12] Lawrence C. Cowsar, Alan Weiser, and Mary F. Wheeler. Parallel multigrid and domain de-

composition algorithms for elliptic equations. In David E. Keyes et al., editors,Proceedings

of the Fifth International Symposium on Domain Decomposition Methods for Partial Differ-

ential Equations, pages 376–385, 1992.

[13] Lawrence C. Cowsar and Mary F. Wheeler. Parallel domain decomposition method for mixed

finite elements for elliptic partial differential equations. In Roland Glowinski et al., editors,

Proceedings of the Fourth International Symposium on Domain Decomposition Methods for

Partial Differential Equations, 1991.

[14] Jim Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine Petitet, Rich Vuduc,

Clint Whaley, and Katherine Yelick. Self adapting linear algebra algorithms and software.

Proceedings of the IEEE, 93(2), 2005. special issue on ”Program Generation, Optimization,

and Adaptation”.

[15] Willy Dorfler. A convergent adaptive algorithm for poisson’s equation. SIAM Journal on

Numerical Analysis, 33(3):1106–1124, Jun. 1996.

[16] M. Dryja and O.B. Widlund. Towards a unified theory of domain decomposition algorithms

for elliptic problems. In T. Chan etc., editor,Proceedings of Third International Symposium

on Domain Decomposition Methods for Partial Differential Equations, pages 3–21, Philadel-

phia, 1990. SIAM.

87

[17] X. Feng and O. A. Karakashian. Analysis of two-level overlapping additive schwarz precon-

ditioners for a discontinuous galerkin method. InProceedings of Thirteenth International

Conference of Domain Decomposition Methods. DDM.org Press, 2001.

[18] X. Feng and M. T. Rahman. An additive average Schwarz method for the plate bending

problem. Technical Report 185, Dept. of Informatics, University of Bergen, Norway, Feb.

2000.

[19] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. Sparsity: Optimization framework for

sparse matrix kernels.Int. J. High Perform. Comput. Appl., 18(1):135–158, 2004.

[20] O. A. Karakashian and F. Pascal. A posteriori error estimates fora discontinuous galerkin

approximation of second-order elliptic problems.SIAM J. Numer. Anal., 41:2374–2399, 2003.

[21] G. Karypis and V. Kumar. Metis users manual: Unstrctured graph partitioning and sparse

matrix ordering system. Technical report, ”1995”.

[22] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular

graphs.SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

[23] C. Lasser and A. Toselli. An overlapping domain decomposition preconditioner for a class of

discontinuous Galerkin approximations of advection-diffusion problems. Technical Report

2000-12, Seminar für Angewandte Mathenatik, ETH, Zürich, 2000.

[24] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving Data Locality with Loop

Transformations.ACM Trans. Program. Lang. Syst., 18(4):424–453, 1996.

[25] Hans Meuer, Erich Strohmaier, Jack Dongarra, and Horst Simon.TOP500 Supercomputing

Sites. Technical report.

[26] A. Quarteroni and A. Valli.Domain Decomposition Methods for Partial Differential Equa-

tions. Oxford University Press, New York, 1999.

[27] W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron transport equation. Tech-

nical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.

88

[28] P. E. Bjørstad, M. Dryja, and E. Vainikko. Additive schwarz methods without subdomain

overlap and with new coarse spaces. In R. Glowinski, J. Périaux, Z-C. Shi, and O. Widlund,

editors,Domain Decomposition Methods in Sciences and Engineering, pages 141–157. Wiley

& Sons, New York, 1997.

[29] T. Rusten, P. S. Vassilevski, and R. Winther. Interior penalty preconditioners for mixed finite

element approximations of elliptic problems.Math. Comp., 65:447–466, 1996.

[30] Michael A. Saum. Adaptive discontinuous galerkin finite element methods for second and

fourth order elliptic partial differential equations. Technical report, ”University of Tennessee,

Knoxville, TN, USA”, ”August, 2006”.

[31] Robert Schreiber and Jack Dongarra. Automatic Blocking of Nested Loops. Technical Report

CS-90-108, Knoxville, TN 37996, USA, 1990.

[32] Jonathan Richard Shewchuk. Triangle: A Two-Dimensional Quality Mesh Generator and

Delaunay Triangulator. Technical report.

[33] B. E. Smith, P. E. Bjørstad, and W. D. Gropp.Domain Decomposition, Parallel Multilevel

Methods for Elliptic Partial Differential Equations. Cambridge University Press, New York,

1996.

[34] Richard Wilson Vuduc. Automatic performance tuning of sparse matrix kernels. Technical

report, ”University of California, Berkeley, Berkeley, CA, USA”, ”December, 2003”.

[35] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software. InSC

’98: Proceedings of the Proceedings of the IEEE/ACM SC98 Conference, page 38. IEEE

Computer Society, 1998.

[36] J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review,

34:581–613, 1992.

89

[37] Qing Yi, Ken Kennedy, Haihang You, Keith Seymour, and Jack Dongarra. Automatic Block-

ing of QR and LU Factorizations for Locality. In2nd ACM SIGPLAN Workshop on Memory

System Performance (MSP 2004), 2004.

[38] Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DeJong, Maria Garzaran,

David Padua, Keshav Pingali, Paul Stodghill, and Peng Wu. A Comparison of Empirical and

Model-driven Optimization. InPLDI ’03: Proceedings of the ACM SIGPLAN 2003 Con-

ference on Programming Language Design and Implementation, pages 63–76. ACM Press,

2003.

90

Appendix

91

Appendix A

Affine Transformation

In 2D case, an element is a triangle. Figure A.1 shows a reference triangleK̂ and an arbitrary

triangle K. In practice the values of polynomialPn(x) and their first-order derivatives are pre-

computed on the reference triangle. To calculate the stiffness matrix (Diri block) for an triangle, an

Affine Transformation from an individual triangle to a reference triangleis defined as following:

The Affine transformationF from reference trianglêK to triangleK is:







x

y






=







x1−x0 x2−x0

y1−y0 y2−y0













x̂

ŷ






+







x0

y0






(A.1)

The Affine transformationF−1 from reference triangleK to triangleK̂ is:







x̂

ŷ






=

1
2|K|







y2−y0 −(x2−x0)

−(y1−y0) x1−x0













x−x0

y−y0






(A.2)

or







x̂

ŷ






=

1
2|K|







c11 c12

c21 c22













x−x0

y−y0






(A.3)

where|K | = area of the triangle.

Then base function derivative can be represented by reference triangle’s base functions’ deriva-

92

K̂

0

(0,0)

1

(1,0)

2

(0,1)

(a) K̂

K

0
(x0,y0)

1

(x1,y1)

2
(x2,y2)

(b) K

Figure A.1: Affine transformation between triangleK and reference trianglêK

tives:

∇φ =
1

2|K|







c11 c21

c12 c22






∇̂φ̂ (A.4)

a ji = ai j =

∫

K
∇φi ·∇φ jdxdy (A.5)

a ji = ai j =
1

2|K|

∫

K̂
(C∇̂φ̂l)

T · (C∇̂φ̂m)dx̂dŷ (A.6)

b j =

∫

K
f (x,y)φ j(x,y)dxdy (A.7)

b j = 2|K|

∫

K̂
f̂ (x̂, ŷ)φ̂m(x̂, ŷ)dx̂dŷ (A.8)

where 1≤ i, j ≤ N, are global indices of DOFs on the triangle, and 0≤ l ,m≤ 2 are local indices.

93

b b

b

K̂

0

(0,0)

1

(1,0)

2

(0,1)

(a) K̂

b b

b

K

0
(x0,y0)

1

(x1,y1)

2
(x2,y2)

(b) K

Figure A.2: Vertices of 1st order basis functions on a triangleK and reference trianglêK

A.1 First Order Basis Functions

1. Vertices on the reference triangle:

ẑ0 = (0,0) ẑ1 = (1,0) ẑ2 = (0,1)

Vertices on a triangle:

z0 = (x0,y0) z1 = (x1,y1) z2 = (x2,y2)

2. Basis functions are:

φ̂0(x̂, ŷ) = 1− x̂− ŷ

φ̂1(x̂, ŷ) = x̂

φ̂2(x̂, ŷ) = ŷ

94

3. 1st order derivative basis functions are:

∇̂φ̂0(x̂, ŷ) =







−1

−1







∇̂φ̂1(x̂, ŷ) =







1

0







∇̂φ̂2(x̂, ŷ) =







0

1







A.2 Second Order Basis Functions

1. Vertices on the reference triangle:

z1 = (0,0) z2 = (1,0) z3 = (0,1)

z4 = (0.5,0) z5 = (0.5,0.5) z6 = (0,0.5)

Vertices on a triangle:

z0 = (x0,y0) z1 = (x1,y1) z2 = (x2,y2)

z3 = (x3,y3) z4 = (x4,y4) z5 = (x5,y5)

95

b b

b

b

bb

K̂

0

(0,0)

3

(0.5,0)

1

(1,0)

4

(0.5,0.5)

2

(0,1)

5

(0,0.5)

(a) K̂

b b

b

b

bb

K

0
(x0,y0)

5
(x5,y5)

1

(x1,y1)

3
(x3,y3)

2
(x2,y2)

4
(x4,y4)

(b) K

Figure A.3: Vertices of 2nd order basis functions on a triangleK and reference trianglêK

2. Basis functions are:

φ̂1(x̂, ŷ) = 2x̂2 +4x̂ŷ+2ŷ2−3x̂−3ŷ+1

φ̂2(x̂, ŷ) = 2x̂2− x̂

φ̂3(x̂, ŷ) = 2ŷ2− ŷ

φ̂4(x̂, ŷ) = −4x̂2−4x̂ŷ+4x̂

φ̂5(x̂, ŷ) = 4x̂ŷ

φ̂6(x̂, ŷ) = −4x̂ŷ−4ŷ2 +4ŷ

96

3. 1st order derivative basis functions are:

∇̂φ̂0(x̂, ŷ) =







4x̂+4ŷ−3

4x̂+4ŷ−3







∇̂φ̂1(x̂, ŷ) =







4x̂−1

0







∇̂φ̂2(x̂, ŷ) =







0

4ŷ−1







∇̂φ̂3(x̂, ŷ) =







−8x̂−4ŷ+4

−4x̂







∇̂φ̂4(x̂, ŷ) =







4ŷ

4x̂







∇̂φ̂5(x̂, ŷ) =







−4ŷ

−4x̂−8ŷ+4







As we have shown above, on each triangle, we have 3 DOFs for 1st order polynomials, 6 for 2nd

order, and for 3rd order and 4th order polynomials, we have 10 and 16DOFs respectively.

97

Vita
Haihang You was born in Hefei, China on October 28, 1971. He completed his high school in

1990, and after that he joined Beijing Normal University, Beijing, China forpursuing his under-

graduate degree. He obtained his Bachelor of Science in Physics in 1994. In 1998, he traveled to

United States to pursue graduate studies. He obtained his Master’s degreein Computer Science

at University of Tennessee, Knoxville in 2001. After graduation, He joined Innovative Computing

Laboratory(ICL) as full time research staff. Later on he started the Doctorate program in Computer

Science, his advisors are Prof. Jack Dongarra at Computer Science department and Prof. Ohannes

Karakashian at Math department.

98

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2009

	Adaptive Discontinuous Galerkin Finite Element Methods
	Haihang You
	Recommended Citation

	reorder.ps

