na UNIVERSITY o University of Tennessee, Knoxville

Trace: Tennessee Research and Creative
Exchange

TEHHES.S_ EEL

Doctoral Dissertations Graduate School

8-2009

Adaptive Discontinuous Galerkin Finite Element

Methods

Haihang You

University of Tennessee - Knoxville

Recommended Citation

You, Haihang, "Adaptive Discontinuous Galerkin Finite Element Methods. " PhD diss., University of Tennessee, 2009.
https://trace.tennessee.edu/utk_graddiss/86

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.


https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Haihang You entitled "Adaptive Discontinuous
Galerkin Finite Element Methods." I have examined the final electronic copy of this dissertation for form
and content and recommend that it be accepted in partial fulfillment of the requirements for the degree
of Doctor of Philosophy, with a major in Computer Science.

Jack Dongarra, Major Professor
We have read this dissertation and recommend its acceptance:
Ohannes Karakashian, James Plank, Michael Thomason, Shirley Moore

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



To the Graduate Council:

| am submitting herewith a dissertation written by Haihang You entitled “Adaptigedhtinuous
Galerkin Finite Element Methods.” | have examined the final electronic cofiyi®dissertation
for form and content and recommend that it be accepted in partial fulfillofehie requirements
for the degree of Doctor of Philosophy, with a major in Computer Science.

Jack Dongarra, Major Professor

We have read this dissertation
and recommend its acceptance:

Ohannes Karakashian

James Plank

Michael Thomason

Shirley Moore

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of Graduate School

(Original signatures are on file with official student records.)



ADAPTIVE DISCONTINUOUS GALERKIN
FINITE ELEMENT METHODS

A Dissertation
Presented for the
Doctor of Philosophy
Degree

The University of Tennessee, Knoxville

Haihang You
August 2009



Copyright © 2009 by Haihang You

All rights reserved.



Dedication

To Albert and Robert, | always love you!
To my father You Chenan, mother Li Helin, brother Yuanhang, sister lyiang
To my uncle Li Hefeng for looking after me when | was away from home ferfitst time.

To the memory of uncle Li Hebiao, | miss you all the time.



Acknowledgments

I would like to express my immense gratitude to my advisors, Professor Jagialra and Profes-
sor Ohannes Karakashian, for the inspiration, valuable comments aar gypdance throughout
the process of research. My sincere gratitude to my Dissertation Committedgardes Plank, Dr.

Shirley Moore and Dr. Michael Thomason.



Abstract

The Discontinuous Galerkin Method is one variant of the Finite Element Metfuwdsolving par-
tial differential equations, which was first introduced by Reed and Hilbiidls [27]. Discontinu-
ous Galerkin Method (DGFEM) differs from the standard Galerkin FENl¢batinuity constraints
are not imposed on the inter-element boundaries. It results in a solutioh wgheomposed of to-
tally piecewise discontinuous functions. The absence of continuity camtstoa the inter-element
boundaries implies that DG method has a great deal of flexibility at the costrefasing the num-
ber of degrees of freedom. This flexibility is the source of many but naif iie advantages of the
DGFEM method over the Continuous Galerkin (CGFEM) method that usegspacontinuous
piecewise polynomial functions and other "less standard” methods sunbnasnforming meth-
ods. As DGFEM method leads to bigger system to solve, theoretical aniicptapproaches to
speed it up are our main focus in this dissertation. This research aimsgidgsand building an
adaptive discontinuous Galerkin finite element method to solve partial diffarequations with

fast time for desired accuracy on modern architecture.



Contents

1 Introduction . . . . . . . . e 1

2 Continuous Galerkin Method . . . . . . . . ... .. ... 4
2.1 Introduction . . . . . . .. e 4
2.2 Poisson’'s Equation . . . . . ... e 4
2.3 Finite ElementSpaces. . . . . . . . . . . e e 6
2.4 Standard Galerkin Formulation . . . . . . . .. ... 8

2.5 The Stiffness Matrix: To assemble or nottoassemble . . . . ... ... ... .10

2.6 Experimentand Performance . . . .. .. .. ... .. .. ... . .. . ... 15
3 Nonoverlapping Additive Schwarz Preconditioners . . . .. .. .. ... ... ... 20
3.1 Introduction . . . . . . . . e 20
3.1.1 Preliminaries . . . . . . .. 22
3.1.2 SobolevSpaces . . . . .. ... 22
3.1.3 Triangulations . . . . . ... 22
3.1.4 The discontinuous Galerkin approximation . . . ... ... ... ..... 24
3.1.5 Somewusefulresults . . . . ... ... ... 25
3.2 The non-overlapping Schwarz methods . . . . . ... ... .. ........ 27
3.2.1 Formulation of the additive Schwarz preconditioner . . . . .. ... .. 28
3.2.2 Condition number estimate for the additive Schwarz method . . . . . . . . 32
3.3 Experiments and Performance . . . ... ... ... ... ... ........ 38
4 Adaptive Algorithm . . . . . . . e 41

Vi



4.1 Marking Algorithm . . . . . . . .. 42

4.1.1 Dorfler Marking Algorithm . . . . . . . . . . .. ... .. .. .. ... 42
4.1.2 Drastic Cutting Algorithm . . . . . . . ... ... ... L. 43
4.2 Accumulate SER Algorithm . . . . . . . . ... 44
4.3 EXperiments . . . . . . . . e e 45
4.3.1 Smooth Solution Problem . . . . . ... ... ... 45
4.3.2 Oscillatory SolutionProblem . . . . . . ... ... ... ... ...... 46
4.3.3 Singular Solution Problem . . . . . .. .. .. ... ... ... .. .. 49
4.3.4 Comparison with DGADPT . . . . . . . . . . . . . .. 49
4.4 DISCUSSION . . . . v v v e e 56
Implementation and Data Structure . . . . . . . . ... ... L 59
5.1 Introduction . . . . . . . . . 59
5.2 DataStructure . . . . . . . L 60
521 Vertex . . . . . . 60
522 Edge . . . ... 61
5.23 Triangle . . . . . . . e 64
524 PDEData .. .. .. .. . e 64
525 Mesh . . . . . 64
5.3 Reordering . . . . . . . e 66
5.4 Embedding and ProjectionOperators . . . . . . . . . .. . ... ... ..... 67
541 DGEmbeddingOperator . . . .. ... ... .. ... ... . ....... 68
5.4.2 CDGEmbeddingOperator . . . . . .. .. .. ... ... ... 71
55 Summary . .. 73
Parallel Implementation . . . . . . . . ... ... . 74
6.1 Introduction . . . . . . . . 74
6.2 Parallel Designand Data Structure . . . . . . . ... ... ... ... .. ... 75
6.2.1 Domain Decomposition . . . . . . .. ... 75

Vii



6.2.2 METIS . . . .
6.2.3 Parallel lterative Solver . . . . . . . . . .
6.2.4 DataStructure . . . . . . . . e e e e
6.3 Experimentand Performance . . . . . . .. .. .. ... .. 81
7 Summary and Future Directions . . . . . . . . . .. 84
Bibliography . . . . . . . e e e 85
Appendix . . ... e e 91
A Affine Transformation . . . . . . . . . . e e e 92
A.1 FirstOrder Basis FUNCLIONS . . . . . . . . . . o o e e e e e e e e e 94
A.2 Second Order Basis Functions . . . . . . . . . . . . . 95
Vita . . e e 98

viii



List of Tables

2.1 Machine Specifications . . . . . . . .. ... e 7 1
3.1 Machine Specifications . . . . . . . .. . ... 8 3
4.1 Comparison of Marking Algorithm: Problem4.6,r=2 . . . . ... ... ..... 47

4.2 Comparison of Marking Algorithm: Problem4.7,r=3 . . . . .. ... ... ... 50

4.3 Comparison of Marking Algorithm: Problem4.8,r=2 . . . . . ... ... .. .. 52

51 CDGnodemapping . . . . . . o 71
5.2 A example of CDG node mapping: CDG nodemapping . . . . . . ... ... .. 2. 7



List of Figures

21
2.2
2.3
2.4
2.5
2.6

2.7

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Linear basis functiocn((o) ............................... 7
Quadratic basis functiorq.é,(O) and(pff) ........................ 7
Linear basis functions on a triangulated 2D mesh. . . . . . . ... ... .... 9

Mesh with indexing of vertices, triangles, and local vertex indexingohdriangle 13

Solution of Problem(2.19) on a mesh with 4096 triangles. . . . . . . .. . ... 16
Comparison of computation time of CG method with CSRRBIR™ matrix stor-
age format, degree of polynomialis2 . ... .. ... ... ... .........
Comparison of computation time of CG method with CSRRBIR™ matrix stor-

age format, degree of polynomialis3 . ... .. ... .. ... ... .......

Conforming and non-conformingmesh . . . . . . . ... ... ... ...... 26
Comparison of computation time of iterative methods: CGand PCG . . . . . . 9.
Number of iterations comparison of iterative methods: CG and PCG . . ..... 40
Square Domain . . . . .. e e e e e
Residual Error: Problem4.6,r=2 . . . . . . . . . .. ... ... 47
Adaptive Meshes: Problem4.6,r=2 . . . . . . . .. ... .. .. .. .. .o, 48
Residual Error: Problem4.7,r=3 . . . . . . . . . . e e, 50
Adaptive Meshes: Problem4.7,r=3 . . . . . . . . . ... ... ... 51
NotchDomain. . . . . . . . . . .
Residual Error: Problem4.8,r=2 . . . . . . . . . . .., 53
Adaptive Meshes: Problem4.8,r=2 . . . . . . . .. ... .. ... ... ... 54
Performance comparison of DGADPTand ASER . . . . . .. .. .. .. ... 55

46



4.10
411
412
4.13
4.14
4.15

51
5.2
5.3
54
5.5
5.6
5.7
5.8
59
5.10
511

5.12

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Smooth problem: ASER algorithm . . . . . . . ... ... oL 57
Smooth problem: ASER algorithm with drasticcutting . . . . . ... ... .. .. 57
Oscillatory problem: ASER algorithm . . . . . . .. .. ... ... .. ..... 75
Oscillatory problem: ASER algorithm with drastic cutting . . . . . . ... ... 8 5
Singular problem: ASER algorithm . . . . .. ... ... ... ......... 8 5
Singular problem: ASER algorithm with drasticcutting . . . . . . .. ... .. 58
Diagram of ADFEM software. . . . . .. .. .. .. ... .. .. .. .. .... 60
Node structure . . . . . . . . . . 16
Edgestructure . . . . . . . . . e 2 6
Edgedata structure . . . . . . . . . 2 6
Edge and child edgesinfinemesh. . . . . . ... ... ... ... ....... 62.
Local Ordering for Triangl&,{Ko, K1, K2, K3} . . . . . . o oo oo oo 63
Triangle structure . . . . . . . . . L e 56
Tridatastructure . . . . . . . .. 56
Tree . . o 66
Comparison of non-reordered and reordered sparse matrices. . . . .. ... 67
Performance comparison of conjugate gradient method with noderearand re-

ordered sparsematrices . . . . . . . . . . .. e e e 8 6
A example of CDG node mapping: 2Dmesh . . . . . . .. ... ... ... ... 2 7
Ameshwith4 subdomains. . . . . . . . . . . ... .. ... 76
Data distribution of matrix-vector multiplication on procesBgs;, P>, andP; . . 78
Domaintree structure . . . . . . . . . . ... 79
Domain interface structure . . . . . . . . ... 0 8
Domain structure . . . . . . . . . 81
Solution of Problem(6.1). . . . . . . . . . . ... 2 8
Performance evaluation of parallel implementation on Jaguar: Time . . ..... 82

Performance evaluation of parallel implementation on Jaguar: Iteratiobéls . 83

Xi



A.1 Affine transformation between triangkeand reference triangé . . . . . .. ..
A.2 Vertices of bt order basis functions on a triangteand reference trianglé . . . .

A.3 Vertices of 2d order basis functions on a triangfeand reference trianglé

Xii

94
96



Chapter 1

Introduction

The Discontinuous Galerkin Method, first introduced by Reed and Hill inl®#’s [27], is one
variant of the Finite Element Methods for solving partial differential equatid he Discontinuous
Galerkin Method (DGFEM) differs from the standard or continuous GaleFEM (SGFEM or
CGFEM) in that continuity constraints are not imposed on the inter-elementaoies, resulting
in a solution that is composed of totally piecewise discontinuous functionsabB$ence of con-
tinuity constraints on the inter-element boundaries implies that the DGFEM hesatidgal of
flexibility at the cost of increasing the number of degrees of freedom. flehibility is the source
of many but not all of the advantages of the DGFEM method over the CGREMCGFEM uses
spaces of continuous piecewise polynomial functions and other "lesdastirmethods such as
nonconforming methods. Noncorforming methods are characterized Iy plosition of continu-
ity at certain points on the inter-element boundaries.

As the DGFEM method results in larger linear systems than the other versi@usetical
and practical approaches to speed it up become very important espedigliy one wishes to
measure its competitiveness. Indeed, at the same time as theoretical and ingliemairaspects
of the DGFEM are developed, one must undertake comparative studiesthéthFinite Elements
methods especially in the area of efficiency. Indeed, a main theme of therchdeas been to
successfully incorporate some aspects of the standard Finite Elementdd étibtm the DGFEM,

thus creating a hybrid and more efficient method.



The recently released TOP500 list [25] of the world's fastest supgpaters depicts some im-
portant trends in the area of high performance computing: clustersseggirdhe most common
architecture and multi-core processors represent the dominant chifeatare. These trends have
a big influence on research and development in high performance cogptiachieve high per-
formance on such systems, the software has to be 1) scalable on a didtnitartery system with
tens of thousands of CPUs, 2) capable of on-chip parallelism, which sakesitage of multi-core
chip architecture with shared memory threading, and 3) tuned to have lsether locality and en-
hance instruction level parallelism. The Discontinuous Galerkin Method wittdditive Schwartz
preconditioner shows its full potential at all these different levels oélfelroptimization. First
of all, it is natural to split the whole problem into small pieces by domain decoitigo$or dis-
tributed computing. Such domain decomposition is relatively easy to carryituthve discontin-
uous scheme, since it does not require continuity along the boundalgnoéets. Secondly, each
domain maintains a row of blocked dense matrices, i.e. a diagonal block (fhestifnatrix of the
domain), and a list of non-diagonal blocks (flux and penalty terms alongdaries of domain),
and a list of small blocked sparse matrices (stiffness matrices of subdgrifaisgsg domain de-
composition as preconditioner. The computational tasks for an iterative chiethsolving a linear
system are a list of sparse matrix vector products, which can be fuidhegdized on a multi-core
architecture. And at last, to achieve peak performance on modern sysitmsew techniques
such as longer pipelines, deeper memory hierarchies, and hyperitiyéachnologies, we have to
generate highly optimized libraries for dense and sparse linear algeimelk§l4, 35], [7], [38].
Typical transformations include loop blocking [31, 37], loop unrolling, @hd loop permutation,
fusion and distribution [5, 24]. One aspect of the adaptivity of our safévis its ability to generate
a computationally intense kernel as it is installed on one system. For exanipiegsmge sparse
linear systems with dense blocks is an important part of the Galerkin methaelc&nspeed up
the sparse linear solver by generating a fast matrix vector multiplication funfdrathe known
matrix size.

To summarize, the contributions of our research are the following:

* We have revisited an old aspect of the standard Galerkin method corgdneimssembly



of the stiffness matriXA. As an alternative to explicitly forming, we have used instead
a factorization ofA of the formRDR' and compared the relative efficiencies of perform-
ing matrix-vector multiplications wittA versusRDR". While it may be counterintuitive to
expect that replacing one such operation with three can be advantagetwns out that
exploiting the structures dR and D results in a competitive algorithm that shows better
scalability and performance on multicore systems. This result is not only $titegen the
context of the standard Galerkin method itself, but also impacts the DGFEM sie@lso

use the matriXA as a preconditioner in solving the linear systems resulting from the DGFEM.

» We have developed a nonoverlapping additive Schwartz domain desitiopgrecondi-
tioning algorithm for the fast iterative solution of the linear systems for the EX&FThe
main theme here is to use the CGFEM to precondition the DGFEM. The benefiis apth
proach are twofold. First, this preconditioner (the magiabove) is smaller than its discon-
tinuous counterpart. Second, a difficulty caused by so-called penattg t&frithe DGFEM
are bypassed resulting in an improvement in the condition number of thengligooed sys-
tem. We include a new and rigorous analysis that shows that the conditionrenafthe
preconditioned system is the expected (and optit®@&h /h) whereH andh are a measure

of the coarse and fine meshes respectively.

» We have developed an adaptive finite element algorithm(ASER) basegastexiori error
estimates developed earlier. This algorithm implements the ideas and technidjiresdo
above and also implements a drastic cutting marking strategy resulting in askeargbe

number adaptive cycles needed to achieve the prescribed tolerance.

"If we can enhance computational efficiency the method may in the etpgrdorm state-of-the
art finite volume solvers, especially when DGFEM is combined with h- aadgptation.--- We
believe therefore that DGFEM has a huge potential as a next generatiwrséitver technology. ”
— CENAERO(Centre of Excellence in Aeronautical Research) and its \@#HD-physics group,
Swansea, UK, 4-6 April 2005.



Chapter 2

Continuous Galerkin Method

2.1 Introduction

In 1943, Richard Courant introduced the Finite Element Method [10] (JFEMapproximating
solutions of partial differential equations. Since then FEM has been dtadi@ developed to be
a powerful and widely used method for numerical solutions of partial reifféal equations. In
this chapter we revisit the Continuous Galerkin Method and exploit an apprfor performing

matrix-vector multiplications without actually forming the stiffness matrix.

2.2 Poisson’s Equation

Let us consider the following second order elliptic problem for Poisseqstion:

—Au = f inQ, (2.2)
u = gp onlp, (2.2)
Ou-n = gy only. (2.3)

whereQ c RY, d = 2,3, 'p denotes the Dirichlet boundarlyy denotes the Neumann boundary,
andoQ = IN'p Uy with n being the unit outward normal vector 6.

LetV = {ve HY(Q) :v=0o0nlp} be the space of so-call¢dst functions We can obtain a



weak formulation of the PDE above by multiplying Eq(2.1) witk V and integrating oveQ:

—/Q(Au)vdx:/gfvdx (2.4)

Integrating the left side by parts and using the fact that0 onl'p andg—ﬁ =g only, we have

—/(Au)vdx:/ Ou-Ovdx— [ gnvds (2.5)
Q Q N

Let u be the solution of Eq(2.1), thanis also the solution of following variational problem: Find

uc HY(Q) satisfyingu\rD = gp such that

a(u,v) =F(v), WeyV, (2.6)
where
a(u,v) = /Du-Dvdx (2.7)
Q
F(v) = /fvdx+ gnvds (2.8)
Q 'n

There is an alternative way to calculaterhich we shall use to formulate the standard Galerkin
formulation. Assume that we have a functigre H'(Q) that agrees with the Dirichlet dagg on

Ip. Lettingu = g+ G with i eV and using itin (2.6), there follows

a(G,v):F(v)—/QDg-Dvdx

The advantage of this formulation is to work withwhich is in the same spad¢ as the test

functions.



2.3 Finite Element Spaces

The Galerkin Finite Element Method consists in projecting the solution of a plartipartial dif-
ferential equation into a finite dimensional space of functions and using ¢aé yormulation
developed above. Typically, these spaces are constructed oveoeeni@pping partition of2. We
usually call such a partitionmeshand note that it is composed oélls These cells could be trian-
gles, rectangles, tetrahedra or other shapes. The commonly useeléenenishould be reserved
to denote a specific association of a cell type with a family of function spatiesse functions
consist of piecewise polynomial functions, i.e., the restriction of suchtifumeinto any given cell
is a polynomial of a degree chosen by the user. This choice is motivatee byptious ease of use
of polynomial functions. Another important characteristic of the Finite Elerviihod is that the
basis functions of these spaces have small supports, e.g. a small patemehts. The intended
effect is to obtain matrices that are sparse. Indeed, this is a featurediiregaishes the FEM (and
also the Finite Difference Method) from spectral methods.

The construction of finite element function spaces starts with that of saidadlal basis func-
tionsfor the vector spaceq(K) of polynomials of total degreg > 1 defined orK. These bases
are adapted to the type or shape of the particular elements or cells of the Biesk. we will
restrict ourselves to triangles in 2-d, we shall use the Lagrangian hagisdns. Depending on
the degree of polynomials used, these basis functions are naturallyaasdogith certain points
of the triangle, or degrees of freedom [9].

Example: Linear Lagrange Elements Denote the three vertices of a triandlec 7, by

V2. v V2(see Figure 2.1). There exists a basis consisting of three affine fusqﬁ)c)m((l),cpf(z) i

n
the variablex,y such that

V(v =8, i,j=012

Example: Quadratic Lagrange Elements In addition to the three vertices, let,v*,\° be
the midpoints of sideg®v!, viv?, vA\P respectively (see Figure 2.2) There exists a basis consisting

of six functionsq{g), j =0,...,5 satisfying

(Pﬁ)(Vj)Z&j, i,j=0,...,5.

6



&g\}}\}%}/ g

Figure 2.1: Linear basis functiapﬁ))

@ ¢ (b) ¢

Figure 2.2: Quadratic basis functiocp%J> andcﬂ<<3)

7



In general, the spacey(K) of polynomials in(x,y) of total degreeq has dimensionn, =
%(q+ 1)(q+2). Lagrangian basis functions for each can be constructed. As shothe above
examples, these basis functions are associated witb¢henodes g), j=0,...,mq—1.

By extending these local functions by zero outsid&ofve obtain functions that are defined

on all of Q).

2.4 Standard Galerkin Formulation

Let 7h = {Kj : i = 1,2,...,my} be a mesh 02 such thatQ = Uxc,, K = KUK U ... UK. We
assume thaty, is locally quasi-uniform and that each cell in it is starlike. (See section 30t.3 f
definitions).

Using the local basis functions (local to each cqaw introduced above, we construct a global

space of continuous functions definedon We let
S = {v| V| €Py(K), K€ T, V| =0}.

Basis functions for the spac$ are easy to construct on conforming meshes. Let us recall that a
mesh is conforming if whenever two cells, say triangles, are adjacent, iyeshlaee an edge, then
this edge is a full edge for both triangles. We also say that a conforming isiebaracterized by
the absence dianging nodeslt is important to note that basis elements for the continuous spaces
$ are extremely difficult or even impossible to construct for general noiocming meshes. Thus,
whereas a standard Galerkin formulation can be defined on noncongpmashes, the Galerkin
approximation cannot be calculated on such meshes due to the unavailahﬂay&s‘foﬁ. One
of the contributions of this work is to show a way to do this by constructingapjate embedding
and projection operators/matrices.

Assuming that the mesh is conforming, we 4gt denote the collection of all local degrees of

freedomxfg), K € 71. More precisely,

%:{v|v:x,(<j),KeTh, j=0,....mq—1, andv ¢ 'p}.



(a) A triangulated 2D mesh. (b) Support of lineam;

Figure 2.3: Linear basis functions on a triangulated 2D mesh.

Note that a given element i}, is identified with a set of local degrees of freedom. Also, note that
we do not include im, nodes that belong tbp since the Galerkin approximation is given &y
on[l p and the test functions vanish there.

We define the global basis functiorps for Sﬂ as follows: With eachlv € A}, we associate a

basis functiony, satisfying

1 ifv=p
(W= (2.9)
0 ifv£u

When basis functions are linear, Figure2.3(b) shows the suppg@ytaansists of triangles that
share the common nodethat is at the center of the mesh in Figure 2.3(a).

Now we can formulate the Standard Galerkin Method for Eq(2.1) from thati@nal formula-
tion Eq(2.6) as follows: Legy € H1(Q) be a function which agrees witl at the nodes belonging

toMp. We seeku; € S that satisfies

a(ln, Vh) = F (W) — /Q Ogh - Ovi, Yk € S (2.10)

Then the standard Galerkin approximation is giverupy= Uh + gn. Indeed, a function such as
On can be easily constructed by interpolating the dgtan the Dirichlet nodes. Furthermoig, is

nonzero only on a thin layer adjacentltg.



This formulation can be recast as a linear system of equations that maivbe by a variety
of methods, typically iterative when the number of unknowns is large, sag than a thousand.
We express the finite element solutigp defined by (2.10) as a linear combinatiog(x) =
Z’j\l:lzj(pj (x) of the basis functions d. Using this expression in (2.10), we obtain the linear

system in the unknown vector

AZ=b (2.11)
where
aj =/D<Pj~D<ﬂdX (2.12)
Q
b = F(@)~ | Don- D (2.13)

A is called theStiffnessMatrix and is symmetric positive definite with each element defined in

Eq(2.12).

2.5 The Stiffness Matrix;: To assemble or not to assemble

If a direct solver is to be used to solve the system (2.11), then the stiffnag& A must be
explicitly formed. This is accomplished as follows. First, for each Ke#t 7, a mq x mq local

stiffnesamatrix Ak is calculated according to

(A)ij Z/Dw)'ﬂfﬂ@dx
K

Where(gg) are the basis functions local #©. Since the latter functions are polynomials Kn
the integrals can be evaluated exactly using some quadrature rule ofesuificcuracy. These
calculations can be performed efficiently on a so-called master or refer®il K using affine
transformations between the cKlland the reference cell. (See Appendix A for more details).

Now noting that a global basis functignis a sum of some local basis functions,

(1)

Xk =X

10



Initialize A to zero.

for K € 71, do

fori=0,...,my—1do

for j=0,...,my—1do
ifx&) ¢lp andxfg) ¢ I'p then _
‘ Ay = A+ (Ak)ij wherev :xﬂ), U= X
end

end

end

10 end

(i)

© 00 N O o A~ W DN PP

Algorithm 1: Assembly of the stiffness matrix

Ais calculated (assembled) from the local blogiksusing Algorithm 1
When using an iterative method, especially one such as the Conjugate iGnagithod that
involves matrix-vector multiplications, one has the option of not assembling thé&xmatRather,

the matrix-vector multiplications are performed using the decomposition:

A=RDR (2.14)

thus turning one matrix-vector multiplication wiginto three matrix-vector multiplications. While
this idea is known to practitioners of the FEM, no experimental study of theveletficiencies of

the two approaches exists to our knowledge. Later in this section we exdshits of comparative
numerical experiments using up-to-date optimization techniques. But firsteeeto describe the

matricesD andR. As far as the dimensions of these matrices are concerned, let

|7h| = number of cells(triangles) i,
mq = number of DOF’s per cell
N = number of global DOF’s

D is themy|7h| x my|Zh| block diagonal matrix such that timg, x mq blocks along the diagonal
are precisely the local stiffness matriggs. IndeedD is A in unassembled form.
RT is themg|7h| x N matrix which identifies a global node or DOF to the set of its local coun-

terparts. To visualiz®", we may think of it ag7y| slabs F of my rows each corresponding to cell

11



K and where
1 if xf<') =Xj

(RR)ij = {

0 otherwise

Even though some of its rows (corresponding to Dirichlet nodes) ace e matrixR" has full
column rank. Another interpretation & is to view it as a change of basis matrix between the

local bases and the global ones. Indeed, a given functiﬁﬂl @an be expressed as

m—1 N

S S adel and also asy_ By
Keay j=0 v=1

R" satisfies

a=R'p.

Figure 2.4 is a mesh witjr;,| = 8 triangles:Ko, Ky, - - -, K7, with Dirichlet boundary p and
Neumann boundarly. There areN = 6 degree of freedoms denoted by boldface numbers. So
Ais a 6x 6 matrix. For simplicity, the linear basis functions are used for this example.aéls e
triangle’s vertex is given a index of 0 to @y, = 3 and the Dirichlet block matri®' is a 3x 3 matrix.

Each element of\ is assembled from corresponding Dirichlet block matrices. For example,

ags = D1, + Df; + D3 + Do+ DS, + Do (2.15)

A can be factorized by Eq(2.14) with matricé:D, andR". Matrix D is a 24x 24 block diagonal

matrix with 3x 3 diagonal blocks. MatriR is a 6x 24 sparse matrix with only 0 and 1.

12



N

Figure 2.4: Mesh with indexing of vertices, triangles, and local vertexxindeof each triangle

13



aio
ao

azo

aso

O O O O O
O B O O O O
o O o » O O
o O O »r O O
o O » O O O
O O O O O
R O O O O O
o O » O O O
O O O o o o

D° 0

o O O O o o o
o O O o o o

ai
a1

agy

as1

o O o o o o

o O o o o

a2
a2

azz

as2

o O +» O O O
o O o o o o

o O o o

a13
az3
ass
as3

as3

o O +» O O O

©O o o o

aiq
az4
ag4
auq

asq

o O o O +» O
o O o o o o

a5
azs

ags

as5

o O O O o o

o O o o +» O

© O O o o o o

D7

o O o o o o

O O O O O Bk

o O o o +» O

o O » O O O

o O » O O O

(2.16)

o O o » O O

(2.17)

(2.18)

With the most commonly used sparse matrix storage format, compressed KpaiGSR),

the sparse matrix-vector multiplication usually runs at 10% or less of the mé&peak perfor-

mance [34]. As researchers try to optimize the sparse matrix-vector multiplidagieransform-

14



ing matrix storage format CSR to block compressed sparse row(BCSiR) alows optimiza-
tion techniques such as unrolling and register-level tiling of each block matator multiplica-
tion [19], the performance improvement is limited by the random memory aceésspof sparse
matrix multiplication. And this type of optimization sometimes is not practical as the tansf
mation time is too long. With Eq(2.14) we turn a sparse matrix-vector multiplication inée thr
matrix-vector multiplications. BuR only contains 1'sR x x can be programed with additions, and
R™ x x can be programed with data stores, and we also can save memory spatestoying the
array of 1's. AsD preserves the dense diagonal blocks, it has better data locality. Wephn a
optimization techniques such as unrolling, register-level blocking, vegerations, and multi-
threading, which usually can not be applied easily to sparse matrix-vecitiplioation due to
indirect indexing. We write the optimized version of diagonal block matrixememultiplication
written in assembly, and combine that with multi-threading onREER' format. The preliminary
results show encouraging speedup on Intel Quad core architecfedselieve that we can further

improve the performance with more aggressive tuning efforts similar to AT[38%

2.6 Experiment and Performance

The following is a testing problem:

—Au = 1287sin(8x)sin(8my) i Q (2.19)

u=~0 onoQ

The solution of Problem(2.19) ist = sin(8rx)sin(8my) as shown in Figure 2.5, which is a smooth
non-polynomial solution and oscillatory across the domain. We choose ativieiemethod as
our solver: conjugate gradient method [6], since the linear system isespgmmetric positive-
definite. This method is one of the best iterative method for solving a symmaisitive-definite

linear system. The pseudo code is given in Algorithm(2).

15



N “"

X '4“ (\\\\ \U‘"‘ \‘h w ‘i‘ wnv Nﬂ ‘\\\'\\'

M\(\ }« v// /A
\MUI ““\‘W »

N

1 \):

"W\“

O o

Figure 2.5: Solution of Problem(2.19) on a mesh with 4096 triangles.

Input : vectorxg can be an approximate initial solution or O

1rg=b—Ax;
2 Ppo=ro,
3k=0;
4 while truedo

Mere .
P AR
X1 = X+ Ok Pre
Me+1 = Nk — OKAPK ;
if [rea| < ethen

| exit
10 end

kg =

© 00 N o O

B — rk+1rk+l .
11 fere

12 Pr1 = M1+ BrPx ;
13 k=k+1;
14 end

Output: Xxr1

Algorithm 2 : Conjugate Gradient Method

16



Table 2.1: Machine Specifications

Feature Intel Xeon (Quad core)
Processor Speed 2. 4G
L1 Cache 8KB
L2 Cache 8nvB
Nunber of Sockets 4
Nunber of Cores 16
oS Li nux
Conpi | er icc 11.0

We set up the experiment as following:

» The experiments are conducted on an Intel Xeon Quad core archéedthrspecifications

shown in Table 2.1.

* Initial triangulations usingri angl e were done using maximum area constrairt0.1, and

the finest mesh has 1048576 triangles.
« The iterative solver terminates at accuracy of %0

We conduct experiments to compare the performance of CG method with theremltiinatrix

multiplications:
» Matric Vector multiplication (MV) with sparse matrix CSR storage format.
« Reference MV wittRDR' diagonal dense block format.

« Optimized MV with RDR' diagonal dense block format, written in assembly with SSE2

vector operations.

Experimental results in Figure 2.6 and Figure 2.7 show the total time spertltdios with
various number of threads enabled. Since most of SSE2 instructionisr&§uyte alignment, we
chose to implement block diagonal matrix vector multiplication for degree of Zgyalynomial
basis functions for now. The block sizes are 6 and 10 respectivehg king as the starting pointer

is 16-byte aligned, then all the matrix blocks that are consecutively allowéitdt 16-byte aligned

17



Time -- Quadcore Xeon(2.4 GHz, 4 Sockets, 16 cores)
1048576 Triangles, 6291456 Dofs

240 T T T

220 ]
200
180
160

140

Time

120 £
100

80

60 | T

40 1 1 1 1
1 2 4 8 16 32

Number of Threads

Figure 2.6: Comparison of computation time of CG method with CSRRIBE' matrix storage
format, degree of polynomial is 2

Time -- Quadcore Xeon(2.4 GHz, 4 Sockets, 16 cores)
1048576 Triangles, 10485760 Dofs

1200 T T T

1100 R
1000
900

800 |

Time

700

600

500

400

300

Number of Threads

Figure 2.7: Comparison of computation time of CG method with CSRRIBE' matrix storage
format, degree of polynomial is 3

18



too. Implementation of block diagonal matrix vector multiplication for degreesafdL4 will be
our future work. We can see in the Figures that optimig&R MV has better scalability on a
multicore system. On the other hand, sparse MV starts with good performathce single thread

compared witrRDR' MV, but with poor data locality due to indirect memory access, it does not

scale well on a multicore system.

19



Chapter 3

Nonoverlapping Additive Schwarz

Preconditioners

3.1 Introduction

In the past fifteen years, extensive research has been done elogiey domain decomposition
methods for solving the systems of algebraic equations that arise fronusatiscretizations of
partial differential equations. The discretization methods that have bmaved include finite
difference methods, finite volume methods, (conforming, nonconformidgraxed) finite element
methods, boundary element methods, spectral methods and mortar finite teteatbods (cf.
[16, 26, 33, 36] and references therein). On the other hand, gargdmain decomposition results
have been known in the literature for discontinuous Galerkin methodsl{&R238, 29]).

The work we present here is an improvement on [17] at both theoretidahlgorithmic lev-
els. First of all, the notation and proofs have been simplified and some essay assumptions
removed, and a more general problem is treated. Secondly, the usatifucais coarse mesh
spaces leads to better preconditioning of the iterative solver of the linsi@nsy and thus to faster
execution.

We begin by summarizing some concepts and facts introduced in earlier ichdqatewill be
used in this chapter. To begin, we recall that we are interested in solvirdglkneing boundary
value problem:

20



Let Q c RY, d = 2,3, be a bounded open polyhedral domain. We consider the following

boundary value problem:

—Au=f inQ, (3.1)
u=gp onlp, (3.2)
Ou-n=gn only, (3.3)

wheredQ =T =Tp Ul andn is the unit normal vector exterior Q. We assume thdip has
positive measuref, € L?(Q), gn € L2(T'y).
The discontinuous Galerkin formulation for the above problem leads totermsysf linear

equations of the form

Ax=b. (3.4)

It is not hard to show that the (2-norm) condition numbeAad$ of the orderO(h~2) whereh =
Minkeq, k. Hence, the system (3.4) becomes ill-conditioned for simallhe ill-conditioning
worsens in situations when local refinement leads to extremely small valledrofddition, the
size of the linear system becomes large. Consequently, it is not efficisotv® it directly using
the classical iterative methods. On the other hand, if one can find a symmeatiive definite
matrix B (the preconditioner) such th8A is well-conditioned, then any of the classical iterative
methods (in particular, the Conjugate Gradient method) works effectivelh®@ preconditioned
system

BAX = Bb. (3.5)

Our goal here is to develop some additive Schwarz preconditiones lnsisdomain decom-
position, for the linear system (3.4) and to solve the preconditioned syst@ngsthe Conjugate
Gradient method. For background knowledge and a general theattyeoBchwarz method, we
refer to [26, 33, 36]. The major novelty of our approach is to use eaarsh spaces of continuous
functions. The reason for preferring continuous spaces overrtiscous ones will be explained

later. We stress however that the overall method is still the discontinuousk®ateethod as im-

21



plemented on the working (fine mesty), whereas continuous spaces are used only to construct

the preconditioneB.

3.1.1 Preliminaries

We introduce notation and list some basic facts that will be used often in thigezsh&or appro-
priate definitions we refer to earlier chapters or the references quoted.

3.1.2 Sobolev Spaces

LetD c RY, d = 2,3, be a bounded open polyhedral domain. For integer0, H™(D) will denote

the (Hilbert) Sobolev space with inner product

UVImp= Y /DD“uD“v and norm  [|ufjmp = (U, U).3.

lal<m

(cf. [1]). To simplify the notation, we shall drom when its value is zero. Also, we shall often

encounter functions that vanish on a suligebf the boundargD. We thus let
Hgr, = {ve HY(Q),v=0o0nlp}.

Extensive use will be made of edge/surface integrals. Therefore, fdr 1)-dimensional
subsee of RY, we set

<u,v>e:/uvds and \u|e:<u,u>é/2.
e

3.1.3 Triangulations

Let7h={Ki:1=1,2,...,my} h> 0 be afamily of star-like partitions (triangulations) of the domain

Q parametrized by & h < 1. We assume the following:
(i) For allh> 0 ,the elements ofj, satisfy the minimal angle condition.

(i) 7 is locally quasiuniform; that is, if two elemenk§ andK, areadjacent i.e. their bound-

aries have a nonempty intersection, then digm~ diam(K,).

22



The condition of local quasiuniformity, in contrast with global quasiuniformgygompatible with
local refinement.
We define@r'] andfﬁ3 to be the set of all interior and boundary edges (faces in thedcasg),

respectively, as follows:

‘Zrl] ={e= 0K NaKy, ud_l(aKj NoK,) > 0},

28 ={e=0KNJQ, g 1(0KNIQ)>0}, zh=z Uz

For eacle e zr',, we denote the two triangles that “share” it ly andK—, respectively. Which of
the two isK ™ is completely arbitrary but not irrelevant! éfc zﬁ, thene= 0K NoQ = K NoQ.
We assume that for eaghe 2, eithere C I'p or e C My. We then setef = 2P Uz, where
fE and zr’]\' are, respectively, the set of boundary edged grand onl'y. From the previous
assumption, we haveP Nz = 0.

Given a partition or meshy, of Q, we find it convenient to use the so-callbmbkenor dis-
continuous Sobolev spacet"(7,) = Mkc,, HM(K). Elements of these spaces are not functions
in the proper sense given that they may be multivalued on interior edgestfthe partitionr,.
However, since such edges hgde- 1)-dimensional measure zero, we can still treat the elements
of these spaces as functions.

It is essential to be able to define values of functionsl#(7;,) andV" on the edges. Thus,
for ve H™(74), m> 1, ande € £} U £ 2, v{ will denote the trace o of the restrictionv' of v to
K*. Similarly we defines; forec /.

We also defingumpsandaveragesof such traces as follows:

[V]:Vg__ve_veefl’lh [V]:Vgﬂe€£hB7

(VI=3i(vd+vg), eczl, {v}=V, eczf

23



Finally, for v H2(7,) and an interior edge € £/, we define theaverageandjump of the

normal derivative ofs by

[EEY

{0nV}e = 5 (Ovf+0v ) -n* and [0nv]e=0Ov'-n* —0Ov -n*,

respectively, whera™ is the unit outward normal t&*

3.1.4 The discontinuous Galerkin approximation

We define the bilinear forra) (-, -) : H2(75) x H2(7h) — Rby

ah(uv) = ) (OuOv (3.6)

KeTy

= 3 (400U} Mo+ ({0nvh [Ue — v (U], e )-

| D
ecz)uz]

For the construction and motivation behind a variety of discontinuous Gialer&thods we
refer to the survey paper [3]. The above bilinear form is consistenttivitboundary value problem
(3.1)-(3.3) in the sense thatufis a solution thereof, then using integration by parts one can show

that for allv € H(7},),

aﬁ(u,v) = F(V> = (f,V) + Z <gN7V>e_ <9D,0nV—Vh51V>e-

N
ect)

To define the discontinuous Galerkin formulation for the BVP (3.1)-(3.3,imroduce the

discontinuous finite element space
VI = 24(7h) == {v: V[ € 24(K), K € 7h, g > 1}

wherepryq is the space of polynomial of degree less than or equal to

Then, we define the discontinuous Galerkin approximallpms the element (" that satisfies
al(u v) =F(v), weVvh (3.7)

24



The bilinear formaﬁ is symmetric, continuous and coercive 8h. Specifically, if we define

the DG-norm
B 1/2
Iios = { > Ioviz+y Y- metnig}
KeTh eczjUEP
then
al(u,v) < ¢|[ullpg||Vllpe, Yu,veVh (3.8)

Furthermore, there exists a constgntdepending org and the minimum angles of the cells

such that fory > vyo,

ah(wv) > cl|v|gg, WweVvh (3.9)

Choosing a basiég;, j = 1,...,J} for V", the above formulation leads to the system (3.4) with
being thel x J stiffnessnatrix Ajj := aﬁ((pj ,@) and theJ-vectorb given byb; = F (@ ). The matrix
Ais symmetric sinca}q is symmetric and positive definite as a consequence of (3.9).

3.1.5 Some useful results

Theorem 3.1.1.Let D be a starlike domain and let&iH™(D) for some m> 0. Then there exists

ax € 2q(D) such that
u—xljpo <chp!luli, 0<j<i<min{mq+1}. (3.10)
J7 D

This is a basic approximation property based on the Taylor polynomial. Farcd we refer
to [4] and [8].
The following two inequalities known as trace and inverse inequalities, ctéeply, are well

known in finite elements, and their proofs can be found in [8].

VlZp < c (o3 +holDV3) W e HY(D), (3.11)

25



(a) Conforming mesh (b) Non-conforming mesh

Figure 3.1: Conforming and non-conforming mesh

wherehp = diam(D);
Vjp <chy!|Vip Wery(D),0<i<j<2 (3.12)

A less standard property that has proved very useful in the contadisodntinuous Galerkin
methods concerns the approximation of discontinuous piecewise polynom@datinuous piece-
wise polynomials of the same degree.

We shall call a meshy, conformingif whenever two elements of the mesh share an edge (face
in 3 dimensions), the latter must be a full edge for both elements. Otherwise shenitibe called

nonconforming See Figure 3.1

Theorem 3.1.2. Let 7, be a conforming or nonconforming mesh consisting of triangles when

d = 2, and tetrahedra when & 3. Then for any y € V" the following approximation results hold:

(i) There existxy € V" NHY(Q) satisfying

T Eklvn—xnlk < > Ekhel[vill2, (3.13)
Keh ecE)
D WO —xnllk < ¢ hetwill3 (3.14)
Key ecE)

26



(i) There existxn € V"NHg - satisfying

S & v —xnllZ

Keah,

> &0 —xn) ik

KeTh

< ¢ ) Ehelwl2, (3.15)
ecz /WP

< ¢ ) kheYwlla (3.16)
ecz /WP

Here,£,"P = £/ U P is the collection of interior and Dirichlet type boundary edg&g.and {x

are quantities that will be chosen appropriately and so that they vary in alllpquasi uniform

manner similar to h and h.

3.2 The non-overlapping Schwarz methods

In this section, we develop some two-level non-overlapping additive &ahpreconditioners for

the discontinuous Galerkin method. Similar results were obtained in [17] with tantodiffer-

ences from the treatment presented herein which we enumerate now

1. The problem treated in [17] involved the simpler case of the homoge#aaklet bound-

ary condition.

2. The subspace used in [17] for the coarse mesh correction wa®lawggh to include piece-

wise constant functions. Here we aim at using a much smaller space cansigiecewise

linear functions that are continuous@and that vanish on the Dirichlet type bounday.

The benefits of working with a smaller space are twofold. First, the resultitigmsamuch

smaller. More significantly, the incompatibility resulting from the penalty terms is totally

eliminated. We explain this point in detail later.

3. The proofs are considerably simplified. In some cases, e.g. Propd3ifid, a restrictive

assumption is removed via a a new and direct treatment.

27



3.2.1 Formulation of the additive Schwarz preconditioner

It is well-known (cf. [33, 36]) that the first step towards constructiddidve Schwarz precondi-
tioners is to have a valid subspace decomposition of the finite element\épa€er the discon-
tinuous Galerkin method considered in this paper, siffte L?(Q) and no continuity constraints
are imposed on the functions ", it is easy to construct such a space decomposition. This is in
sharp contrast with the situation in the standard as well as nonconformiegk{Baormulation
(cf. [18,28]).

Let 7s denote a partition of2 into p non-overlapping subdomaig;, j=1,...,p. We assume
that 7s is aligned with7;, in the sense that ea€h; is some union of cells ifr,. Therefore to each

subdomairQ; we associate in a natural way a subspécef V" given by
Vi={veV'v=0inQ\Q;}.

In other wordsy; is simply the restriction o¥" to Qj. Also, given the discontinuous nature of the

functions invV", we have the following direct sum decomposition

Vi=Viawe. oV, (3.17)

The above subspace decomposition will not produce a good precomditidfhat is needed
is a coarse mestiy; and a corresponding coarse subspate(or preferablyy) of VP where the
residuals will be "projected and corrected” just as in a multigrid method. Thefésred to as the
coarse-mesh correction. Since the novelty of our approach resides @hdiice ofVp, we make a

detailed list of the properties afy.

(A1) 74 is aligned with bothr}, and7s in the sense that every cell iy is a union of cells inry
and every cell inry is a union of cells inr,. In particular, for eacld € 74, there is a subset

Tp of 7 such thaD = Uk, K.

28



(A2) Dis starlike in the sense that there exig§ss D and a constartp > 0 such that
(X—Xp)-n>cp foralmostallx oD, (3.18)

wheren denotes the unit outward normal vectoradd. Furthermore for some constant
c=0(1),

Cp > CcHp

whereHp is the diameter ob.

(A3) The partition7p is quasi-uniform in the sense that the cells fragthat make ufD are all

of similar sizes. In particular, for a givdd € 7y, we let

hp = maxhk.
Keap

Remark 3.2.1. Assumption (A2) implies that D is not too "thin”; indeed D satisfies the minimum
angle condition. However we are not assuming that D is convex. Also to fildocal refinement

of 7}, two cells in two different D’'s may be of vastly different sizes.
Remark 3.2.2. Assumption (A2) and the fact that elementsgip$atisfy the minimum angle condi-
tion imply that the number of cells in any given D is boundedHhy/hp)¢.

We now introduce the coarse mesh subspéaaaf V"
Vo = {ve 21(74),veCYQ),v=00nTp},

In other words, elements &f are continuous piecewise linear functions that vanishgn
With the subspaceé#, Vi, ..., V, at hand, we define local or subdomain bilinear foes -), j =
1,...,p and a coarse space bilinear foms(-,-) as the restrictions o) (-,-) to the subspaces

Vo,V1,...,Vp respectively; i.e.

aj(uv)=al(uv), YuveVj,j=0.1,...,p. (3.19)

29



It is clear that these bilinear forms inherit the symmetry and coercivity ptiepeofaK(, ).
Hence the corresponding (stiffness) matriégsAy, ..., Ap are symmetric, positive definitéy is
similar in structure to the matrik corresponding to the form)(-,-) but of course much smaller.
On the other hand, the matricAs,...,Ap are closely related ta in that they are indeed the Jacobi
blocks ofA corresponding to the individual subdomains.

At this juncture, we are able to motivate the reason for requiring the cepes® functions to
be continuous. We defined the coarse space bilinear &(mv) to be equal tcax(u,v) whenever
u andv belong to the coarse spaég When we examine the penalty terms, we realize that in order
for equality to hold the parametgiin ag(u,v) must be larger than thein &) (u,v) to compensate
for the differences in the respective edge lengithe € £/, U ] andhe,e € £/ U£P. This can be
done in the case of uniform refinement but not when the mesh is locallgdefirhe continuity of
the elements 0¥, completely eliminates this problem.

The next Lemma, whose proof is obvious, exhibits a relation betag@md the subdomain
bilinear forms paralleling the direct sum decomposition (3.17) and also illumitia¢egrevious

comment.

Lemma 3.2.1. For u,ve V", let u,v; € Vi,i = 1,..., p be given (uniquely) by & S 1, v=
S-P . vi. Then, the following identity holds

p
al(u,v) = ai(ui,vi) +1(u,v), (3.20)

i=1

wherel (-, -) is theinterfacebilinear form given by

l(uv) = Z %<6nu+,v*>e—%<6nu*,v+>e—yhgl<u+,v*>e

ecs

1 _ 1 _ _ _
+§<6nv+,u >e—§<anv ,u+>e—yhel<v+,u >e), (3.21)
ands is the “skeleton” of the subdomain partition defined by

s = {ec £/ ande € 0Q; for somei}.

30



In essence, the interface bilinear foify,-) contains those edge integralsafy(-,-) that are not
contained in all the subdomain bilinear formsg-,-). Also, contrary to the latter, the forirf-,-)

will not be involved in the calculations but will prove useful in the analysid gre method.

In order to construct the additive Schwarz preconditioner, we int@theprojection operators
Ti:Vh -V, j=0,..., paccording to
aj(Tju,v) =al(u,v)  Wevj, j=0,1,2---,p. (3.22)

These operators are well defined since the bilinear forms involved areiee. The additive

Schwarz operator is defined by
T=To+Ti+---+Tp. (3.23)

Following the framework given in [16, 33, 36], the additive Schwarz mg#ansists in replacing

the discrete problem 3.4 by the equation

p
Tu=g, g9=> 9 (3.24)
i=0

whereg;j = Tjuis defined as the solution of

aj(g,v)=F(v) WweV, j=012-,p (3.25)

In matrix notation, the additive Schwarz preconditioner corresponds tosaiigpthe matrix8
(3.5) as

B=R)A;'"Ro+ (RIAIRL + -+ Ry AGRp) (3.26)

whereA, is the stiffness matrix correspondingdg(-, -) and RJT is the matrix representation of the
embedding operator. V' — V", j =0,...,p.

Now the question is whether the preconditioned system (3.24) is well-corglitiomparticular,

31



whether the condition number @f, or equivalently that of the matriRA, depends “favorably” on

the mesh sizes andH. These questions will be addressed in the next subsection.

3.2.2 Condition number estimate for the additive Schwarz m#nod

To estimate the condition number ®f we shall use the general abstract convergence theory of
Schwarz methods given in [33]. We shall do so by verifying that a s#tree Assumptionsre
satisfied and by estimating the conste(tﬁsp(z) andw appearing there in terms of the parameters
of our method. (cf. page 155 of [33])

The verification of the first assumption requires showing that fan alvV"
p
> ai(ui,u) < Cal(u,u), (3.27)

i=0

for somerepresentation = Zip:o u.
To establish (3.27), we will need some preliminary results. The first resaltezns a trace

inequality that holds on the boundarydfe 7. Its proof is found in [17].
Lemma 3.2.1. For any uc H(7p), there holds the following trace inequality

U < cH i3 +cHo (Y Uiz + > hetiliZ). (3.28)

KeTp ecz) (D)

The next preliminary result concerns the approximation a discontinuamasidn by a (glob-
ally) constant function. This was proved in [17] under a convexity mggion. The proof we

present herein is new and more direct and avoids this assumption.

Proposition 3.2.1. Let D € 7y satisfy assumptions (A1)-(A3) and leewH(7p). Then, there

exists a functioiw which is constant on D and such that

1/2
\u—v\!DSc:cHD{Z\Du\\%+ > hel[uﬂé} (3.29)

KeTp ecz| (D)

wherez/ (D) denotes the set of edgesdp in the interior of D.

32



Proof. We first approximateau by a functionv which is piecewise constant orp. Indeed, for
K € 7p, letvk = v|k be a constant function that approximatgs according to the general approx-

imation result 3.10; namelju — vk ||k < chk||Ou|x. Thus,

lu=vig <c > hg[lDulz. (3:30)
KeTp
Let the value ofr onK be denoted byik. The average of theysis given byp = Tl’ > Kers 0K,
D

where|7p| is the number of cells ifp. LettingVv be the constant function db with valuef3, we

have

V-9l = 3 vyl = 3 measurgk) ax — B

KeTp Keap

Since cells irD are of similar diametehp, we have measuf) = c(hp)?. Thus,

V=93 =c(hp)® > |ax — B (3.31)
Keap
Now for anyK € 7p,
2
1
_Rl2= Qv
lak — B IO > ok — ok
K'e1p

We now make two important observations: In view of assumptions (Al)-gih8)the fact that
cells in7p are of similar sizép, the numbet7p| of cells inD is about(;'—g)d. Furthermore, given

any pairk,K’ € 7p, there exists a path(K,K’) = {Ky,...,Kyk k) } of cells in7p such that
(i) Ki andK 1 share an edge so we may think of the path as a set of edgesj(D).
(i) The numberm(K,K’)| of cells, i.e. edges, in the path@®Hp /hp).

Hence, using the discrete Cauchy-Shwarz inequality, we get

where|a] is the difference of the values of's across the edge; i.e. if e=0K" NoK~ then

33



[a] = ak+ —0k-. Hence, summing ové¢ we obtain

Slo-pe < BEEIY S S

Ke1p Keap K'ep eem(K, K’)
< o) X lmp
D ecz) (D)

We now observe that fag € £/ (D), [a] = [V]e, i.e. the jump ofv acrosse. Furthermore|[a]|2 =

h&-9|[v]|2. Hence,

Keap )

Ho\% o B
mezgc(hf’) gt > etV (3.32)
b ecz) (D

Using (3.32) in (3.31) we obtain

IV=vI5 <HE > he(VE. (3:33)
ecz| (D)

It remains to estimate the tefMe., p) hg1|[v]|2 in terms ofu. Writing [v] = v —u* +[u]4+-u™ —

v—, we have from the trace inequality (3.11)

hellVle < 3hg™ (v —u*[E+[[ulle+|u” —v7[g)

IN

chetulz+ehet D (hetlv—ulk +hellD(v—u)llk).

K=K+,K~

Sincev is piecewise constanijv = 0. Hence, using (3.30) we obtain

he | [V][2 < che H[u]Z+ (|| Dul[g- + 1 CulR-) - (3.34)
The conclusion now follows from (3.30),(3.33), (3.34) and the trianglgquaéty. O

We next obtain a bound for the interface bilinear fdrm

Proposition 3.2.2. There exists a constant ¢ such that for any W"

34



Hww)| < CZ{Holthzrwr% (3.35)

DeTy KeTp
+HDhD1< dolowig+ > hel\[W]\§> }
Ketp ecz/ (D)
Proof. Using the definition (3.21), we have
lww) =" ((anw+,w‘>e— (0w, W), — 2yhg1<w+,w‘>e). (3.36)
ecs

Using the Cauchy-Schwarz inequality, the trace and inverse inequalitiet),(33.12) and the
a.g.m.i., we get

Hww)| < ) (IOWR +coy D> het (w2 +w[3). (3.37)

KeTj ecs

Since bothz}, and 7y are aligned withzs, eache € s belongs to the boundary of soriein 7y.

Thus,
Howw)] < (IOwWl[R +cy > hyg w3 (3.38)
KeTh DeTy
The result now follows from the trace estimate in Lemma 2.2 O

We can now verify assumption (3.27).

Theorem 3.2.1.For any ue V" there exists a decompositiorhuszz0 uj, uyeVj, j=0,...,p
: : H
for which(3.27)holds with G = T

Proof. The main task here is to construgt. This is done in two stages. First, we lebe the
piecewise constant function ary that approximates on eachD in 7y in the sense of (3.29).
We then letug be the element of the coarse mesh spacehich approximates in the sense of

Theorem 3.1.2. We then defing, ..., u, as uniquely given by

U—Ug=Ug+-+Up.

35



Now from (3.20) we have
p
ali(u—Uo,u— o) = Y _aj(uj,uj)+ 1 (u—Uo,u— ).
=

Hence, using Schwarz’s inequality on the bilinear forms and the facagitas, uo) = a.(uo, Uo),

we have

(U— g, u— Ug) + & (Up, Ug) — I (U— Up,u— Up)

(]
o
<=
P
3

< 2af(u, u) + 3a] (Uo, Up) + |1 (U — Uo, u— Up)|. (3-39)

Now sinceug is continuous orf2 and vanishes ohp,

al(Uo,Uo) = > Owollz = > 1Duol3 = > I0(uo—vl3 (3.40)

KeTh DeTy DeTy

sincev is piecewise constant ary. Using the approximation property (3.16) wik = 1 and with

Ty instead ofz;,, we have

D 0w-via <c > hhMBE<cd Ht > (v

DeTy ecz,UER DeTy ecE,NdD
<c YoMt Y (IiE+Iu-v)2). (3.41)
DeTy ec£n,NoD

Now the term} . HglzeefhmaD |[u]|2 is certainly bounded by (u,u). Also, using the trace
inequality (3.28) and the approximation property (3.29) and noting[that O fore € fr'](D), we

have

Y Hot D Iu-vE< ) |DulR+c Z he H[ull2 < caf(u,u).

DeTy eczpNobD keTh ecz]UEP

Thus from (3.40) and (3.41) we obtain

a) (Uo, Up) < cali(u,u). (3.42)



It remains to bound the teriffu — up, u — Up). To do this, we use the bound (3.35) of Proposition

(3.2.2) withw = u— ug to get

D
| (u—uo,u—to)| < F(ZHDUHH > hetiu)
De KeTp ecz) (D)
<c %aﬁ(u,u). (3.43)
The conclusion of the theorem now follows from (3.39), (3.42) and (3.43 O

Verifying Assumption Zonsists in obtaining a bound for the spectral ragis) of thep x p

matrix £ given as follows: Let < j; < C be the minimal values such that

1
2

al(uj,upz, ueVi,uyeV,ij=1---,p.

Jaf(ui,up) | < iyl (Ui, i)

That such values exist is a consequence of the continuity and coemﬁ‘d}ﬁy-, -) as expressed
in (3.8) and (3.9). The important thing however is to obtain a small boung. ofo do so, we
observe that if two subdomaik andQ; are not adjacent, theaf (uj, u;) = 0 for u; € V', uj € V1.
For the remaining cases, we takg = C, the constant in (3.8). We also letbe the maximum
number of adjacent subdomains any one given subdomain may have.ifffallews at once from
Gershgorin’s circle theorem that

p(£) <C(1+4V). (3.44)

In practicev is usually< 5. Even for “unusual” subdomain partitions, this number is not expected
to be large.

As for Assumption 3Letw € (0, 1] be the minimum constant such that
al(u,u) < wai(u,u), YueV i=0,...,p. (3.45)

Recall that we defined the subdomain bilinear foagts -) precisely byaj (Ui, u) = a/ (Ui, u), i =
0,...,p; thus (3.45) holds trivially withw = 1.

With this, the central result of the chapter is at hand:

37



Table 3.1: Machine Specifications

Feature Intel Xeon (Quad core)
Processor Speed 2. 66GH
L1 Cache 8KB
L2 Cache 8nvB
Nunber of Sockets 4
Nunber of Cores 8
oS Li nux
Conpi | er icc 11.0

Theorem 3.2.1. The condition numbex of the operator T and equivalently of the matrix BA of

the additive Schwarz method defined in this section satisfies

K < c%. (3.46)

Proof. This is animmediate consequence of Lemma 3 in chapter 5 of [33] and our est{i3\.&#),

(3.44) and (3.45). O

3.3 Experiments and Performance

The following is a testing problem:

—Au = 128Psin(8mx)sin(8my)  inQ (3.47)

u=~0 onoQ

The solution of Problem(3.47) ist = sin(8mx)sin(8my), which is a smooth non-polynomial solu-
tion and oscillatory across the domain.

The experiments are set up as follows:

» The experiments are conducted on an Intel Xeon Quad core archéeathrspecifications

shown in Table 3.1.

« Initial triangulations usingr i angl e were done using maximum area constrairt0.1, and

38



Performance of Preconditioned Conjugate Gradient Method(Time) -- QuadCore(2.66 GHz)
2048 T T

DG-cgSV —+——
DG-DG-pcgSV ---x--

DG-CG-pcgSV - ---
1024 pcg I

512

256

128

Time

64

32

8 L L L
6 6.5 7 7.5 8

Level

Figure 3.2: Comparison of computation time of iterative methods: CG and PCG

the finest mesh has 1048576 triangles.
« The iterative solver terminates at accuracy of %0

We conduct experiments to compare the performance of CG and PCG matheds of number

of iterations and compute time. See Figure 3.2 and 3.3:
» DG-cgSV is for Conjugate Gradient method.

* DG-DG-pcgSV is for Preconditioned Conjugate Gradient method with diswgous Galerkin

coarse mesh correction.

* DG-CG-pcgSV is for Preconditioned Conjugate Gradient method with canim@alerkin

coarse mesh correction.

We observe from Figure 3.3 that number of iterations for the conjugatkegiamethod increases
exponentially as the problem size increases. As we indicated at the bepoininis chapter, each
time the mesh is refined it leads to small valuehct mingc,;, hx. Consequently the (2-norm)
condition number of the linear system 3.4 increases, being of G:r@rz). On the other hand, the

number of iterations stays roughly the same for the preconditioned conmigatient method, in

39



8192

4096

2048

1024

512

Iters

256

128

64

32

Performance of Preconditioned Conjugate Gradient Method(lters) -- QuadCore(2.66 GHz)

T i DG-cgSV —+—
DG-DG-pcgSV ---x--
DG-CG-pcgSV ---*---
g’f_iif,‘f_if?,’:i??i’_iffi’_‘,i?:‘_ii:‘:iif:iii?fi.i?fff:if:’.ii;gi’.':fi:if?fi.ifff,.,,,,,.,,,,,.,,,,'f.ii?i.,,,,,.,,fi’.iii‘,’.i,"
1 L L
6 6.5 7 7.5 8
Level

Figure 3.3: Number of iterations comparison of iterative methods: CG and PCG

agreement with Theorem 3.2.1. From Figure 3.2, we can see that PCG metieochuch faster

than CG method. PCG method with continuous Galerkin coarse mesh corred¢éisterghan PCG

method with discontinuous Galerkin coarse mesh correction. The difieismiue to the fact that

the linear system of continuous Galerkin FEM is much smaller than that of disaons Galerkin

FEM.

40



Chapter 4

Adaptive Algorithm

Adaptive methods based on reliable a posteriori error estimates areiglsfeermany large scale
computations. An adaptive algorithm is basically an iterative algorithm corgistia number of

cycles of the formSolve=- Estimate= Mark = Refine
1. Given a mesh, compute a solution on this mesh;

2. Estimate the error using an a posteriori error estimator, if the error halen@ached, then

STOP;
3. Make/Refine the mesh;
4. Repeat steps 1 to 3 until the error is reduced to the desired level.

To achieve the prescribed error level, after each cycle of computatiom plosteriori estimator3
provides information for the mesh refinement. The a posteriori estimatoideobounds by in-
equalities on both sides for the true error. The upper estimate can besausedshopping criterion,
while the lower estimate shows the precision of the estimator. This method peoduetatively
much smaller linear system to solve while reaching the same level of accBa®n the set of
local error estimates for every triandfeof the triangulatiorr , the process to obtain a new triangu-
lation has two parts: 1) selecting triangles to be refimetking strategyand 2) construction of the

new triangulatiorefinement strategy We chose uniform refinement for each selected triangle in

41



the software. We compare two marking algorithms in the following sectiorflet algorithm [15]

and drastic cutting algorithm.

4.1 Marking Algorithm

Let 7p be the initial triangulation which is fine enough to start with. At each adaptivatios, let

{nk: all K € 71,} be the error estimates computed. The global estimated error is:

ne2=> Nk’ (4.1)
KeT,
and the largest error estimate is:
Nmax= Maxng (4.2)
KeTy

4.1.1 Dorfler Marking Algorithm

The Dorfler marking algorithm (see Algorithm(3)) constructs a set of elem8utszy, that is as
small as possible satisfyings? > 8n,, 2. The choice oM determines the fraction of the global
estimator that one wants to refine. Chooséhglose to one would produce uniform refinement,
i.e., allK € 73 are refined. Choosin§ small would only choose a few elements to be marked
each adaptive iteration, thus resulting in many adaptive iterations (and roleg)sto reach the
desired tolerancktol. When@ is small, one will usually obtain a more optimal mesh, but at a very
large cost in adaptive iterations and overall solving time. Choosing a valoed to 1 for variable

v determines how fine the procedure will work. Smaller values aflow the marking strategy
to step through the range of the estimator with finer step size. However, it iegessary if all
elements are sorted by their error estimates. The complete adaptive wtupesse/hem < htol

orS=20.

42



1 Choose&d € (0,1) ;

2 Choosev € (0,1) ;
3S=0;
4 sum:=0;
5 T.=1;
6 while sum< 6n,.2 do
7 T:=T—-V;
8 foreachK ¢ 71, do
9 if K is not markedhen
10 if Nk > TNmaxthen
11 Mark K, S=S+K;
12 SuM= suM4nk?;
13 end
14 end
15 end
16 end
Output: S

Algorithm 3: Dorfler marking algorithm

4.1.2 Drastic Cutting Algorithm

We now present another marking strategy: drastic cutting marking algorgeenAlgorithm(4)).
Let |K| denote the area of a triangle, and |& denote the area of the domain. To reach the

condition: ", ||0e||Z < htol?, it is sufficient to distribute errors as follows:

K|
[|0ellk < 4/=thtol (4.3)
Q|
The a priori estimation in the energy norm converges with the@ah8—1) [20]. For each triangle
in the meshr;, with error estimate)k, to achieve the condition shown in Eq. 4.4 we can predict
the level of uniform refinement to apply on the triangle.
K|

N </ gt (4.4)

43



And the level of refinement is

loga( 1/ ol %))
refivl = (int)—— Y <[l (4.5)
logy(271)

The complete adaptive process stops wherk htol or S= 0.

1S=0;
2 foreachK € 71, do

. Q .
dif f = /2 s

if diff > 1then
reflvl = (int)loga(dif f 1) ;
if reflvl =0then
| reflvi=1;
end
Mark K(reflvl), S=S+K;

© 00 N o 0o b~ W

10 end
11 end
Output: S

Algorithm 4 : Drastic cutting marking algorithm

4.2 Accumulate SER Algorithm

As mentioned above, an adaptive algorithm is basically an iterative algorittiva fiorm: Solve=-
Estimate=- Mark = Refine For a PDE problem, the linear system is sparse symmetric positive
and definite. Iterative methods such as conjugate gradient or precoedit@mnjugate gradient
are popular choices for solving the system at each adaptive iterationall{Jshe initial guess

for an iterative solver is @erovector. Instead of using zerovector, we take the result vector
from previous iteration, embed it onto finer space of the current iteradiwth use it as our initial
guess vector for the iterative linear solver. We also can set the stoppirttion for the iterative
solver according to tolerance of the adaptive method. Atmimulate SER Algorithia shown in

Algorithm(5).

44



1 Let 7p be initial triangulation ;

2 tol =10712;

3 Vg = lterSolve(y, 0,tal) ;

4 no = ErrorEst{y, Vo) ;

51=0;

6 while n; < htol do

7 Ti+1 = MarkRefine(, vi, ni) ;
8 | X, = Embed(, 7, 7is1) ;

9 | Viy1= lterSolve(s, x,,, htol) ;

10 | Niy1 = ErrorEst@@i 1, Vit1) ;
11 i=i4+1;
12 end

Output: v
Algorithm 5: Accumulate SER algorithm

4.3 Experiments

Now let us show that the proposed drastic cutting marking strategy, cothpétte the Dorfler
marking algorithm, speeds up the overall adaptive algorithm. The test prslalee smooth, oscil-
latory, and singular respectively. For each experiment, we show eultsén a table, which has
entries:CPU Timeis the wall clock time of whole adaptive proce€xymputetimés the time spent
on solving the system at all iterative stepstis the calculated error estimatge|| and||Ue|| are
errors comparing with real solutiofi7i| is the number of triangles at the end of procebsf is
number of degrees of freedom at the end of proc8ER iteris total number of adaptive iterations;
Lvl is the deepest level of mesh that the adaptive process reached. \Waalsthe final mesh that
the adaptive method generates. All the experiments were carried out ocheneavith 2.66GHz

Intel® Xeon™Quadcore CPUs with 4MB of L2 cache.

4.3.1 Smooth Solution Problem

DomainQ: Figure 4.1

—Au = 2rPsin(Tx) sin(my)  in Q

u=20 onlp (4.6)

45



X2

)
1,1
L (1,1)
) Q )
X1
0 1
)

Figure 4.1: Square Domain

Exact solutionu = sin(Tx) sin(Tty).

The problem has homogeneous Dirichlet boundary conditions and thtesdkisolely driven
by the forcing function. The domain is axl1 box. Initial triangulation is done with maximum
area constraira = 0.1.

For ther = 2 case, we set=5 and the target adaptive tolerancéiisl = 4.5e— 2. See Table

4.1, Figure 4.2 and Figure 4.3.

4.3.2 Oscillatory Solution Problem

DomainQ: Figure 4.1

—Au = 128 sin(8mx) sin(8my)  in Q

u=20 onlp 4.7)

Exact solutionu = sin(8mx) sin(8my).

This problem has a smooth non-polynomial solution which is oscillatory athesdomain. The

46



Table 4.1: Comparison of Marking Algorithm: Problem4.6, r=2

Error

0=05 6=0.7 6=0.9 DC
CPU time(sec) 7.43 5.80 4.45 3.19
Compute time(sec 0.321 0.255 0.196 0.297
est 4.4352e-02| 4.0369e-02| 4.2811e-02| 4.4670e-02
IE] 2.1115e-3| 2.1095e-3| 1.5598e-3| 8.5283e-3
[Oe]| 0.0230 0.0210 0.0213 0.0474
| Th| 37552 43894 40234 39469
dof 112656 131682 120702 118407
SER iter 33 17 9 5
Lvl 6 6 6 6
Residual Error
I I I drastic cu{ting —
theta=0.5 ---*---
theta=0.7 ---*--- |
theta=0.9 &
\\X\ T
\X\\ -
X\X\
*X* \X\X\x\ . 1
1IO 1I5 2IO ZIS 3:0 35

alters

47

Figure 4.2: Residual Error: Problem4.6, r=2



r=2

7

=0

(b) 0

K
i
K

5r=2

0

(a) 0

2

2

(d) Drastic Cuttingr
Problem4.6, r

ive Meshes
48

Adapt

2

.9, 1
Figure 4.3

0

(©) 0



problem has homogeneous Dirichlet boundary conditions and the solutotely driven by the
forcing function. For the = 3 case, we set= 4 and the target adaptive tolerancdnisl = 0.25.

See Table 4.2, Figure 4.4 and Figure 4.5.
4.3.3 Singular Solution Problem
DomainQ: Figure 4.6

—Au=0 inQ

u=r?3sin(2/38) onlp (4.8)

Exact solutionu = r%/3sin(2/3g).

This problem has a point singularity in the first derivative at the origins problem really stresses
how well the adaptive algorithms work. Note also that the solution to this proislsaiely driven
by the trace of the solution on the boundary. Forrtee2 case, we set= 7 and the target adaptive

tolerance isitol = 0.01. See Table 4.3, Figure 4.7 and Figure 4.8.

4.3.4 Comparison with DGADPT

DGADPT is an adaptive discontinuous galerkin finite element softwaregggokritten by Michael
Saum [30]. The following is the list of results of performance comparibetsween our implemen-
tation(ASER) and DGADPT which shows that ASER is two to four times faster B@ADPT,
see Figure 4.9. These tests were made on a 2.13GHz Intel® Core™2 DudwBtbfAd_2 cache.

» Smooth Solution Problem(Eqgn. 4.68)= 2, htol = 0.03,y = 25;
 Oscillatory Solution Problem(Eqgn. 4. %)= 3, htol = 0.1, y= 25;

* Singular Solution Problem(Egn. 4.8)= 2, htol = 0.01,y = 25;

49



Error

Table 4.2: Comparison of Marking Algorithm: Problem4.7, r=3

0=05 0=0.7 6=0.9 DC
CPU time(sec) 11.6 8.05 7.30 5.39
Compute time(sec 0.723 0.45 0.391 0.535
est 2.3617e-01| 2.3040e-1| 1.9306e-1| 2.5068e-1
el 5.2401e-3 | 3.7737e-3| 5.5286e-3| 1.2549e-2
[|Cel| 0.0954 0.117 0.157 0.556
| Th| 31663 33190 39580 47938
dof 189978 199140 | 237480 | 287628
SER iter 40 19 10 6
Lvl 6 6 6 8

60 T

Residual Error

%
K ookowosw oy 1

T T T T

drastic cutting —+—
theta=0.5 ---x---
theta=0.7 ---*---
theta=0.9 &

S
K=
K-
* R

ol e Vo VI SRV VNV IV

15

20
alters

25 30

Figure 4.4: Residual Error: Problem4.7, r=3

50

40



o

0

() 6=09,r=3 (d) Drastic Cuttingr =3

Figure 4.5: Adaptive Meshes: Problem4.7, r=3

51



)

(0.5,0.5)

)

)

)

Figure 4.6: Notch Domain

Table 4.3: Comparison of Marking Algorithm: Problem4.8, r=2

6=0.5 6=0.7 06=09 DC
CPU time(sec) 4.82 4.35 3.58 3.54
Compute time(sec 0.42 0.4 0.2 0.38
est 1.0064e-02| 8.6360e-03 9.6333e-03 9.8907e-03
llel| 2.6660e-4 | 3.8521e-4| 1.9695e-4| 3.4549e-4
[|Cel| 5.37e-3 5.03e-3 5.07e-3 5.65e-3
| Th| 17727 23694 24804 23211
dof 53181 71082 74412 69633
SER iter 28 16 10 5
Lvl 15 15 9 12

52




Error

0.3

0.25

0.2

0.15

0.1

0.05

Residual Error

T
drastic cutting —+——

53

theta=0.5 ---x---
theta=0.7 ---*---
theta=0.9 &
X\
E
> i
e
X\\X*%\
.. X\%\—xxx
Koy X —\X;—X\‘X‘*X“x
1 1 1
15 20 25
alters

Figure 4.7: Residual Error: Problem4.8, r=2

30



X
ravaval) é
H
9
X
(@6=05r=2 (b) 6=0.7,r=2
K
Ya > o
E X
o XOKL
é DX
(), ¢
KK
> X o

(c)6=09,r=2 (d) Drastic Cuttingr =2

Figure 4.8: Adaptive Meshes: Problem4.8, r=2

54



Time(sec)

30

[ DGADPT
Il ASER

Smooth Oscillatory Singular

Figure 4.9: Performance comparison of DGADPT and ASER

55



4.4 Discussion

We can see that the Accumulate SER Algorithm does a pretty good job in ternesfofmpance,
see Figure 4.10 to Figure 4.15. Especially the application of adaptive toketarthe iterative

solver dramatically lowers the number of iterations.

» The adaptive algorithm intends to lower the size of problem at each addgtiation, so the
pcg iterative solver does not show much performance improvement compaitedhe cg
iterative solver. The reason is thatgpays the penalty as it does the preconditioning includ-
ing solving coarse mesh correction, a series of subdomains, and entdpeadimprojection

operations.

» When we have to solve the problem at a very fine levelpitgiterative solver is still a better
choice since the savings in the number of iterations will offset the penalth Esration of

the iterative solver costs a lot more when the linear system’s size increases.

« Embedding the result from the previous adaptive iteration is not agigéexs tailoring the
iterative solver with adaptive toleranbtol. Performance is even better when we combine
both together. ASER lowers the number of iterations ofdpenethod so dramatically that

it is comparable witlpcg The performance of ASER wittg method is overall the best.

» ASER with Drastic cutting outperforms the fix€&marking approach. As we put a lot of
effort into optimizing the algorithm and code for fast solver at each adiafsvel, the mesh
refinement and memory management is becoming the most time-consuming part. Fro
Figure 4.2, 4.4 and 4.7, we can see that drastic cutting dramatically lowersithigen of
adaptive iterations, saving time on mesh generation, but it takes more timeriputog the

solution as the previous result is not that close to the solution at the claveht

56



lters

(a) Smooth problem With — 0.9, number of itera-

65536

16384

4096

1024

Performance of ASER Algorithm -- Iters(Smooth Problem)-- QuadCore(2.66 GHz)

[ o py—
DX th 9
D -theta0.9 ---%-
Dx -theta0.9 =3
L s heta0.9 i
DG-pe heta0.9
DG-p 0-stop1-theta0.9 - --e- -
L DG-p 1-theta0.9 — = |
T )
e * *
S .
% %
-
=
. i
e Ll .
L h LSS -
. . . . . . .
1 2 3 a4 5 6 7 8

tions at each adaptive step

Iters

(@) Smooth problem with drastic cutting, number of

65536

16384

4096

1024

256

Performance of ASER Algorithm -- Time(Smooth Problem) -- QuadCore(2.66 GHz)

v
.9 ——

D
33e+04 - DG-cgSV-em: 9 1
D 9 k-
DG-cgSV-em 9 o
DG-p 9
L DG-pcgSV-em: 9 ]
1.0e+03 Bep 0 E
DG-pt 9 &
3.2e+01 |- B
©
E
E
e
2 1.0e+00 |- 4
£
13
8
31e02 [ 1
9.8e-04 [ j
3.1e-05 L L L L L
1 4 5 6 7 8

9

(b) Smooth problem witl — 0.9, compute time at

each adaptive step

Figure 4.10: Smooth problem: ASER algorithm

Performance of ASER Algorithm - Iters(Smooth Problem) -- QuadCore(2.66 GHz)

9990
<]
o

9999

BoD
5]
&

3

35

iterations at each adaptive step

Iters

(a) Oscillatory problem witl® = 0.9, number of it-

65536

16384

4096

1024

1

Figure 4.11: Smooth problem: ASER algorithm with drastic cutting

Performance of ASER Algorithm -

4 45

Iters(Oscillatory Problem)-- QuadCore(2.66 GHz)

5

T
[ D hetadd —— |
D heta0.9
D theta0.9 -~
D 1-stopl-theta0.9 &
L e ey ]
DG-p 1 heta0.9
DG 0-stop1-theta0.9 -
L DG-p 1-theta0.9 =
L - 1
. * -
L = : ]
¥ = a
g @
. s ° o o R °
. Spen g
. . . . . . . .
1 2 3 4 5 6 7 8 9

aiter

erations at each adaptive step

10

Performance of ASER Algorithm -- Time(Smooth Problem) - QuadCore(2.66 GHz)

D
3.3e+04 DG-cgSV-em1-stop0-DC
Do 1-DC -~
DG-cgSV-em1-stopl-DC 8
DG-p DC
L DG-pegSV-em1-stop0-DC ]
1.0e+03 peh 0 .
DG-pegSV-eml-stop1-DC =
3.2e+01 | |
o
E
£
2
2 10e+00
13
&
o
3.1e-02
9.8e-04
31605 . . . . . . .
1 15 2 25 3 35 4 45

(b) Smooth problem with drastic cutting, compute

time at each adaptive step

Performance of ASER Algorithm — Time(Oscillatory Problem) -- QuadCore(2.66 GHz)

T T T T T T T
D P .9 —+—
3.3e+04 - B g o 4
D p: .9 ---pe
D 1-stop: 9 o
DG-p P 9
L DG-p 1-stop 9 ]
1.0e+03 pes is % e
DG-pr p: 9 e
320401 - _—
@ =
£ _
£
2
2 1.0e+00 g J
g x
3
o
3102 E
9.8e-04 4
F———
31605 . . . . . . .
1 2 3 4 5 7 8 9 10

(b) Oscillatory problem Wit — 0.9, compute time

at each adaptive step

Figure 4.12: Oscillatory problem: ASER algorithm



Performance of ASER Algorithm — Iters(Oscillatory Problem) -- QuadCore(2.66 GHz) Performance of ASER Algorithm — Time(Oscillatory Problem) -- QuadCore(2.66 GHz)

65536 |- ‘ ‘ ‘ ‘ ‘ E‘ ‘ gg —_— 3.3e+04 - ‘ ‘ ‘ ‘ ‘gGrc —V—e‘mlrslu Ogg ——
D DC -~ De DC ---%--
DD gg 123 DDGrc V-em1-stoj 138 izt
16384 - o E 00¢ 1 100403 |- gG—Ec vemisopone |
DG-pe DC & DG-pcgSV-em1-stopl-DC 4
4096
, S P
L, 102t ///’ é i
256 | _— o b 8
gt - o 7 3.1e-02 - q
64 //// ‘ . o - 4
16| : T . 9.8e-04 1
4 s L L L L L L L 3.1€-05 i L L L L L L L
1 15 2 25 3 35 4 45 5 1 15 2 25 3 35 4 45 5
a-iter a-iter
(a) Oscillatory problem with drastic cutting, number (b) Oscillatory problem with drastic cutting, com-
of iterations at each adaptive step pute time at each adaptive step
Figure 4.13: Oscillatory problem: ASER algorithm with drastic cutting
Performance of ASER Algorithm -- lters(Singular Problem)-- QuadCore(2.66 GHz) Performance of ASER Algorithm -- Time(Singular Problem) -- QuadCore(2.66 GHz)
B ey B T T T s sremd —— ]
o 5 St theta g x e 3 x
16384 - oo b et DG-pcg 5 o
Beh 208 o 100103 | Bebeaavems S e ]
4096 | DG-p 1-theta0.9 — = | DG-peg! 9 &
£ el o = "//J* e {é 1.0e+00 [ N
i 3
64 "
3.1e-02 4
A 2 - a. o E o ] 9.8e-04 - e 1
. S 21005 A
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(a) Singular problem witl® = 0.9, number of itera- (b) Singular problem wit® = 0.9, compute time at
tions at each adaptive step each adaptive step
Figure 4.14: Singular problem: ASER algorithm
Performance of ASER Algorithm - Iters(Singular Problem) -- QuadCore(2.66 GHz) Performance of ASER Algorithm -- Time(Singular Problem) -- QuadCore(2.66 GHz)
s ‘ ‘ s pooc —— | 3.3e+04 [ oG 0DC ——
D DC & Do -stopl-DC &
16384 - DGt DC DG-p DC
e e s00vts Bertyam s ..
4096 - DG-p DC & DG-p -Stop1-DC -4
R 320401 [ e 1
1024 = . 4 g e
E g * P;i 1.0e+00 [ 9
64 | ©
3.1e-02 - T
16} ? . .
4l : 2 | 9.8e-:04 [ ]
ty 2 s ; s o 7 3108 ] 2 s ; 5 o 7
(a) Singular problem with drastic cutting, number of (b) Singular problem with drastic cutting, compute
iterations at each adaptive step time at each adaptive step

Figure 4.15: Singular problem: ASER algorithm with drastic cutting

58



Chapter 5

Implementation and Data Structure

5.1 Introduction

This chapter describes the design and implementation of Adaptive Finite El&fatmid software.
The program is written in the C programming language. Our main goal of tléarelsis to develop
software for solving PDE problem as fast as possible on a wide varigthatibrms. The modular
design allows us to test different algorithms and implementations as a repeajett, as well as
maintain the code stability. Figure 5.1 shows the diagram of the software.

The Mesh Generator component takes a geometry description input fissagemnmeshes with
vertices, edges, and triangles, and stores information in a databate d¢akculates a numerical
data block for each geometric object, which is used to build the linear systesoltdion. At ini-
tialization stage, it utilizes the triangulation software: Triangle [32], which isva-Dimensional
quality mesh generator and Delaunay triangulator. This component is mhaikevery iterative
step. The Linear System Generator component goes through elementsurrém® mesh, gath-
ers numerical data blocks and assembles the linear system. The Reorderimpdale reduces
the bandwidth of sparse symmetric matrices. The Domain decomposition modelaigsnsub-
matrices used as the preconditioner. The Solver component solves aslyséamn with conjugate
gradient method or preconditioned conjugate gradient method. The Aedptior Estimator and

Refinement modules take a solution and calculate the error. If the error thdasthe termination

59



_ 4 ]

W Adaptive Error

Input File Estimator

CG PCG

‘i' Solver

Adaptive
Refinement

M

Reordering Domain
Tool Decomposition

Numencal

triangl
i Template

Mesh Generator Linear System Generator

Figure 5.1: Diagram of ADFEM software.

condition, these modules output the solution; otherwise the mark elements tfineel @nd feed
them to the Mesh Generator.

In the rest of the chapter, we describe basic data structures and cemipofthe software.

5.2 Data Structure

Given a 2D domai2 C R?, we can have a quasi uniform triangular mesh that coefEhe mesh

consists of a set of non-overlapped triangles, and basic componentsregx, edge, and triangles.

5.2.1 \Vertex

Structure NODET, see Figure 5.2, is the data structure we defined for a veri@xdy are coordi-

nates of the vertex. We also assign each vertex a umibfiog sorting and searching purpose. Each

60



typedef struct nodestruct {
doubl e x;
doubl e ;
unsi gned int |vl;
unsigned int id;
short bm
doubl e val ue;

} NODE_T;

Figure 5.2: Node structure

time the mesh is refined new vertices are generated that will be part of foasie too. We uskl

to indicate the level on which each vertex is createdueis to record the solution of the PDE.

5.2.2 Edge

Structure EDGET, see Figure 5.3, is the data structure we defined for edge. Thereatgges

of edges: internal and boundary. Figitheindicates that the edge is internal or boundary, and
also Dirichlet or Neumann boundary. At initialization time we calculate the lengém@&dge and
its normal, which is stored in structure EDGEDATAG see Figure 5.4 . Fielohfo point to the
EDGEDATAG_T whenlvl is 0, otherwise it points to EDGE at level 0. Figure 5.5(b) shows that
€, €1, & andes from one level finer mesh are half lengthepfind maintain the same normal except
that the normal o&; has opposite direction, as indicated by fisign We uselvl to indicate the
level on which each edge is created. The actual length of an edge énveise1/2V! times the
length of its original ancestor edge in the initial mesh. For a given mesh,dg&¢a) shows that
an internal edge is an edge of two trianglEs: andK—. K+ is the triangle that edge normal point
outward, andK — is the triangle that edge normal point toward. Note #atis NULL if the edge

on the boundanK plocandKmlocindicates the position of the edge on triangfes andK — (see

Figure 5.6(a)).

61



typedef struct edgestruct {
void *info;

struct tristruct *Kplus, *Km nus;

NCDE T *endp[ 2] ;
NCDE_T *ni dpt;
unsi gned Kpl oc :
unsi gned Km oc :
unsi gned type : 2;

unsi gned leaf : 1;

unsi gned new : 1;

unsi gned dedge : 1,
unsi gned : 3;

unsigned int bm: 6;
unsigned int bidx : 24;
unsigned int : 2;
unsigned int |vl;

short refine, sign;
unsigned int id, idx;

4,
4,

struct edgestruct *child, *parent, *prev, *next;

doubl e *of f;
} EDGE T;

Figure 5.3: Edge structure

typedef struct edggeondata {
doubl e edgel en;
doubl e norm [ 2];

} EDCDATAG T;

Figure 5.4: Edgedata structure

K+
en
\

K—

(a) Edgee and its normal

N e

>
=

No

AN

(b) ep, €1, &, €3

Figure 5.5: Edge and child edges in fine mesh.

62




(b) {Ko, K1, Ko, K3}

Figure 5.6: Local Ordering for Triangl€,{Ko, K1, K2, K3}

63



5.2.3 Triangle

Figure 5.7, is the data structure we defined for triangle. At initialization time \eoellede the area

of a triangle and its affine transformation matrix, which is stored in structui®ARG _T, see
Figure 5.8 . Fieldnfo points to the TRIDATAGT whenlvl is 0, otherwise it points to TRIAN-
GLE_T at level 0. Figure 5.6(b) shows thKp, K1, K, andKs from one level finer mesh are a
quarter of area oK in Figure 5.6(a), and maintain the same affine transformation matrix except
thatKs has opposite direction, which is indicated by fisilgn TRIANGLE_T maintains pointers

to 3 vertices and 3 edges of a trianglél. indicates the level on which the triangle is created. The
actual area of a triangle on leviel is 1/4"' times the area of its original ancestor triangle in the

initial mesh.

5.2.4 PDE Data

Each interior edge has an off-diagonal matrix block that describes thradtiten between elements
along the edge. Each triangle structure maintains a symmetric positive stiffradss block that
describes the interactions of degrees of freedom (dof) of the elemkaseTdata blocks are N by
N matrices. The third type of data object is simply one or more vectors of lengkbfhassociated
with each element, used to maintain the solution obtained during the solve petkstement

right hand side (RHS) vectors.

5.2.5 Mesh

Given a domain description we have an initial mesh with vertices, edges amglésa As showed
in Figure 5.9, we build up a tree to store every element(triangle). Each triemtile initial mesh is

aroot node of the tree, and they are also putinto link list for quick ac&assh triangle is refined by
regular subdivision which creates four children triangles by connettiagnidpoints of the three
edges of the parent triangle . All children triangles are similar to the paiangte (see Figure
5.6(b)). Every child triangle has a link to its parent, and parent link&tdl here is also a link list
of child triangles. We also create a tree for edges since edges has thaisaanehical structure

as triangles (see Figure 5.5(b)). In edge and triangle structuresefdtiand 5.7, pointershild,

64



typedef struct tristruct {
void *info;
EDGE T *edges[ 3];
NCDE_T *corners| 3]

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

int lvl;

| eaf : 1,
recalc : 1;
nbrstate : 1;
new : 1;

cid : 2

bm : 2;
refine: 6;
visited: 2;

short sign;

unsi gned

int id, idx, didx, |idx;

struct tristruct *child, *parent, *prev, *next;
double *sd[2], *rhs, *x, estp;
} TRIANGLE T;

Figure 5.7: Triangle structure

typedef struct trigeondata {
doubl e area?
double atrf[2][2];

} TRIDATAG T

Figure 5.8: Tridata structure

65



Figure 5.9: Tree

parent, prevandnext are used to build the tree system. Although the mesh data structure keeps
a record of all geometric data structures, we only generate PDE data,biwatkices and vectors
as needed to solve the problem at certain level. In practice, a dynamic mesture is created
by gathering all the leaves from the edge and triangle tree, and matrix(@htbyector(RHS) are

assembled.

5.3 Reordering

The variational formulation of a PDE problem produces a large sparsmeyric positive definite
linear system that needs to be solved at each adaptive iteration. Tis#tyspad symmetry of
the linear system make it an easy choice of an iterative solver such agatmgradient method
and preconditioned conjugate gradient method [6]. The performantieesé iterative methods
is bounded by sparse matrix vector multiplication. Figure 5.10(a) showsdbhtren-zero entry
scatters everywhere, causing bad data spatial locality. As a result, rilteenwf cache misses is
high and performance suffers. Reordering is the treatment we applgiuoe¢he bandwidth of the
matrix; consequently the data locality is greatly improved (see Figure 5.1&tgposed in 1969,

Cuthill-McKee algorithm is a popular and the simplest method for reducingvadltiu of sparse

66



2000 .\ 2000

4000

4000 : \»',

6000H. § ¥ " N 2 6000
N i [ ,

8000 R . e 8000

1000084 £ Y. 10000

12000fit§ o s t _,'. 12000
14000 14000
16000 ’ 16000
5000 10000 15000 0 5000 10000 15000
nz = 65280 nz = 65280
(a) Sparse matrix (b) Reordered sparse matrix

Figure 5.10: Comparison of non-reordered and reordered spatseana

Input: Choose a peripheral vertevand seR := x.
1 while i < |R| and|R| < N do

2 Construct the adjacency sitof R;, whereR; is thei-th component oR, and exclude
the vertices we already have it
3 | A=Adj(R)\R;
4 SortA; with ascending vertex order ;
5 AppendA, to the seR;
6 end
Output: R

Algorithm 6 : Cuthill-McKee Algorithm

matrices. A mesh can be visualized as a graph with each triangle as a vattea@nedge as a
linkage. The Cuthill-McKee algorithm, described in Algorithm(6), is a reindgxirocess of the
vertices of the graph, and it reduces the bandwidth of the correspgpnmditrix. Figure 5.11 shows
that performance of the conjugate gradient method with a reordered ma#ioig 10% better
than with the non-reordered matrix. There is a total of 16384 triangles in tek.mMée bandwidth

is reduced from 12288 to 129 after reordering.

67



12

0.8

0.6

Normalized Time

0.4

0.2

Figure 5.11: Performance comparison of conjugate gradient method withemodered and re-
ordered sparse matrices

5.4 Embedding and Projection Operators

The PCG method, specifically the preconditioned conjugate gradient meéisodized in Algo-
rithm (7), requires coarse mesh corrections by solving the error prohke=r. As we transfer
data(vector) between finite element spaces, there are two differestaypperators: 1) Embed-
ding operator, also called interpolation operator, is defined as translatiagtar from a lower
dimensional subspace into a higher dimensional subspace; 2) Projeptoatar, also called re-
striction operator, is defined as translating a vector from a higher dimexisiolspace into a lower
dimensional subspace. LK} denote the embedding operator dflddenote the projection oper-
ator, wherelr',* = I,ﬂT. We define two embedding operators in the software. The first one works
within discontinuous subspaces at the level of coarse and fine meshesihit DG Embedding

Operator. The second one works between continuous and discorgisubspaces at the same

Performanc of Conjugate Gradient Method with Reordering

T
non-reorder —
reorder mewww—

1 2 3 4

Degree of Freedom

level of mesh; we call it CDG Embedding Operator.

68



5.4.1 DG Embedding Operator

Let{x :i=0,...N —1} denote théx,y) coordinates of th&l degrees of freedom on the reference
elementK and {@ :i=0,...N — 1} denote the corresponding basis functions on the reference
elementK. Let {xj:k=0,..3;j =0,..N — 1} denote the(x,y) coordinates of thé\ degrees

of freedom on the four children &€, {Ko, K1, K2, K3}, see Figure 5.6. The embedding process
is the interpolation of values of basis functionsno children ofK. Eq(5.1) defines the matrix

of embedding operator. For example, with degree of one basis functiensaw calculate the
embedding operator, see Eq(5.2). We can seelfhat a 4N x N matrix with eachN x N block

corresponding to a child triangle. It maps a veatar RN into a vector € RN,

1rg:=b—AXp;

2 29:=M"1rg;

3 Po:=72p,

4 k:=0;

5 while truedo

iz .

6 PrAPK

7 Xk+1 := Xk + OkPk ;
8 ki1 =Tk —OkAPy ;
9 if [rer1| < ethen

Ak .=

10 | exit
11 end
12 | zerr i =Mt
By = MRaZkil .
13 ) rnz. °’
14 | Prt1 = Zke1 + BrPx;
15 ki=k+1;
16 end

Output: Xxr1
Algorithm 7 : Preconditioned Conjugate Gradient Method

69



Iz

ONn-1(%00) ON-1(X01)
®(x10)  @o(x11)
P1(X10) Qr(X11)

On-1(X1,0) On-1(X11)
®(%20)  Po(X21)

On-1(%20)  ON-1(X21)
®(X30)  Po(X31)

| n-1(%30)  On-1(X31)

[ 1.00 000
0.50 050
0.50 000
050 050
0.00 100
0.00 050

0.50 000
0.00 050
0.00 000
0.00 050
050 000
| 050 050

70

On-1(XoN-1)
Po(X1N-1)
@(X1N-1)

On—1(XLN-1)
Po(X2,N-1)

On-1(XeN-1)
Po(XaN-1)

ON-1(X3N-1)

000
000
050
000
000
050
050
050
100
050
050
000

(5.1)

(5.2)



5.4.2 CDG Embedding Operator

Continuous and Discontinuous Galerkin Methods are node-based andrtlbased methods re-
spectively. LetiDXcq= {n :i=0,...L} denote indexes of all the nodes in the mesh. {l¢t:

j =0,..M} denote all the elements, each element is a triangle in 2D dagg,c IDXcq: j =
0,...M;k=0,...N} denote indexes of each degree of freedom of a triangle (see TableThus
we can build an embedding operator by putting 1 at joaN + k and columm k. ItisaMN x L
matrix, whereM is number of triangled\ is number of degree of freedom of each triangle, Bnd
is number of nodes on the mesf.maps a vectou € R" into a vectov € RMN. Given a 2D mesh
showed in Figure 5.12 and degree of one basis functions, we can megeanapping table, see
Table 5.2. In this example, we build a CDG embedding operlﬁtprEq(SB), which is a 24 9

sparse matrix with 1 for non-zeros.

Table 5.1: CDG node mapping

0 1 ] .. N
Ko | Noo | Nox | --- | NonN
Ky | o | Ny | --- | MmN
Kv [ PMo | Pma | - | MmN

71



No 17)
0 2/ |0 2
Ko 2| K
1 Kl 1 K4
ny 0
0 2,40 2
Ko Ks
Ke Kz
1
n3 Ng

N5

nz

Ng

Figure 5.12: A example of CDG node mapping: 2D mesh

Table 5.2: A example of CDG node mapping: CDG node mapping

0] 1|2
Kol hg|ng| o
Kilni|ng|no
Kol np|n3g| ng
Ks|nmn|ng| ng
Ka | Ny | Ny Ng
Ks | ns | ng | Ny
Ke | N3 | Ng | g
K| ne| ng| ny

72



Iy (5.3)

5.5 Summary

To summarize, we have designed and implemented a fast adaptive discast@aterkin FEM
software package that has approximately 60000 line of codes. It ircldai@ structure, algo-
rithm designs, dense and sparse linear algebra, multi-thread and Mfphpnming, performance

analysis, etc.

73



Chapter 6

Parallel Implementation

6.1 Introduction

The recently released TOP500 list [25] of the world’s fastest supgpoters depicts some im-
portant trends in the area of high performance computing: clustersseggréhe most common
architecture and multi-core processors represent the dominant chifeatare. These trends have
a big influence on research and development in high performance cogptiachieve high per-
formance on such systems, the software has to be scalable on a distributedynsgstem with
tens of thousands of CPUs, capable of on-chip parallelism that takestage of multi-core chip
architecture using shared memory threading, and tuned to have betterdoeality and enhanced
instruction level parallelism. The Discontinuous Galerkin Method with a domainrdposition
preconditioner shows its full potential at all these different levels oélproptimization. Fist
of all, it is natural to split the whole problem into small pieces by domain decoimpogor
distributed computing. This domain decomposition is relatively easy to carnyitiuthe discon-
tinuous scheme, since it does not require continuity along the boundaigroéets. Secondly,
each domain maintains a row of blocked sparse matrices, i.e. a diagonal(thleckiffness ma-
trix of the domain), and a list of non-diagonal blocks (flux and penalty texiorsg boundaries of
domain), and a list of small blocked sparse matrices (stiffness matricebdbmains) if using

domain decomposition as a preconditioner. Then on each node, the commltédiks for an

74



iterative method of solving a linear system are a list of sparse matrix vecdugis, which can be
further parallelized on a multi-core architecture with multi-threaded programming

Currently the Message Passing Interface(MPI) standard is the ttegla@llel computing stan-
dard. It is widely used by many scientific programs as their communication |&geeach good
performance on a massive parallel machine, it is important to design theasefiwoverlap com-
putation and communication. In the rest of this chapter, we show the parallehmaptation of the
discontinuous Galerkin finite element method with data structures, paralléhviéenaethod, and

its performance.

6.2 Parallel Design and Data Structure

6.2.1 Domain Decomposition

Domain decomposition is a popular technique to make use of parallel compQeupled with
Message Passing Interface(MPI), it has become a widely used teeftoidasign software for dis-
tributed memory architectures. This technique divides the whole computatiomartyg smaller
tasks. Each task contains a local computation part, which is a standalonetationp without
interprocessor communication, and another part communicates with its nesgirubdistant pro-
cessors for exchanging data. Domain decomposition, which we desariGéadpter 3, is a method
to divide the large linear system into smaller problems and produce a pigeoadto speed up
solving the entire system. In this chapter, domain decomposition refers to eledandosition;

see [13], [11], and [12] for more details.

6.2.2 METIS

"METIS is a family of programs for partitioning unstructured graphs angéngraphs and for
computing fill-reducing orderings of sparse matrices. The underlylggradhms used by METIS
are based on a state-of-the-art multilevel paradigm that has been stoproduce high quality

results and scale to very large problems.” — http://glaros.dtc.umn.edu/g&tviews/metis

For a given 2D domai®) C R?, we can generate a quasi uniform triangular mesh that c&¥ers

75



Figure 6.1: A mesh with 4 subdomains.

The mesh consists of a set of hon-overlapped triangles, and basic sentpare vertex, edge, and
triangles. We divide the whole domain into subdomains. Then a mesh consstsebiof non-
overlapped subdomains, and a subdomain contains basic componentan Ihisrmediate level
between mesh and basic components. In some sense we can treat a $nladomaesh object,
simplifying the process of parallel implementation. METIS is freely availabletyartitioning
software that generates subdomains that satisfy our requirementse Bigshows an example of

four subdomains produced by METIS. See [22], [21] for more aMIETIS.

6.2.3 Parallel Iterative Solver

As we mentioned in previous chapters, Galerkin finite element methods praciycemetric pos-
itive definite linear system. We use iterative solvers such as conjugatemgiradd preconditioned
conjugate gradient method for solving the linear system. It is straight-fdrteaparallelize the
CG method by distributing the matrix and vectors and computing the vector operatid matrix-
vector multiplication in parallel. We list the pseudo-code for conjugate gradiethod in Algo-
rithm 8.

We can group all computations into three categories:

76



Input: vectorx can be an approximate initial solution or O
11 =AX;
2r=b—r;
3 p=r;
4 k=0;
5y=r'r;
6 while sqrt(y) > € do
7 v=Ap;
8 o=v'p;
9 Y.
10 X=X+0ap;
11 r=r—av
12 Yo=Y,
13 y
14 B=
15 p

k

Algorithm 8 : Pseudo-code for Conjugate Gradient Method

1. Local computation:

 scalar operations: line 4, 6, 9, 12, 14 and 16;

* vector operations: line 2, 3, 10, 11, 15;
2. Local computation with communication to combine local results: line 5, 8, 13;
3. Parallel computation: line 1, 7;

The computations listed in the second category are dot products, whigheregmmunication
to combine local results to the global value. We choose the collective opgekéib ALLREDUCE
provided by MPI for such communication. Parallel implementation of matrix-vgetmuct is the
key to make the iterative method scalable.

Figure 6.2(a) is an example of partitioning of a given domain with four subdwty, - - -, Q3
and necessary communication between adjacent subdomains. We hapmfmssorsy, - - -, Ps,
and each process corresponds to a subdomain. Figure 6.2(b) is bviggbaf data distribution of

matrix and vector on four processes. Each colored row of mAtard vectow; is generated from

77



|
}

;
|

Figure 6.2: Data distribution of matrix-vector multiplication on proce$%e®:, P,, andPs

Q <4+ U

P
>

A
(@) Qo, Q1, Qy, andQ3 (b) ProcesseRy, P1, P>, P3, and local data

the local mesh without communication, since discontinuous Galerkin method isglérisased
method. So data exchange is limited between processes that correspajgtemtsubdomains,
minimizing the global communication. As the matrix-vector multiplication proceeds, ithe o

communication comes from each subdomain’s neighbors.

6.2.4 Data Structure

As shown in Chapter 5, we create a tree structure to store geometric datigfs, triangles, etc.
For the parallel implementation, we maintain such a hierarchical structureadbr fubdomain.
Each subdomain has a copy of the initial mesh and creates a sub-treertygrdfie elements
belonging to the subdomain. Since refinement, PDE data block and matrixagenes local, this
approach minimizes the global communication. Figure 6.3 shows the tree strotthe parallel

implementation, with each colored sub-tree belonging to a separate subdomain.

Domain Interface Structure

Figure 6.4 is the data structure we defined for the interface of a subdomitsremjacent subdo-

main. It contains information about the edges and triangles along the iresfac subdomain.

78



Level 1
Level 2

Figure 6.3: Domain tree structure

79



typedef struct dg_interface domain_t {
int id;
int nbr_id,
int nbr_sidx;
int nbr_totT,
int nunBE;
int *betidx;
EDGE T **bearray;
int nunBI T,
int *bitidx;
TRIANGLE T **bhi tarray;
i nt nunBOT;
int *botidx;
TRIANGLE_T **Dbot array;
SPMW_BCSR *spm

} DG_I NTERFACE_DOVAI N_T;

Figure 6.4: Domain interface structure

Fieldid is the subdomain’s id, anabr_id is the id of the subdomain on the other side of the inter-
face. Fieldnbr_sidxis the starting global index of the neighboring subdomain’s triangles, aitdl Fie
nbr_totT is the total number of triangles in the neighboring subdomaimBEis the number of
the edges on the interfaceaumBIT andnumBOTare the number of triangles inside subdomain
and outside the subdomain along the interface accordibghydx bitidx andbotidxare the local
indices of edges, and triangles along the interfagamis the off-diagonal matrix block shown in

Figure 6.2(b).

Domain Structure

Figure 6.5 is the data structure we defined for a subdomain. Kedklithe subdomain id. Field
levelindicates the level of mesh to which the subdomain belongs. Bidids the starting global
index of the subdomain’s triangles. Fields$T, totE, andtotBE are the number of triangles, edges,
and boundary edges of the subdomain. Fietdd= andIFlist are the number of interfaces of the
subdomain and the list of interfaces, respectivgtpt T andgtotE are the total number of triangles
and edges, respectively, of the whole mesh at the current leneshand dmeshare the local
copy of the initial meshcddomainand fddomainare the subdomains on the coarse and fine level

accordingly.

80



typedef struct dg_dynamic_domain_t {

int id;
int level;
int sidx;

int totT, totE, totBE totlF;

int *totTs, *totEs;

int gtotT, gtotE

DG MESH T *mesh;

DG DYNMESH T *ddnesh;

DG_| NTERFACE_DOVAI N T *I Fli st;

struct dg_dynam c_donai n_t *cddonmai n;

struct dg_dynam c_donain_t *fddonain;
} DG DYNDOMAI N T;

Figure 6.5: Domain structure

6.3 Experiment and Performance

The following is a testing problem:

—Au=2x(1-x)+2y(1-y) inQ (6.1)

u=~0 onoQ

The solution of Problem(6.1) ist= xy(1—x)(1—Yy) as shown in Figure 6.6, which is a smooth
polynomial solution across the domain.

We carried out our experiments on the parallel computer Jégu@ak Ridge National Labora-
tory. Jaguar is a Cray XT4 system with 7832 XT4 compute nodes. Go to httmifvees.gov/computing-
resources/jaguar for more information. We ran our experiments with 4sngui® 128 nodes, and
results are shown in Figure 6.7 and 6.8.

Here are the observations:
» We can see that the conjugate gradient method can scale perfectly.

— localizing data and limiting the communication to each subdomain’s neighbors;

IThis research used resources of the National Center for CompuiaSicieaces at Oak Ridge National Laboratory,
which is supported by the Office of Science of the Department of Enardgr Contract DE-AC05-000R22725.

81



0.07 —

l

e W"»“
44‘4 ”
410

}
e
(e
W»

/’//:/14’ }
' /E/HIVI/‘/ ‘
% i

//wa, 0 ’
9,,, M i
’/W’/ AVAVA ‘

| m 04 ’
il

512 ¢

T \ \ r —
0.2 0.4 0.6 0.8 1

Figure 6.6: Solution of Problem(6.1).

Performance Evaluation of Parallel Implementation

256 -

128

Time

32 |

16 |

Figure 6.7:

8 16 32 64 128
Number of Nodes

Performance evaluation of parallel implementation on Jaguar: Time

82



Performance Evaluation of Parallel Implementation
4096 T

cQ m—
pcg

2048 - B

1024 1

512 1

256 - B

Iteration Number

128 1

64 | E

32
0 1 2

Figure 6.8: Performance evaluation of parallel implementation on Jaguaatidte Numbers

— Using MPI non-blocking sendrecv operations to overlap communicatioc@mguta-

tion for dot product and matrix-vector multiplication;
— Using MPI collective operation.

— fast inter-node connection.

» The preconditioned conjugate gradient method takes much less time to finigt tbem-

pared to the CG method, and it scales sublinearly.

— As we proved in Chapter 3, the condition number of PCG is a constant. Fég8re
shows the number of iterations of PCG is much smaller than CG'’s, and we ttee be

performance of PCG consequently;

— We chose a direct solver for the coarse mesh correction of the pridooed For our
parallel implementation, the reason for not choosing the CG method is that the line
system of coarse mesh correction is a small linear system for which it isenefibial
to use a parallel CG method. Since each subdomain computes its own coalse mes
correction, it is actually a sequential part of the whole process. By Atisdaty, it has

a negative impact on scalability.

83



Chapter 7

Summary and Future Directions

Discontinuous Galerkin FEM has been an active research area fia. y@ace there are no con-
tinuity constraints such as exist in standard Galerkin FEM, DGFEM has$ gdeantages such as
high-order accuracy on unstructured meshes, logalefinement, weak imposition of boundary
conditions and local conservation. The drawback is that it requiretoswve for a larger number
of unknowns than continuous Galerkin FEM. This research tackles tfierpance issue from
both theoretical and computational fields and has achieved satisfacsoiisréVe notice that the
performance of computation has been improved so much that marking amehnefit of adaptive
FEM are becoming more time consuming. Hence, better memory management andemgle
tion are needed for that part, and we are convinced there is much reomgimvements. As new
computer architectures are emerging such as multi-core, many-core,RKFRLJ etc., we believe
that DGFEM and our propos&DRformat CGFEM, as well as the mixed scheme DG-CGFEM we
propose in this research, can do very well on these architecturessé®eenbedding and projection
operators will be needed for the non-conforming adaptive meshes in theel mcheme however.
In conclusion, this research has provided an opportunity to explore ttieematical theory and
to exercise in a spectrum of computational fields such as linear algebrse(ded sparse), code
optimization (auto-tuning and SSE assembly coding), multi-threading, MPFkjtgodesign, etc.

As a result, software consisting of 60000 lines of code has been @dduc

84



Bibliography

85



Bibliography

[1] R. A. Adams.Sobolev Space#\cademic Press, New York, 1975.

[2] Randy Allen and Ken KennedyOptimizing Compilers for Modern Architecture$/organ
Kaufmann Publishers, 2002.

[3] D. Arnold, F. Brezzi, B. Cockburn, and D. Marini. Discontinuousl&kin methods for
elliptic problems. In B. Cockburn, G.E. karniadakis, and C.-W. Shu, egiRmoceedings
of the International Symposium on the discontinuous Galerkin metimdme 11, pages

89-101. Springer lecture notes in Computational Science and Engine20i;

[4] G. A. Baker, W. N. Jureidini, and O. A. Karakashian. Piecewidersaidal vector fields and

the Stokes problems$IAM J. Numer. Anal27:1466-1485, 1990.

[5] Utpal Banerjee. A Theory of Loop Permutations.Salected Papers of the Second Workshop

on Languages and Compilers for Parallel Computipgges 54—74. Pitman Publishing, 1990.

[6] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dorggarr Eijkhout, R. Pozo,
C. Romine, and H. Van der VorsiTemplates for the Solution of Linear Systems: Building

Blocks for Iterative Methods, 2nd Editio®IAM, Philadelphia, PA, 1994.

[7] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and James Demmel. OptignMatrix
Multiply Using PHIPAC: A Portable, High-Performance, ANSI C Coding Metblogy. In

International Conference on Supercomputipgges 340-347, 1997.

[8] S. Brenner and R. ScottThe Mathematical Theory of Finite Element Metho®&pringer-
Verlag, New York, 1994.

86



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. G. Ciarlet.The Finite Element Method for Elliptic Problemiorth-Holland, Amsterdam,
1978.

R. Courant. Variational methods for the solutions of equilibrium andatibns. Bull. Amer.

Math. Soc. pages 1-23, 1943.

L. C. Cowsar, E. J. Dean, R. Glowinski, P. Le Tallec, C. H. Li,&ri&ux, and M. F. Wheeler.
Decomposition principles and their applications in scientific computing. In Jgara,
K. Kennedy, P. Messina, D. Sorensen, and R. Voigt, edifersceedings of the Fifth SIAM

Conference on Parallel Processing for Scientific Computpages 213-237, 1992.

Lawrence C. Cowsar, Alan Weiser, and Mary F. Wheeler. Paralldtigrid and domain de-
composition algorithms for elliptic equations. In David E. Keyes et al., ediRnsceedings
of the Fifth International Symposium on Domain Decomposition Methods ftiaPRiffer-

ential Equationspages 376—385, 1992.

Lawrence C. Cowsar and Mary F. Wheeler. Parallel domain deositign method for mixed
finite elements for elliptic partial differential equations. In Roland Glowinsgkile editors,
Proceedings of the Fourth International Symposium on Domain DecsitiggoMethods for

Partial Differential Equations1991.

Jim Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoinéd?eRich Vuduc,
Clint Whaley, and Katherine Yelick. Self adapting linear algebra algorithndssaftware.
Proceedings of the IEEB®3(2), 2005. special issue on "Program Generation, Optimization,

and Adaptation”.

Willy Dorfler. A convergent adaptive algorithm for poisson’s atjan. SIAM Journal on

Numerical Analysis33(3):1106—-1124, Jun. 1996.

M. Dryja and O.B. Widlund. Towards a unified theory of domain decositpn algorithms
for elliptic problems. In T. Chan etc., editd®yoceedings of Third International Symposium
on Domain Decomposition Methods for Partial Differential Equatiqresges 3—21, Philadel-
phia, 1990. SIAM.

87



[17] X. Feng and O. A. Karakashian. Analysis of two-level overlagmdditive schwarz precon-
ditioners for a discontinuous galerkin method. Rroceedings of Thirteenth International

Conference of Domain Decomposition MethddBM.org Press, 2001.

[18] X. Feng and M. T. Rahman. An additive average Schwarz methothéplate bending
problem. Technical Report 185, Dept. of Informatics, University ofgge, Norway, Feb.
2000.

[19] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. Sparsity: Optimizaframework for

sparse matrix kerneldnt. J. High Perform. Comput. Appll8(1):135-158, 2004.

[20] O. A. Karakashian and F. Pascal. A posteriori error estimatea ftiscontinuous galerkin

approximation of second-order elliptic probler8AM J. Numer. Anal41:2374-2399, 2003.

[21] G. Karypis and V. Kumar. Metis users manual: Unstrctured graptitipaing and sparse

matrix ordering system. Technical report, "1995".

[22] G. Karypis and V. Kumar. A fast and high quality multilevel scheme fatigioning irregular
graphs.SIAM Journal on Scientific Computing0(1):359-392, 1998.

[23] C. Lasser and A. Toselli. An overlapping domain decomposition praitioner for a class of
discontinuous Galerkin approximations of advection-diffusion problenehfiical Report

2000-12, Seminariir Angewandte Mathenatik, ETH (zich, 2000.

[24] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Impip@ata Locality with Loop
TransformationsACM Trans. Program. Lang. Sys1.8(4):424-453, 1996.

[25] Hans Meuer, Erich Strohmaier, Jack Dongarra, and Horst Sim@i500 Supercomputing

Sites. Technical report.

[26] A. Quarteroni and A. Valli.Domain Decomposition Methods for Partial Differential Equa-

tions Oxford University Press, New York, 1999.

[27] W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron toahepguation. Tech-
nical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.

88



[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

P. E. Bjgrstad, M. Dryja, and E. Vainikko. Additive schwarz methedthout subdomain
overlap and with new coarse spaces. In R. GlowinskigidiaBx, Z-C. Shi, and O. Widlund,
editors,Domain Decomposition Methods in Sciences and Enginegpamges 141-157. Wiley
& Sons, New York, 1997.

T. Rusten, P. S. Vassilevski, and R. Winther. Interior penaltygnditioners for mixed finite

element approximations of elliptic problemgath. Comp,. 65:447—-466, 1996.

Michael A. Saum. Adaptive discontinuous galerkin finite element mettiodsecond and
fourth order elliptic partial differential equations. Technical reportitérsity of Tennessee,

Knoxville, TN, USA”, "August, 2006".

Robert Schreiber and Jack Dongarra. Automatic Blocking of Nidsteps. Technical Report
CS-90-108, Knoxville, TN 37996, USA, 1990.

Jonathan Richard Shewchuk. Triangle: A Two-Dimensional QualigsiMiGenerator and

Delaunay Triangulator. Technical report.

B. E. Smith, P. E. Bjgrstad, and W. D. Groppomain Decomposition, Parallel Multilevel
Methods for Elliptic Partial Differential EquationsCambridge University Press, New York,

1996.

Richard Wilson Vuduc. Automatic performance tuning of sparse magireéds. Technical

report, "University of California, Berkeley, Berkeley, CA, USA”, @aember, 2003".

R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear atgsbftware. InSC
'98: Proceedings of the Proceedings of the IEEE/ACM SC98 Confergrage 38. IEEE
Computer Society, 1998.

J. Xu. lterative methods by space decomposition and subspa@xiton. SIAM Review

34:581-613, 1992.

89



[37] Qing Yi, Ken Kennedy, Haihang You, Keith Seymour, and Jack Rorey Automatic Block-
ing of QR and LU Factorizations for Locality. B(nd ACM SIGPLAN Workshop on Memory
System Performance (MSP 2002004.

[38] Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DgJ)dnaria Garzaran,
David Padua, Keshav Pingali, Paul Stodghill, and Peng Wu. A Comparfdempirical and
Model-driven Optimization. IrPLDI '03: Proceedings of the ACM SIGPLAN 2003 Con-
ference on Programming Language Design and Implementatiages 63—76. ACM Press,

2003.

90



Appendix

91



Appendix A

Affine Transformation

In 2D case, an element is a triangle. Figure A.1 shows a reference triéngtel an arbitrary
triangle K. In practice the values of polynomi&,(x) and their first-order derivatives are pre-
computed on the reference triangle. To calculate the stiffness matrix (Dek)olor an triangle, an
Affine Transformation from an individual triangle to a reference trianmgldefined as following:

The Affine transformatiofr from reference triangl& to triangleK is:

x>

X XL —Xo Xp—Xo Xo
= + (A.1)

y Y1—Yo Y2—Yo Yo

<

The Affine transformatiofr ~* from reference triangl& to triangleK is:

X 1 Y2—Yo —(X2—Xo) X—Xo
y —(Y1—Yo) X1—Xo Y—Yo
or
X 1 Ci1 C12 X—Xo
y Co1 C22 Y—Yo

where|K | = area of the triangle.

Then base function derivative can be represented by referenagléabase functions’ deriva-

92



2
(X1,Y1)
1
K K
0 1 5
(0,0 (1,0 (X2,¥2) (X0,Y0)
@K (b) K

Figure A.1: Affine transformation between trianddeand reference trianglé

tives:

1 Ci1 C1 | ~a
= — O

U (A.4)
2’K| Ci2 C22
aji = &j = / U - Dgjdxdy (A.5)
K
1 . fa
by = /K £ (x,y) @) (x,y)dxdy A7)
0y = 2K [ F(%9)im(%.9)d%c (A8)

where 1< i, ] < N, are global indices of DOFs on the triangle, and 0 m < 2 are local indices.

93



(X1,Y1)
1
K
L2 N
(X2,Y2) (X0,Y0)
@K (b) K

Figure A.2: Vertices of 4t order basis functions on a triangfeand reference trianglé

A.1 First Order Basis Functions

1. Vertices on the reference triangle:
= (07 O) 2= (17 0) = (Oa l)
Vertices on a triangle:

2= (Xo,Y0) z1=(X1,Y1) 2= (X2,Y2)

2. Basis functions are:

W(RY) =1-R—y
@u(R,Y) =R
(APZ(X A) :y

94



3. 18t order derivative basis functions are:

o -1
O@o(XY) =

-1
o 1
(X Y) =

0
L 0
O@(XY) =

1

A.2 Second Order Basis Functions

1. Vertices on the reference triangle:

= (0, O) > = (l7 0) 3 = (O, 1)

2= (05,0) z=(0505) 2z =/(0,0.5)

Vertices on a triangle:

2= (Xo,Y0) z=(X1,Y1) 2= (X2,Y2)

3= (X3,¥3) z=(Xa,Ya) Z5= (Xs5,Y5)

95



(0,00  (050)  (1,0) (X2,¥2)  (Xs,¥5)  (¥0,Y0)
(@K (b) K

Figure A.3: Vertices of @d order basis functions on a triangfeand reference trianglé

2. Basis functions are:

207 + AR+ 27 — 3R — 3y + 1

Pu(R,Y)

>
)

)~ 28—y

—4%% — 4%9+ 4R

Pa(X,Y)

(X> 9) = 4%y

@6(R,Y) = —4%9 — 4% + 4y

@)

96



3. 18t order derivative basis functions are:

As we have shown above, on each triangle, we have 3 DOFs for Jest potiynomials, 6 for 2nd

order, and for 3rd order and 4th order polynomials, we have 10 afxQIss respectively.

97

—dy
—4R—8y+4



Vita

Haihang You was born in Hefei, China on October 28, 1971. He complasekigh school in
1990, and after that he joined Beijing Normal University, Beijing, Chinagiersuing his under-
graduate degree. He obtained his Bachelor of Science in Physics in 99498, he traveled to
United States to pursue graduate studies. He obtained his Master’s de@emputer Science
at University of Tennessee, Knoxville in 2001. After graduation, Hegdimnovative Computing
Laboratory(ICL) as full time research staff. Later on he started théddate program in Computer
Science, his advisors are Prof. Jack Dongarra at Computer Sciepadment and Prof. Ohannes

Karakashian at Math department.

98



	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2009

	Adaptive Discontinuous Galerkin Finite Element Methods
	Haihang You
	Recommended Citation


	reorder.ps

