35,171 research outputs found

    Thermal-dynamic modeling study

    Get PDF
    Study provides basic information for designing models and conducting thermal-dynamic structural tests. Factors considered are development and interpretation of thermal-dynamic structural scaling laws; identification of major problem areas; and presentation of model fabrication, instrumentation, and test procedures

    Nonparametric Bayes dynamic modeling of relational data

    Full text link
    Symmetric binary matrices representing relations among entities are commonly collected in many areas. Our focus is on dynamically evolving binary relational matrices, with interest being in inference on the relationship structure and prediction. We propose a nonparametric Bayesian dynamic model, which reduces dimensionality in characterizing the binary matrix through a lower-dimensional latent space representation, with the latent coordinates evolving in continuous time via Gaussian processes. By using a logistic mapping function from the probability matrix space to the latent relational space, we obtain a flexible and computational tractable formulation. Employing P\`olya-Gamma data augmentation, an efficient Gibbs sampler is developed for posterior computation, with the dimension of the latent space automatically inferred. We provide some theoretical results on flexibility of the model, and illustrate performance via simulation experiments. We also consider an application to co-movements in world financial markets

    Dynamic Modeling of the Electric Transportation Network

    Get PDF
    We introduce a model for the dynamic self-organization of the electric grid. The model is characterized by a conserved magnitude, energy, that can travel following the links of the network to satisfy nodes' load. The load fluctuates in time causing local overloads that drive the dynamic evolution of the network topology. Our model displays a transition from a fully connected network to a configuration with a non-trivial topology and where global failures are suppressed. The most efficient topology is characterized by an exponential degree distribution, in agreement with the topology of the real electric grid. The model intrinsically presents self-induced break-down events, which can be thought as representative of real black-outs.Comment: (e.g. 7 pages, 5 figures

    Dynamic modeling of Terahertz Quantum cascade lasers

    Get PDF
    In this paper, the influence of the simplifications made in the four-equation-based set of rate equations describing the dynamic behavior of a Quantum Cascade Laser (QCL) is studied. Numerical simulations based on the set of four rate equations has been developed, enabling the theoretical study of the influence of different parameters on the direct modulation response of the laser. These equations have been then linearized in order to deduce a set of state system equations, which was written in a matrix formalism. Finally, an approximate second order transfer function has been derived with the linearized dependence of its times constant

    Dynamic modeling under linear-exponential loss

    Get PDF
    We develop a methodology of parametric modeling of time series dynamics when the underlying loss function is linear-exponential (Linex). We propose to directly model the dynamics of the conditional expectation that determines the optimal predictor. The procedure hinges on the exponential quasi maximum likelihood interpretation of the Linex loss and nicely fits the multiple error modeling framework. Many conclusions relating to estimation, inference and forecasting follow from results already available in the econometric literature. The methodology is illustrated using data on United States GNP growth and Treasury bill returns.Linear-exponential loss, optimal predictor, quasi maximum likelihood, multiple error model, autoregressive conditional durations

    Dynamic Modeling and Statistical Analysis of Event Times

    Get PDF
    This review article provides an overview of recent work in the modeling and analysis of recurrent events arising in engineering, reliability, public health, biomedicine and other areas. Recurrent event modeling possesses unique facets making it different and more difficult to handle than single event settings. For instance, the impact of an increasing number of event occurrences needs to be taken into account, the effects of covariates should be considered, potential association among the interevent times within a unit cannot be ignored, and the effects of performed interventions after each event occurrence need to be factored in. A recent general class of models for recurrent events which simultaneously accommodates these aspects is described. Statistical inference methods for this class of models are presented and illustrated through applications to real data sets. Some existing open research problems are described.Comment: Published at http://dx.doi.org/10.1214/088342306000000349 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Dynamic modeling of spacecraft in a collisionless plasma

    Get PDF
    A new computational model is described which can simulate the charging of complex geometrical objects in three dimensions. Two sample calculations are presented. In the first problem, the capacitance to infinity of a complex object similar to a satellite with solar array paddles is calculated. The second problem concerns the dynamical charging of a conducting cube partially covered with a thin dielectric film. In this calculation, the photoemission results in differential charging of the object

    Modelling and Validation of a Regenerative Shock Absorber System

    Get PDF
    Abstract— For effective energy regeneration and vibration dampening, energy regenerative suspension systems have received more studies recently. This paper presents the dynamic modeling and a test system of a regenerative shock absorber system which converts vibration motion into rotary motion through the adjustment of hydraulic flow. Hydraulic circuit configuration achieves the one way flow and energy regeneration during both compression and extension strokes. The dynamic modeling is performed for the evaluation of design concept and the feasibility studies of regenerative shock absorber system theoretically. Based on simulated results, the efficiency of hydraulic transmission is optimized and validated in test system. The results show that the performance of hydraulic fluid, the features of rotary motion and the capability of energy regeneration are verified and compared between dynamic modeling and experiments. Meanwhile, the average power of 118.2W and 201.7W with the total energy conversion of 26.86% and 18.49% can be obtained based on experiments under sinusoidal inputs with 0.07854m/s and 0.1256m/s respectively
    • 

    corecore