457 research outputs found

    Dynamic Homotopy and Landscape Dynamical Set Topology in Quantum Control

    Full text link
    We examine the topology of the subset of controls taking a given initial state to a given final state in quantum control, where "state" may mean a pure state |\psi>, an ensemble density matrix \rho, or a unitary propagator U(0,T). The analysis consists in showing that the endpoint map acting on control space is a Hurewicz fibration for a large class of affine control systems with vector controls. Exploiting the resulting fibration sequence and the long exact sequence of basepoint-preserving homotopy classes of maps, we show that the indicated subset of controls is homotopy equivalent to the loopspace of the state manifold. This not only allows us to understand the connectedness of "dynamical sets" realized as preimages of subsets of the state space through this endpoint map, but also provides a wealth of additional topological information about such subsets of control space.Comment: Minor clarifications, and added new appendix addressing scalar control of 2-level quantum system

    Quantum Control Landscapes

    Full text link
    Numerous lines of experimental, numerical and analytical evidence indicate that it is surprisingly easy to locate optimal controls steering quantum dynamical systems to desired objectives. This has enabled the control of complex quantum systems despite the expense of solving the Schrodinger equation in simulations and the complicating effects of environmental decoherence in the laboratory. Recent work indicates that this simplicity originates in universal properties of the solution sets to quantum control problems that are fundamentally different from their classical counterparts. Here, we review studies that aim to systematically characterize these properties, enabling the classification of quantum control mechanisms and the design of globally efficient quantum control algorithms.Comment: 45 pages, 15 figures; International Reviews in Physical Chemistry, Vol. 26, Iss. 4, pp. 671-735 (2007

    Control of quantum phenomena: Past, present, and future

    Full text link
    Quantum control is concerned with active manipulation of physical and chemical processes on the atomic and molecular scale. This work presents a perspective of progress in the field of control over quantum phenomena, tracing the evolution of theoretical concepts and experimental methods from early developments to the most recent advances. The current experimental successes would be impossible without the development of intense femtosecond laser sources and pulse shapers. The two most critical theoretical insights were (1) realizing that ultrafast atomic and molecular dynamics can be controlled via manipulation of quantum interferences and (2) understanding that optimally shaped ultrafast laser pulses are the most effective means for producing the desired quantum interference patterns in the controlled system. Finally, these theoretical and experimental advances were brought together by the crucial concept of adaptive feedback control, which is a laboratory procedure employing measurement-driven, closed-loop optimization to identify the best shapes of femtosecond laser control pulses for steering quantum dynamics towards the desired objective. Optimization in adaptive feedback control experiments is guided by a learning algorithm, with stochastic methods proving to be especially effective. Adaptive feedback control of quantum phenomena has found numerous applications in many areas of the physical and chemical sciences, and this paper reviews the extensive experiments. Other subjects discussed include quantum optimal control theory, quantum control landscapes, the role of theoretical control designs in experimental realizations, and real-time quantum feedback control. The paper concludes with a prospective of open research directions that are likely to attract significant attention in the future.Comment: Review article, final version (significantly updated), 76 pages, accepted for publication in New J. Phys. (Focus issue: Quantum control

    Homotopy properties of endpoint maps and a theorem of Serre in subriemannian geometry

    Full text link
    We discuss homotopy properties of endpoint maps for affine control systems. We prove that these maps are Hurewicz fibrations with respect to some W1,pW^{1,p} topology on the space of trajectories, for a certain p>1p>1. We study critical points of geometric costs for these affine control systems, proving that if the base manifold is compact then the number of their critical points is infinite (we use Lusternik-Schnirelmann category combined with the Hurewicz property). In the special case where the control system is subriemannian this result can be read as the corresponding version of Serre's theorem, on the existence of infinitely many geodesics between two points on a compact riemannian manifold. In the subriemannian case we show that the Hurewicz property holds for all p≥1p\geq1 and the horizontal-loop space with the W1,2W^{1,2} topology has the homotopy type of a CW-complex (as long as the endpoint map has at least one regular value); in particular the inclusion of the horizontal-loop space in the ordinary one is a homotopy equivalence

    Winding around non-Hermitian singularities

    Get PDF
    Non-Hermitian singularities are ubiquitous in non-conservative open systems. Owing to their peculiar topology, they can remotely induce observable effects when encircled by closed trajectories in the parameter space. To date, a general formalism for describing this process beyond simple cases is still lacking. Here we develop a general approach for treating this problem by utilizing the power of permutation operators and representation theory. This in turn allows us to reveal a surprising result that has so far escaped attention: loops that enclose the same singularities in the parameter space starting from the same point and traveling in the same direction, do not necessarily share the same end outcome. Interestingly, we find that this equivalence can be formally established only by invoking the topological notion of homotopy. Our findings are general with far reaching implications in various fields ranging from photonics and atomic physics to microwaves and acoustics

    The Topological Field Theory of Data: a program towards a novel strategy for data mining through data language

    Get PDF
    This paper aims to challenge the current thinking in IT for the 'Big Data' question, proposing - almost verbatim, with no formulas - a program aiming to construct an innovative methodology to perform data analytics in a way that returns an automaton as a recognizer of the data language: a Field Theory of Data. We suggest to build, directly out of probing data space, a theoretical framework enabling us to extract the manifold hidden relations (patterns) that exist among data, as correlations depending on the semantics generated by the mining context. The program, that is grounded in the recent innovative ways of integrating data into a topological setting, proposes the realization of a Topological Field Theory of Data, transferring and generalizing to the space of data notions inspired by physical (topological) field theories and harnesses the theory of formal languages to define the potential semantics necessary to understand the emerging patterns
    • …
    corecore