2 research outputs found

    Improving Broad-Coverage Medical Entity Linking with Semantic Type Prediction and Large-Scale Datasets

    Get PDF
    Medical entity linking is the task of identifying and standardizing medical concepts referred to in an unstructured text. Most of the existing methods adopt a three-step approach of (1) detecting mentions, (2) generating a list of candidate concepts, and finally (3) picking the best concept among them. In this paper, we probe into alleviating the problem of overgeneration of candidate concepts in the candidate generation module, the most under-studied component of medical entity linking. For this, we present MedType, a fully modular system that prunes out irrelevant candidate concepts based on the predicted semantic type of an entity mention. We incorporate MedType into five off-the-shelf toolkits for medical entity linking and demonstrate that it consistently improves entity linking performance across several benchmark datasets. To address the dearth of annotated training data for medical entity linking, we present WikiMed and PubMedDS, two large-scale medical entity linking datasets, and demonstrate that pre-training MedType on these datasets further improves entity linking performance. We make our source code and datasets publicly available for medical entity linking research.Comment: 35 page

    Improving broad-coverage medical entity linking with semantic type prediction and large-scale datasets

    Get PDF
    Objectives Biomedical natural language processing tools are increasingly being applied for broad-coverage information extraction—extracting medical information of all types in a scientific document or a clinical note. In such broad-coverage settings, linking mentions of medical concepts to standardized vocabularies requires choosing the best candidate concepts from large inventories covering dozens of types. This study presents a novel semantic type prediction module for biomedical NLP pipelines and two automatically-constructed, large-scale datasets with broad coverage of semantic types. Methods We experiment with five off-the-shelf biomedical NLP toolkits on four benchmark datasets for medical information extraction from scientific literature and clinical notes. All toolkits adopt a staged approach of mention detection followed by two stages of medical entity linking: (1) generating a list of candidate concepts, and (2) picking the best concept among them. We introduce a semantic type prediction module to alleviate the problem of overgeneration of candidate concepts by filtering out irrelevant candidate concepts based on the predicted semantic type of a mention. We present MedType, a fully modular semantic type prediction model which we integrate into the existing NLP toolkits. To address the dearth of broad-coverage training data for medical information extraction, we further present WikiMed and PubMedDS, two large-scale datasets for medical entity linking. Results Semantic type filtering improves medical entity linking performance across all toolkits and datasets, often by several percentage points of F-1. Further, pretraining MedType on our novel datasets achieves state-of-the-art performance for semantic type prediction in biomedical text. Conclusions Semantic type prediction is a key part of building accurate NLP pipelines for broad-coverage information extraction from biomedical text. We make our source code and novel datasets publicly available to foster reproducible research
    corecore