27,250 research outputs found

    Dynamic Facility Location with Stochastic Demand and Congestion

    Get PDF
    In this thesis, we study a multi-periodic facility location problem with stochastic demand to determine the optimal location, capacity selection and demands allocation of facilities within distinct time periods, while, each facility contains a server with a limited capacity. It causes facilities to experience a period of congestion, when not all arriving demands can be served immediately. Customers that arrive in this period might await service in a queue. This thesis perspective incorporates customers waiting costs as part of the objective. In this case, facilities do not utilize whole of the established capacity to ensure a maximum waiting time of the allocated customers. Firstly, a mathematical model is presented for a dynamic facility location problem with stochastic demand and congestion. The problem is setup as a network of spatially distributed queues and formulated as a nonlinear mixed integer program (MINLP). To transform the nonlinear congestion function to a piecewise linear, a linearization method is adapted. This method adds a set of inequalities to the model. We show that lifting this set of inequalities, with keeping generality of the method, reduces CPU times up to 3.5 times, on average. Moreover, a decent heuristic is proposed to solve the problem. Computational experiments indicate that the heuristic results in less costly solutions than them obtained by CPLEX algorithms, in 58% of relatively-difficult test problems

    Current Trends in Simheuristics: from smart transportation to agent-based simheuristics

    Get PDF
    Simheuristics extend metaheuristics by adding a simulation layer that allows the optimization component to deal efficiently with scenarios under uncertainty. This presentation reviews both initial as well as recent applications of simheuristics, mainly in the area of logistics and transportation. We also discuss a novel agent-based simheuristic (ABSH) approach that combines simheuristic and multi-agent systems to efficiently solve stochastic combinatorial optimization problems. The presentation is based on papers [1], [2], and [3], which have been already accepted in the prestigious Winter Simulation Conference.Peer ReviewedPostprint (published version

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    A computational comparison of several formulations for the multi-period incremental service facility location problem

    Get PDF
    The Multi-period Incremental Service Facility Location Problem, which was recently introduced, is a strategic problem for timing the location of facilities and the assignment of customers to facilities in a multi-period environment. Aiming at finding the strongest formulation for this problem, in this work we study three alternative formulations based on the so-called impulse variables and step variables. To this end, an extensive computational comparison is performed. As a conclusion, the hybrid impulse–step formulation provides better computational results than any of the other two formulations

    Distribution planning in a weather-dependent scenario with stochastic travel times: a simheuristics approach

    Get PDF
    In real-life logistics, distribution plans might be affected by weather conditions (rain, snow, and fog), since they might have a significant effect on traveling times and, therefore, on total distribution costs. In this paper, the distribution problem is modeled as a multi-depot vehicle routing problem with stochastic traveling times. These traveling times are not only stochastic in nature but the specific probability distribution used to model them depends on the particular weather conditions on the delivery day. In order to solve the aforementioned problem, a simheuristic approach combining simulation within a biased-randomized heuristic framework is proposed. As the computational experiments will show, our simulation-optimization algorithm is able to provide high-quality solutions to this NP-hard problem in short computing times even for large-scale instances. From a managerial perspective, such a tool can be very useful in practical applications since it helps to increase the efficiency of the logistics and transportation operations.Peer ReviewedPostprint (published version

    Distribution planning in a weather-dependent scenario with stochastic travel times: a simheuristics approach

    Get PDF
    In real-life logistics, distribution plans might be affected by weather conditions (rain, snow, and fog), since they might have a significant effect on traveling times and, therefore, on total distribution costs. In this paper, the distribution problem is modeled as a multi-depot vehicle routing problem with stochastic traveling times. These traveling times are not only stochastic in nature but the specific probability distribution used to model them depends on the particular weather conditions on the delivery day. In order to solve the aforementioned problem, a simheuristic approach combining simulation within a biased-randomized heuristic framework is proposed. As the computational experiments will show, our simulation-optimization algorithm is able to provide high-quality solutions to this NP-hard problem in short computing times even for large-scale instances. From a managerial perspective, such a tool can be very useful in practical applications since it helps to increase the efficiency of the logistics and transportation operations.Peer ReviewedPostprint (published version

    A taxonomy for emergency service station location problem

    Get PDF
    The emergency service station (ESS) location problem has been widely studied in the literature since 1970s. There has been a growing interest in the subject especially after 1990s. Various models with different objective functions and constraints have been proposed in the academic literature and efficient solution techniques have been developed to provide good solutions in reasonable times. However, there is not any study that systematically classifies different problem types and methodologies to address them. This paper presents a taxonomic framework for the ESS location problem using an operations research perspective. In this framework, we basically consider the type of the emergency, the objective function, constraints, model assumptions, modeling, and solution techniques. We also analyze a variety of papers related to the literature in order to demonstrate the effectiveness of the taxonomy and to get insights for possible research directions
    corecore