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Abstract The Multi-period Incremental Service Facility Location Problem, which
was recently introduced, is a strategic problem for timing the location of facilities
and the assignment of customers to facilities in a multi-period environment. Aiming
at finding the strongest formulation for this problem, in this work we study three
alternative formulations based on the so-called impulse variables and step variables.
To this end, an extensive computational comparison is performed. As a conclusion,
the hybrid impulse–step formulation provides better computational results than any
of the other two formulations.
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1 Introduction

Given a time horizon, a set of customers and a set of facilities (e.g., production
plants), the Multi-period Incremental Service Facility Location Problem (MISFLP)
is concerned with locating the facilities within a given discrete set of potential sites
and assigning the customers to the facilities along given periods in a time horizon.

In actual world, it is usual to look for sequential decisions that ensure a certain
level of coverage at each time period. In the case of essential services, it is required
that the full population demand be serviced at all time periods. Different works have
addressed situations of this type since the late sixties. Most of these approaches have
been used for the design of supply structures by deciding which existing facilities
should be closed and where new facilities should be opened. The pioneering work
by Ballou (1968) on the single-facility version of the problem was continued by
the works of Lodish (1970), Wesolowsky (1973), Drezner and Wesowlosky (1991),
Bastian and Volkmer (1992), Andreatta and Mason (1994). On the other hand, the
multi-facility dynamic problem has been addressed by Scott (1971), Warszawski
(1973), Wesolowsky and Truscott (1975), Khumawala and Whybark (1976), Kelly
and Marucheck (1984), Rosenblatt (1986), Frantzeskakis and Watson-Gandy (1989),
Chardaire et al. (1996), Saldanha da Gama and Captivo (1998), and Hinojosa et
al. (2008). van Roy and Erlenkotter (1982) extend the adjustment procedure devel-
oped in Erlenkotter (1978) for the static problem to solve the dynamic problem. The
dynamic p-median problem has been studied by Galvão and Santibañez-Gonzalez
(1990, 1992) and Drezner (1995). One of the earliest attempts to incorporate capac-
ity constraints is due to Sweeney and Tatham (1976), whereas Melachrinoudis et
al. (1995) studied a multi-objective version of the capacitated multi-period location
problem. Some authors have addressed the problem of deciding in which periods the
capacity of a given set of facilities should be extended to meet increasing demand
patterns (see, for instance, Antunes and Peeters 2001; Erlenkotter 1981; Fong and
Srinivasan 1981, 1986; Jacobsen 1977; Lee and Luss 1987; Shulman 1991) or allow
the possibility of resorting to external suppliers (see Hinojosa et al. 2000). Recently,
Melo et al. (2006) have studied the mathematical modeling framework for dynamic
multi-commodity facility location within the context of strategic supply chain plan-
ning.

However, in the case of nonessential services, full coverage needs to be attained
only at the end of the planning horizon. Instead, strategic and organizational reasons
require that a pre-specified level of coverage be reached at each time period and that
the demand of covered customers remains satisfied in the subsequent periods. It is
clear that these types of problems represent actual applications. The simplest appli-
cation is the sequential optimal location plan and distribution pattern of a good or
service to reach full coverage of a set of potential customers in a finite time hori-
zon. This is, for instance, the case of libraries, nursing homes, kindergartens, parking
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lots, supermarkets, banks, etc., that are planed to provide service to the entire set of
potential customers. The nature of these applications requires that service to users
can not be interrupted in the remaining planning horizon once it has been started.
Nevertheless, budgetary constraints avoid to achieve complete coverage in one single
period, and therefore, an optimal plan is needed to fulfill the full coverage goal while
ensuring partial achievements at minimum cost over the whole planning horizon. In a
recent paper, Albareda-Sambola et al. (2009) have proposed the MISFLP to minimize
the total cost throughout a finite time horizon while ensuring at each single period t

the service of a minimum number of customers, say nt . In the MISFLP it is accepted
that the allocation of any customer to the servers might change in different periods.
Nevertheless, once a customer is served (allocated) in a time period, it must be served
at any subsequent period. Moreover, it is assumed that pt new facilities are opened
in each time period, at least, and that once a facility is opened, it remains open until
the end of the time horizon. Notice that the value of pt can be zero, but it can also be
a positive number due to strategic reasons of the decision maker.

In Albareda-Sambola et al. (2009) it is seen that the MISFLP is quite general, and
it has as particular cases problems with apparently different characteristics. When
the planning horizon consists of one single period, the MISFLP reduces to the well-
known p-median problem. For a general planning horizon, when the assignment costs
are nonnegative and there is a pre-specified coverage level at each intermediate pe-
riod (nt > 0), the resulting problem can be seen as a cost-minimizing problem. On
the other hand, the profit-maximizing version of the problem where there is no re-
quired coverage level at each intermediate period (nt = 0), but there is a profit as-
sociated with serviced customers, also fits within the MISFLP. Moreover, one can
introduce penalties to require that all customers are served at all time periods or to
allow customers with service demand not to be served. The MISFLP belongs to the
class NP-hard; notice that it reduces to the well-known p-median problem.

One question that arises naturally when addressing the MISFLP is whether or not
the problem that we consider could be also modeled by means of a series of inde-
pendent decoupled models (one for each time period). This point was analyzed in
Albareda-Sambola et al. (2009), where the authors compared empirically the results
obtained with the integrated formulation and the solution of series of decoupled mod-
els. Their results enlighten the differences between both models. On the one hand, the
deviations of the optimal values of the decoupled model with respect to the MISFLP
were relatively large. On the other hand, the differences between the two types of
models affected not only to the optimal values but also to the structures of the opti-
mal solutions, specially for larger instances.

In this paper we address a particular case of the MISFLP where each customer
needs to be serviced only in a subset of the periods of the time horizon. In this ver-
sion, we assume that this set of periods is known for each customer and that at each
period, customers with demand are not necessarily served. In this case, a penalty cost
is incurred to reduce the effect of loss of customers goodwill. Alternatively, these
penalties can be seen as the pricing for resorting to external suppliers. As it will be
seen when we formulate this problem, this particular case fits within the MISFLP
model.

Multi-period location problems are related to the evolution of dynamic organiza-
tions. In this context, there are various elements that evolve with time, like costs,
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availability of resources, demands, etc., which define the framework for the develop-
ment of the system. Typically, the organizations have historical data on the evolution
of such elements that are used to forecast their values in the near or medium-term
future. Therefore, it is natural to assume that estimations on the set of periods when
each customer will have demand are available. One can argue, however, that, in prac-
tice, the actual behavior of the system is not deterministic. This leads to consider
stochastic programming counterparts of multi-period location problems, where his-
torical data are used to estimate the probability distribution that governs the customers
behavior. This is the actual goal of a future research, in which a multi-period loca-
tion problem where some parameters are not known with certainty is studied, and
Stochastic Integer Programming is used. It is well known that stochastic integer pro-
grams are extremely difficult to solve exactly, so that using appropriate formulations
is very important. For instance, if branch-and-fix-coordination (Alonso-Ayuso et al.
2003) is used, many deterministic instances of the problem need to be solved exactly.
Therefore, finding a strong formulation for the deterministic version of the problem
becomes a major concern. This issue is specifically the goal of the current paper. In
particular, our objective is to propose different formulations for the MISFLP and to
compare them computationally for deciding which is the most suitable formulation
to be used when addressing the stochastic version of the MISFLP.

Nevertheless, the interest of finding out the strongest formulation for the determin-
istic MISFLP does not reduce to the possibility of using it in a stochastic framework.
Notice that the MISFLP has been recently proposed, but it is a very flexible model,
which has many applications. In particular, there are many potential extensions of
the MISFLP that have not been studied so far like, for instance, multiple products,
capacitated facilities, and more than one facility layer, among others. Knowing which
is the best formulation for the basic model is an important step towards the possibility
of solving these extensions efficiently.

In this work, we present three 0–1 formulations of the model based on the method-
ology of impulse variables and step variables introduced in Bertsimas and Stock-
Patterson (1998) in a different context. The first formulation we propose basically
coincides with the formulation proposed in Albareda-Sambola et al. (2009). An ex-
tensive computational comparison is made to assess the performance of the three for-
mulations and to select the formulation to use in the stochastic programming setting.
The computations have been performed using a state-of-the-art optimization system.

The rest of the paper is organized as follows: Sect. 2 is devoted to the presentation
of the problem. Section 3 presents the impulse variables, the impulse-step variables,
and the step variables based formulations. Section 4 is devoted to the computational
comparison of the formulations. Finally, Sect. 5 concludes the paper.

2 Problem description

The MISFLP is defined on a network induced by a set of customers, a set of potential
locations for facilities, and a time horizon described in terms of a set of consecu-
tive time periods (see Fig. 1). At each time period, a given number of facilities must
be opened. It is assumed that, once a facility is opened, it remains open throughout
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Fig. 1 Facility location and customer assignment

the time horizon. We further assume that the subset of time periods in which each
customer has demand of service is known. The demand of service of a customer is
not necessarily satisfied at all time periods. At the periods when it is satisfied, the
customer is serviced from the open facility it is assigned to. The assignment of a cus-
tomer can change in different time periods, and the requests for service of unassigned
customers will be neglected. Once a customer has been assigned, we will service it
in all the subsequent periods when it has demand until the end of the planning hori-
zon. We require that at each time period, a minimum number of customers have to be
assigned and that all customers are assigned at the end of the planning horizon.

The opening of a facility at a given time period has associated a depreciation cost.
This depreciation cost includes a fixed setup cost for opening the facility, and its
maintenance cost for the remainder of the planning horizon. On the other hand, we
differentiate between assignment and service costs for customers. For a given cus-
tomer, assignment costs will be incurred at all time periods after it has been assigned
for the first time. We can consider such cost as the price for keeping the service avail-
able to the customer. On the contrary, service cost is only incurred in those periods
in which the customer is assigned and it has demand. As usual, we can consider such
cost as the actual cost for providing the service. Additionally, we assume that, when
a customer is served, all its demand is shipped from one single facility. Thus, service
costs already take into account both the distance from the customer to its assigned
facility, and the quantity of demand. Finally, every time an unassigned customer has
demand, a penalty cost is incurred to reduce the effect of loss of customers goodwill.
Alternatively, this penalty can be seen as the pricing for resorting to external suppli-
ers. The goal of the MISFLP is to find the sets of facilities to open and the assignment
pattern for each time period that minimize the total cost along the time horizon. As we
have just mentioned, the total cost includes setup depreciation costs of open plants,
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assignment and service costs of customers, and penalties for neglected requests for
service.

In the remainder of this paper, the following notation will be used:

Sets

I, Index set of facilities, m = |I|.
J , Index set of customers.

T , Index set of time periods.
Tj , Index set of time periods in which customer j has demand, for j ∈ J .

Parameters

f t
i , setup depreciation cost for facility i in time period t , for i ∈ I, t ∈ T .

pt , minimum number of facilities to be opened at time period t , for t ∈ T .
nt , minimum number of customers to be assigned in time period t , for t ∈ T .
ct
ij , assignment cost of customer j to facility i in time period t , for i ∈ I , t ∈ T ,

j ∈ J .
st
ij , service cost of customer j from facility i in time period t , for i ∈ I , t ∈ Tj ,

j ∈ J .
ρj , penalty for not timely servicing customer j , for j ∈ J .

For all i ∈ I and t ∈ T , let ct
ij = ct

ij + st
ij −ρj , ∀t ∈ Tj , and ct

ij = ct
ij , ∀t ∈ T \ Tj .

For a pair (j, t), we define Ij t as the index set of facilities ordered according to the
nondecreasing c–cost coefficients. For r � s, we will use the following notation:

ir � is ⇐⇒ ct
ir j

≤ ct
isj

.

Notice that, while r and s denote the r th and sth positions in Ij t , respectively, ir
and is denote the corresponding elements in the ordered set Ij t .

3 Formulation of MISFLP

We next present three different formulations for the MISFLP. They differ one from
the other in the type of variables that are used to formulate the location and allocation
decisions. In some cases they are impulse variables, whereas in other cases they are
step variables. The former are set at value one for indicating changes in the status of
the system at a given period, whereas the values of the latter define the actual status
of the system at a given period.

3.1 Impulse variables based formulation F1

Variables

They are 0–1 variables such that

yt
i = 1 if facility i is opened for the first time at time period t and 0 otherwise, for
i ∈ I, t ∈ T .

xt
ij = 1 if customer j is assigned to facility i at time period t and 0 otherwise, for
i ∈ I, j ∈ J , t ∈ T .
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Pure 0–1 Formulation

(F1) min
∑

i∈I

[∑

t∈T

(
f t

i yt
i +

∑

j∈J
ct
ij x

t
ij

)
+

∑

j∈J

∑

t∈Tj

st
ij x

t
ij

]

+
∑

j∈J

∑

t∈Tj

ρj

(
1 −

∑

i∈I
xt
ij

)

=
∑

j∈J
|Tj |ρj + min

∑

i∈I

∑

t∈T

[
f t

i yt
i +

∑

j∈J
ct
ij x

t
ij

]
, (1)

subject to

∑

i∈I

∑

j∈J
xt
ij ≥ nt ∀t ∈ T , (2)

∑

i∈I
xt
ij ≤ 1 ∀j ∈ J , t ∈ T , (3)

∑

i∈I
xt
ij ≥

∑

i∈I
xt−1
ij ∀j ∈ J , t ∈ T : t > 1, (4)

∑

i∈I
x

|T |
ij = 1 ∀j ∈ J , (5)

xt
ij ≤

∑

0≤k≤t

yk
i ∀i ∈ I, j ∈ J , t ∈ T , (6)

∑

i∈I
yt
i ≥ pt ∀t ∈ T , (7)

∑

t∈T
yt
i ≤ 1 ∀i ∈ I, (8)

xt
ij ∈ {0,1} ∀i ∈ I, j ∈ J , t ∈ T , (9)

yt
i ∈ {0,1} ∀i ∈ I, t ∈ T . (10)

The objective function (1) consists of minimizing the total cost. Constraints (2)
require that there are at least nt customers assigned to facilities at time period t .
Constraints (3) ensure that each customer is assigned to at most one facility at each
time period. Constraints (4) demand that a customer is assigned at time period t if it
is already assigned at period t − 1, although the facility can change. Constraints (5)
require that all customers are assigned to some facility at the end of the time horizon.
Notice that, when n|T | = |J |, these constraints can be obtained from (2) and (3).
Constraints (6) ensure that the customers are assigned to open facilities. Constraints
(7) require that a given number pt of facilities be opened at each time period, at least.
Given that at each time period we know the number of customers nt that must be
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served, we also know the required system service capacity at each time period. One
way to guarantee this overall capacity at each time period is by including a cardinality
constraint on the set of plants to open at each time period. Constraints (8) ensure that
the facilities are opened at most once along the time horizon.

Observe that formulation F1 also includes the possibility of forcing to serve all
demand customers at each time period, by setting ρj = +∞ for all j ∈ J . It also
allows the possibility of not assigning customers after the last time period in which
they have demand, by setting zero assignment costs for each customer for all the
periods subsequent to the last one when he has demand.

In (Albareda-Sambola et al. 2009) it was proven that when the set of open facilities
is fixed in F1, i.e., when the vector y is fixed, the coefficient matrix of the resulting
assignment subproblem is totally unimodular, and, thus, it has the integrality property.
As a consequence, we can substitute the binary conditions on the x variables by
bounding constraints of the form 0 ≤ xt

ij ≤ 1, ∀i, j, t .

3.2 Impulse-Step variables based formulation F2

In the formulation we present next, the x-variables are impulse variables as in F1, but
the y-variables have been replaced by step variables.

Variables

ȳt
i = 1 if facility i is open by time period t and 0 otherwise, for i ∈ I, t ∈ T .

xt
ij = 1 if customer j is assigned to facility i at time period t and 0 otherwise, for
i ∈ I, j ∈ J , t ∈ T .

Notice that now ȳt
i = 1 whenever plant i has been opened at time period t or before.

Therefore, yt
i = ȳt

i − ȳt−1
i , ∀i ∈ I, t ∈ T , and ȳ0

i = 0, ∀i ∈ I .

Pure 0–1 Formulation

(F2) min
∑

i∈I

[∑

t∈T

(
f t

i

(
ȳt
i − ȳt−1

i

) +
∑

j∈J
ct
ij x

t
ij

)
+

∑

j∈J

∑

t∈Tj

st
ij x

t
ij

]

+
∑

j∈J

∑

t∈Tj

ρj

(
1 −

∑

i∈I
xt
ij

)

=
∑

j∈J
|Tj |ρj + min

∑

i∈I

∑

t∈T

[(
f t

i − f t+1
i

)
ȳt
i +

∑

j∈J
ct
ij x

t
ij

]
, (11)

subject to
∑

i∈I

∑

j∈J
xt
ij ≥ nt ∀t ∈ T , (12)

∑

i∈I
xt
ij ≤ 1 ∀j ∈ J , t ∈ T , (13)
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∑

i∈I
xt
ij ≥

∑

i∈I
xt−1
ij ∀j ∈ J , t ∈ T : t > 1, (14)

∑

i∈I
x

|T |
ij = 1 ∀j ∈ J , (15)

xt
ij ≤ ȳt

i ∀i ∈ I, j ∈ J , t ∈ T , (16)
∑

i∈I

(
ȳt
i − ȳt−1

i

) ≥ pt ∀t ∈ T , (17)

ȳt−1
i ≤ ȳt

i ∀i ∈ I, t ∈ T , (18)

xt
ij ∈ {0,1} ∀i ∈ I, j ∈ J , t ∈ T , (19)

ȳt
i ∈ {0,1} ∀i ∈ I, t ∈ T . (20)

The objective function (11) consists of minimizing the total cost (where we define
f

|T |+1
i = 0, ∀i ∈ I ). The constraint system (12)–(15) in F2 is as the system (2)–

(5) in F1. Constraints (16) ensure that the customers are assigned to open facilities.
Constraints (17) require that a given number pt of facilities be opened for the first
time at each time period, at least. Constraints (18) ensure all facilities open at time
period t − 1 continue open at time period t .

Given that when the set of ȳ variables is fixed, the resulting assignment subprob-
lem is exactly the same as in the case of F1, again the assignment subproblem has the
integrality property, and we can substitute the binary conditions on the x variables by
bounding constraints of the form 0 ≤ xt

ij ≤ 1, ∀i, j, t .

3.3 Step variables based formulation F3

In this last formulation, both the x-variables and y-variables are step variables.

Variables

ȳt
i = 1 if facility i is opened by time period t and 0 otherwise, for i ∈ I, t ∈ T .

x̄t
ij = 1 if customer j is assigned to a facility i′ for i′ � i at time period t and 0
otherwise, for i ∈ I, j ∈ J , t ∈ T . Recall that, as defined at the end of Sect. 2,
i′ � i, i′, i ∈ Ij t , means that at time period t , facility i′ has a smaller service cost
for customer j than facility i. So, x̄t

ij = 1 means that the customer j is assigned at
time period t to either facility i or a facility, say, i′ with a smaller cost. Notice that
xt
ir j

= x̄t
ir j

− x̄t
ir−1j

, ∀ir ∈ Ij t , j ∈ J , t ∈ T , and x̄t
i0j

= 0, ∀j ∈ J , i ∈ T .

Pure 0–1 Formulation

(F3)
∑

j∈J
|Tj |ρj + min

∑

t∈T

[∑

i∈I

(
f t

i − f t+1
i

)
ȳt
i +

∑

j∈J

∑

ir∈Ij t

(
ct
ir j

− ct
ir+1,j

)
x̄t
ir j

]
,

(21)
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subject to
∑

j∈J
x̄t
imj ≥ nt ∀t ∈ T , (22)

x̄t
ir−1,j

≤ x̄t
ir j

∀ir ∈ Ij t , j ∈ J , t ∈ T , (23)

x̄t−1
imj ≤ x̄t

imj ∀j ∈ J , t ∈ T : t > 1, (24)

x̄
|T |
imj = 1 ∀j ∈ J , (25)

x̄t
ir j

− x̄t
ir−1,j

≤ ȳt
ir

∀ir ∈ Ij t , j ∈ J , t ∈ T , (26)
∑

i∈I

(
ȳt
i − ȳt−1

i

) ≥ pt ∀t ∈ T , (27)

ȳt−1
i ≤ ȳt

i ∀i ∈ I, t ∈ T , (28)

x̄t
ij ∈ {0,1} ∀i ∈ I, j ∈ J , t ∈ T , (29)

ȳt
i ∈ {0,1} ∀i ∈ I, t ∈ T . (30)

Formulation (21)–(30) is directly derived from formulation (11)–(20), given the re-
definition of the x-variables and the definition of set Ij t , except for constraints (23).
This is so, since for each customer and time period, the last term in the objective
function (21) accounts for the assignment cost of one facility, at most. Constraints
(23) come out directly from the nonnegativity of xt

ir j
, as it has correctly been pointed

out by a referee.
Observe that now, when the set of ȳ variables is fixed, the structure of the resulting

assignment subproblem is no longer the same as in the case of F1. However, given
the relationship between the x and the x̄ variables, it is easy to see that the coefficient
matrix of the assignment subproblem in the x̄ variables can be transformed into the
coefficient matrix of the assignment subproblem in the x variables by means of el-
ementary transformations of its columns. In this transformation, constraints (23) are
associated with the nonnegativity constraints of the x variables in formulation F1.
Therefore, the integrality property of the assignment subproblem in the x̄ variables
also holds, and we can substitute the binary conditions on the x variables by bounding
constraints of the form 0 ≤ x̄t

ij ≤ 1, ∀i, j, t .

4 Computational comparison

In order to compare the quality of the proposed formulations, we have solved a series
of instances derived from some of the MISFLP instances in Albareda-Sambola et al.
(2009). In particular, we have considered three sets of instances, all with 30 facility
locations; the ones with 4 time periods, the ones with 8 time periods, and the ones
with 12 time periods, all with the variants for 50 and 100 customers.

In Albareda-Sambola et al. (2009) the instances are generated as follows:

– The setup depreciation costs are the sum of two terms:
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– A fixed opening cost which is drawn from a uniform distribution in [3000,5000].
– Maintenance costs associated with each period, which are added to the setup cost

over all the periods, since a facility is opened until the end of the time horizon,
and which are drawn from a uniform distribution in [50 |J |

|T | ,100 |J |
|T | ].

– Assignment costs are drawn from a uniform distribution in [10,100].
– The values of nt follow a uniform distribution in [nt−1, |J |] for t = 1, . . . , |T |− 1

(n0 = 1), whereas n|T | = |J |.
– For each instance, the value pt , t ∈ T was generated as follows:

– We first obtain a number p from a discrete uniform distribution in [|T |, |I|].
This number is an approximation of the total number of facilities to be opened∑

t∈T pt , and p
|T | is the average number of facilities to be opened per period.

– For t = 1, . . . , |T |, generate pt from a discrete uniform distribution in [a, b]
with a = 1 and b = �2 p

|T | − a�.

– If
∑

t∈T pt ≥ |I|, we reject the instance and restart the process again.

For the variant of the MISFLP considered in this paper, some extra information
had to be generated to account for customer service costs in the periods when they
have demand, st

ij , and penalty costs for neglecting customers demands, ρj . To this
end, requests for service of each customer at each time period, dt

j , have been gener-
ated following independent Bernoulli distributions with probability p = 0.5. Observe
that since we are dealing with single source, each service cost can also be seen as a
fixed cost which is either fully accounted for, or not accounted at all. Thus, the mag-
nitude for such costs will depend both on the type of service which is given and on
the quantity of demand that is serviced. As a consequence, some suitable interval for
the service costs is difficult to estimate, since one can figure out different types of ap-
plications where these costs are similar in magnitude to assignment costs, and other
applications where the magnitudes would be rather different. For our computational
experiments, service costs have been randomly taken from the interval [10,100],
which is the same interval as for assignment costs. Penalties for not servicing the
demand of a customer have been defined as ρj = 0.35(

∑
i,t (c

t
ij + st

ij ))/(|I||T |).
Finally, to obtain instances where the different parts of the objective function are

equally relevant in the optimal solutions, we have rescaled the facility setup depreci-
ation costs by dividing them by 95|I|/|J |.

Our modeling approach has been implemented in a C code. We use the CPLEX
v.11.1 optimization engine as the solver. The computations were carried out under a
Pentium IV, 512 RAM, Windows XP, having a CPU speed of 1.8 GHz.

We have generated 10 instances for each set referred above. Each instance is
named as follows: Et-Py-Cx-w, where t indicates the number of time periods, |T |;
y, the number of facilities, |I|; x, the number of customers, |J |; and w, the instance
correlative number into its set. Table 1 shows the model dimensions for the impulse,
impulse–step, and step formulations for each set. The headings are as follows: nv,
number of 0–1 variables; nr, number of constraints; dens%, matrix density.

For all formulations, there were instances that could not be optimally solved within
the elapsed time limit that we set to six hours. Table 2 gives the optimality GAP for the
formulations. The headings are as follows: ZLP, solution value of the LP relaxation of
the original problem; ZIP, solution value found by CPLEX for the original problem;
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Table 1 Formulations’ dimensions

Instance Impulse formulation F1 Impulse–step formulation F2 Step formulation F3

nv nr dens nv nr dens nv nr dens

(%) (%) (%)

E4-P30-C50 6120 6388 0.108 6120 6448 0.085 6120 12048 0.041

E8-P30-C50 12240 12796 0.071 12240 12976 0.044 12240 24176 0.021

E12-P30-C50 18360 19204 0.058 18360 19504 0.030 18360 36304 0.014

E4-P30-C100 12120 12738 0.055 12120 12798 0.043 12120 23998 0.021

E8-P30-C100 24240 25546 0.036 24240 25726 0.022 24240 48126 0.010

E12-P30-C100 36360 38354 0.029 36360 38654 0.015 36360 72254 0.006

GAP, optimality gap defined as (ZIP − Z)/Z%, where Z is the best known lower
bound of the optimal solution; nn, number of explored branch-and-bound nodes; t t ,
elapsed time (secs.).

We can observe in Table 2 that the impulse–step formulation F2 (11)–(20) gives
better results than the impulse formulation F1 (1)–(10) and the step formulation F3
(21)–(30) for the elapsed time when the optimal solution has been obtained. It also
gives better optimality GAP when the time limit is reached, see also Table 3 below.

Additionally, we can observe that the time limit is reached for the instances with
100 customers. The computational effort is usually affordable for instances with 50
customers.

Furthermore, among the 40 instances solved up to optimality by formulation F2,
see Table 2, there are 4 instances that have been solved only by this formulation. But,
all instances solved up to optimality by the impulse or step formulations have also
been solved by the impulse-step one, except the outlier case E4-P30-C100-2 whose
optimality is only obtained by the step formulation.

The superiority of formulation F2 is twofold. On the one hand, observing the in-
stances that could be solved exactly with all three formulations, we can see that,
in general, fewer nodes of the branch and bound tree and smaller elapsed time are
needed when this formulation was used. On the other hand, a smaller GAP is ob-
tained by formulation F2 for the cases that are solved without proving the optimality.

Table 3 shows the following average results for the instances: incumbent solution

value (ZIP), optimality gap (GAP), number of explored branch-and-cut nodes (nn),
and elapsed time (t t) for all the instances, namely, those instances where the optimal
solution has been obtained by the impulse–step formulation and the rest of instances
(i.e., those where the time limit has been reached without obtaining/proving the opti-
mality). Observe that the deviation from the best is defined as

∑

j=1,2,3

Z
j
IP − mini=1,2,3{Zi

IP}
mini=1,2,3{Zi

IP} %,

where Z
j
IP is the incumbent solution value for formulation Fj . We can notice that,

clearly, the impulse–step formulation gives better results than the other two formu-
lations. Notice that the ratios F2 is better versus F1 and F2 is better versus F3 are
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Table 3 Average performance

Instances # of Formulation ZIP Deviation GAP nn tt

instances from the

best (%)

All 60 impulse 9752.34 0.12 0.71 11794 9446.18

impulse–step 9734.83 0.01 0.25 10660 7965.92

step 9746.44 0.09 0.61 5333 9410.27

Solved up to 40 impulse 6696.83 0.05 0.20 7373 3369.28

optimality impulse–step 6690.06 0.00 0.01 2323 1148.88

by F2 step 6690.59 0.01 0.09 3854 3562.73

Not solved up 20 impulse 15863.34 0.24 1.73 20635 21600.00

to optimality impulse–step 15824.37 0.02 0.75 27335 21600.00

by F2 step 15858.16 0.25 1.64 8291 21105.35

about 2.5:1. More specifically, formulation F2 gives the best results for the cases
solved up to optimality and the instances where the elapsed time is reached before
guaranteeing the optimality of the incumbent solution. Notice also that the elapsed
time of formulation F2 for the cases where the optimality is reached is only 34% and
32% of the time required by the formulations F1 and F3, respectively. On the other
hand, the average GAP of formulation F2 for the cases not solved up to optimality
in the time limit is only 43% and 45% of the average GAP obtained for the formu-
lations F1 and F3, respectively. Finally, we can see that the average elapsed time of
formulation F3 in those cases is influenced by the time required by the outlier case
E4-P30-C100.2.

4.1 Graphical comparison of the results obtained with the different formulations

Since formulation F2 allows one to solve the problem most efficiently among the
tested instances, we next compare the results obtained by formulations F1 and F3
with respect to the results obtained by formulation F2. See Figs. 2 and 3. In all graph-
ics, each dot of the graph represents an instance, and its coordinates are taken as
( z−z2IP

z2IP
%, t−t2IP

t2IP
%), where z2IP and t2IP give the solution value and the elapsed time

obtained by CPLEX, respectively, for formulation F2, and z and t give the same val-
ues for the formulation considered in each graph. That is, the x coordinate compares
the values of the obtained solutions with the formulations, whereas the y coordinate
gives the percent deviation of the time taken by CPLEX to solve that instance with
the formulations with respect to the time taken with formulation F2.

Notice that for formulation F3, all instances have nonnegative coordinates but two
that have coordinates (−0.03,0) and (0,−45.8). This means that formulation F3 was
only better than formulation F2 twice. Once it was slightly better with respect to the
solution quality, and once it was better with respect to the computational effort. In the
case of formulation F1, there are some instances with one negative coordinate, but
most of them appear represented with positive values of time deviation and solution
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Fig. 2 Formulation F1 with respect to formulation F2

Fig. 3 Formulation F3 with respect to formulation F2

value deviation. Indeed, the positive deviations in all cases are larger in absolute
value than the negative ones. These figures give further evidence of the superiority of
formulation F2 over the others, specially in the case of formulation F3.
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5 Conclusions

In this paper we have presented a variation of the multi-period incremental service
facility location problem (MISFLP) where each customer needs to be serviced only
in a subset of periods along the time horizon. Three 0–1 equivalent formulations are
proposed, based on the impulse and step variables approaches. An intensive com-
putational experimentation has been performed to assess the tightness of the formu-
lations. The first conclusion to be withdrawn is that the problem is very difficult to
solve. The second conclusion is that the formulation considering the x-variables (i.e.,
the assignment variables) based on the impulse formulation and the y-variables (i.e.,
the facility site location variables) based on the step formulation (i.e., formulation F2,
see Sect. 3.2) gives better results, and, then, it is considered for future research to treat
the uncertainty in the customer availability and the minimum number of customers
to be serviced at each time period.

Acknowledgement The authors like to thank the two anonymous referees for their helpful critical com-
ments that have strongly improved the insights and presentation of the paper.
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