2,584 research outputs found

    Surface representations for 3D face recognition

    Get PDF

    LiveCap: Real-time Human Performance Capture from Monocular Video

    Full text link
    We present the first real-time human performance capture approach that reconstructs dense, space-time coherent deforming geometry of entire humans in general everyday clothing from just a single RGB video. We propose a novel two-stage analysis-by-synthesis optimization whose formulation and implementation are designed for high performance. In the first stage, a skinned template model is jointly fitted to background subtracted input video, 2D and 3D skeleton joint positions found using a deep neural network, and a set of sparse facial landmark detections. In the second stage, dense non-rigid 3D deformations of skin and even loose apparel are captured based on a novel real-time capable algorithm for non-rigid tracking using dense photometric and silhouette constraints. Our novel energy formulation leverages automatically identified material regions on the template to model the differing non-rigid deformation behavior of skin and apparel. The two resulting non-linear optimization problems per-frame are solved with specially-tailored data-parallel Gauss-Newton solvers. In order to achieve real-time performance of over 25Hz, we design a pipelined parallel architecture using the CPU and two commodity GPUs. Our method is the first real-time monocular approach for full-body performance capture. Our method yields comparable accuracy with off-line performance capture techniques, while being orders of magnitude faster

    Structure-aware Editable Morphable Model for 3D Facial Detail Animation and Manipulation

    Full text link
    Morphable models are essential for the statistical modeling of 3D faces. Previous works on morphable models mostly focus on large-scale facial geometry but ignore facial details. This paper augments morphable models in representing facial details by learning a Structure-aware Editable Morphable Model (SEMM). SEMM introduces a detail structure representation based on the distance field of wrinkle lines, jointly modeled with detail displacements to establish better correspondences and enable intuitive manipulation of wrinkle structure. Besides, SEMM introduces two transformation modules to translate expression blendshape weights and age values into changes in latent space, allowing effective semantic detail editing while maintaining identity. Extensive experiments demonstrate that the proposed model compactly represents facial details, outperforms previous methods in expression animation qualitatively and quantitatively, and achieves effective age editing and wrinkle line editing of facial details. Code and model are available at https://github.com/gerwang/facial-detail-manipulation.Comment: ECCV 202
    • …
    corecore