193 research outputs found

    Image Denoising with Graph-Convolutional Neural Networks

    Get PDF
    Recovering an image from a noisy observation is a key problem in signal processing. Recently, it has been shown that data-driven approaches employing convolutional neural networks can outperform classical model-based techniques, because they can capture more powerful and discriminative features. However, since these methods are based on convolutional operations, they are only capable of exploiting local similarities without taking into account non-local self-similarities. In this paper we propose a convolutional neural network that employs graph-convolutional layers in order to exploit both local and non-local similarities. The graph-convolutional layers dynamically construct neighborhoods in the feature space to detect latent correlations in the feature maps produced by the hidden layers. The experimental results show that the proposed architecture outperforms classical convolutional neural networks for the denoising task.Comment: IEEE International Conference on Image Processing (ICIP) 201

    DeepSUM++: Non-local Deep Neural Network for Super-Resolution of Unregistered Multitemporal Images

    Get PDF
    Deep learning methods for super-resolution of a remote sensing scene from multiple unregistered low-resolution images have recently gained attention thanks to a challenge proposed by the European Space Agency. This paper presents an evolution of the winner of the challenge, showing how incorporating non-local information in a convolutional neural network allows to exploit self-similar patterns that provide enhanced regularization of the super-resolution problem. Experiments on the dataset of the challenge show improved performance over the state-of-the-art, which does not exploit non-local information.Comment: arXiv admin note: text overlap with arXiv:1907.0649

    Implementing graph neural networks with TensorFlow-Keras

    Full text link
    Graph neural networks are a versatile machine learning architecture that received a lot of attention recently. In this technical report, we present an implementation of convolution and pooling layers for TensorFlow-Keras models, which allows a seamless and flexible integration into standard Keras layers to set up graph models in a functional way. This implies the usage of mini-batches as the first tensor dimension, which can be realized via the new RaggedTensor class of TensorFlow best suited for graphs. We developed the Keras Graph Convolutional Neural Network Python package kgcnn based on TensorFlow-Keras that provides a set of Keras layers for graph networks which focus on a transparent tensor structure passed between layers and an ease-of-use mindset
    • …
    corecore