2,169 research outputs found

    Image Denoising with Graph-Convolutional Neural Networks

    Get PDF
    Recovering an image from a noisy observation is a key problem in signal processing. Recently, it has been shown that data-driven approaches employing convolutional neural networks can outperform classical model-based techniques, because they can capture more powerful and discriminative features. However, since these methods are based on convolutional operations, they are only capable of exploiting local similarities without taking into account non-local self-similarities. In this paper we propose a convolutional neural network that employs graph-convolutional layers in order to exploit both local and non-local similarities. The graph-convolutional layers dynamically construct neighborhoods in the feature space to detect latent correlations in the feature maps produced by the hidden layers. The experimental results show that the proposed architecture outperforms classical convolutional neural networks for the denoising task.Comment: IEEE International Conference on Image Processing (ICIP) 201

    TactileGCN: A Graph Convolutional Network for Predicting Grasp Stability with Tactile Sensors

    Get PDF
    Tactile sensors provide useful contact data during the interaction with an object which can be used to accurately learn to determine the stability of a grasp. Most of the works in the literature represented tactile readings as plain feature vectors or matrix-like tactile images, using them to train machine learning models. In this work, we explore an alternative way of exploiting tactile information to predict grasp stability by leveraging graph-like representations of tactile data, which preserve the actual spatial arrangement of the sensor's taxels and their locality. In experimentation, we trained a Graph Neural Network to binary classify grasps as stable or slippery ones. To train such network and prove its predictive capabilities for the problem at hand, we captured a novel dataset of approximately 5000 three-fingered grasps across 41 objects for training and 1000 grasps with 10 unknown objects for testing. Our experiments prove that this novel approach can be effectively used to predict grasp stability

    Structured Sequence Modeling with Graph Convolutional Recurrent Networks

    Full text link
    This paper introduces Graph Convolutional Recurrent Network (GCRN), a deep learning model able to predict structured sequences of data. Precisely, GCRN is a generalization of classical recurrent neural networks (RNN) to data structured by an arbitrary graph. Such structured sequences can represent series of frames in videos, spatio-temporal measurements on a network of sensors, or random walks on a vocabulary graph for natural language modeling. The proposed model combines convolutional neural networks (CNN) on graphs to identify spatial structures and RNN to find dynamic patterns. We study two possible architectures of GCRN, and apply the models to two practical problems: predicting moving MNIST data, and modeling natural language with the Penn Treebank dataset. Experiments show that exploiting simultaneously graph spatial and dynamic information about data can improve both precision and learning speed
    • …
    corecore