This paper introduces Graph Convolutional Recurrent Network (GCRN), a deep
learning model able to predict structured sequences of data. Precisely, GCRN is
a generalization of classical recurrent neural networks (RNN) to data
structured by an arbitrary graph. Such structured sequences can represent
series of frames in videos, spatio-temporal measurements on a network of
sensors, or random walks on a vocabulary graph for natural language modeling.
The proposed model combines convolutional neural networks (CNN) on graphs to
identify spatial structures and RNN to find dynamic patterns. We study two
possible architectures of GCRN, and apply the models to two practical problems:
predicting moving MNIST data, and modeling natural language with the Penn
Treebank dataset. Experiments show that exploiting simultaneously graph spatial
and dynamic information about data can improve both precision and learning
speed