459,327 research outputs found

    Foundational Theory for Understanding Policy Routing Dynamics

    Full text link
    In this paper we introduce a theory of policy routing dynamics based on fundamental axioms of routing update mechanisms. We develop a dynamic policy routing model (DPR) that extends the static formalism of the stable paths problem (introduced by Griffin et al.) with discrete synchronous time. DPR captures the propagation of path changes in any dynamic network irrespective of its time-varying topology. We introduce several novel structures such as causation chains, dispute fences and policy digraphs that model different aspects of routing dynamics and provide insight into how these dynamics manifest in a network. We exercise the practicality of the theoretical foundation provided by DPR with two fundamental problems: routing dynamics minimization and policy conflict detection. The dynamics minimization problem utilizes policy digraphs, that capture the dependencies in routing policies irrespective of underlying topology dynamics, to solve a graph optimization problem. This optimization problem explicitly minimizes the number of routing update messages in a dynamic network by optimally changing the path preferences of a minimal subset of nodes. The conflict detection problem, on the other hand, utilizes a theoretical result of DPR where the root cause of a causation cycle (i.e., cycle of routing update messages) can be precisely inferred as either a transient route flap or a dispute wheel (i.e., policy conflict). Using this result we develop SafetyPulse, a token-based distributed algorithm to detect policy conflicts in a dynamic network. SafetyPulse is privacy preserving, computationally efficient, and provably correct.National Science Foundation (CISE/CCF 0820138, CISE/CSR 0720604, CISE/CNS 0524477, CNS/ITR 0205294, CISE/EIA RI #0202067

    Detection of static and dynamic activities using uniaxial accelerometers

    Get PDF
    Rehabilitation treatment may be improved by objective analysis of activities of daily living. For this reason, the feasibility of distinguishing several static and dynamic activities (standing, sitting, lying, walking, ascending stairs, descending stairs, cycling) using a small set of two or three uniaxial accelerometers mounted on the body was investigated. The accelerometer signals can be measured with a portable data acquisition system, which potentially makes it possible to perform online detection of static and dynamic activities in the home environment. However, the procedures described in this paper have yet to be evaluated in the home environment. Experiments were conducted on ten healthy subjects, with accelerometers mounted on several positions and orientations on the body, performing static and dynamic activities according to a fixed protocol. Specifically, accelerometers on the sternum and thigh were evaluated. These accelerometers were oriented in the sagittal plane, perpendicular to the long axis of the segment (tangential), or along this axis (radial). First, discrimination between the static or dynamic character of activities was investigated. This appeared to be feasible using an rms-detector applied on the signal of one sensor tangentially mounted on the thigh. Second, the distinction between static activities was investigated. Standing, sitting, lying supine, on a side and prone could be distinguished by observing the static signals of two accelerometers, one mounted tangentially on the thigh, and the second mounted radially on the sternum. Third, the distinction between the cyclical dynamic activities walking, stair ascent, stair descent and cycling was investigated. The discriminating potentials of several features of the accelerometer signals were assessed: the mean value, the standard deviation, the cycle time and the morphology. Signal morphology was expressed by the maximal cross-correlation coefficients with template signals for the different dynamic activities. The mean signal values and signal morphology of accelerometers mounted tangentially on the thigh and the sternum appeared to contribute to the discrimination of dynamic activities with varying detection performances. The standard deviation of the signal and the cycle time were primarily related to the speed of the dynamic activities, and did not contribute to the discrimination of the activities. Therefore, discrimination of dynamic activities on the basis of the combined evaluation of the mean signal value and signal morphology is propose

    Detecting Turning Points with Many Predictors through Hidden Markov Models

    Get PDF
    This paper explores the American business cycle with the Hidden Markov Model (HMM) as a monitoring tool using monthly data. It exhibits ten US time series which offer reliable information to detect recessions in real time. It also proposes and assesses the performances of different and complementary “recession models” based on Markovian processes, discusses the most efficient and easiest way of encompassing information through these models and draws three main conclusions: simple HMM are decisive to monitor the business cycle and some series are proved highly reliable; more sophisticated models such as the Dynamic Factor with Markov Switching (DFMS) model or Stock and Watson’s Experimental Recession Index seem not to be more powerful than simple (univariate or pseudo-multivariate) Hidden Markov Models, which remain far more parsimonious; combining information in temporal space seems to work marginally better than in probability space for high frequency data. We conclude about leading and “real time detection” properties related to HMM and give some hints for further research.Business Cycle, Markov Switching, Dynamic Factor, Coincident Indicators

    Turning-point indicators from business surveys: real-time detection for the euro area and its major member countries

    Get PDF
    We present tools for real-time detection of turning points in the industrial production growth-cycle of the euro area and its four largest economies. In particular, we apply a multivariate hidden Markov model to national survey results – i.e. to the earliest information about current economic developments - in order to estimate the probability of expansionary and recessionary phases. The balances of opinions used as inputs of the model are selected by ranking them according to their degree of commonality with respect to the cyclical fluctuations of the industrial sector, as estimated with the Generalized Dynamic Factor Model. The indicators appear reliable and stable.business cycle, hidden Markov model, business surveys

    Real-time detection of the business cycle using SETAR models

    Get PDF
    We consider a threshold time series model in order to take into account some stylized facts of the business cycle such as asymmetries in the phases. Our aim is to point out some thresholds under (over) which a signal of turning point could be given. First, we introduce the various threshold models and we discuss both their statistical theoretical and empirical properties. Specifically, we review the classical techniques to estimate the number of regimes, the threshold, the delay and the parameters of the model. Then, we apply these models to the euro area industrial production index to detect, through a dynamic simulation approach, the dates of peaks and thoughs in business cycle.Economic cycle – Turning point detection Threshold model – Euro area IPI

    AndroShield:automated Android applications vulnerability detection, a hybrid static and dynamic analysis approach

    Get PDF
    The security of mobile applications has become a major research field which is associated with a lot of challenges. The high rate of developing mobile applications has resulted in less secure applications. This is due to what is called the “rush to release” as defined by Ponemon Institute. Security testing—which is considered one of the main phases of the development life cycle—is either not performed or given minimal time; hence, there is a need for security testing automation. One of the techniques used is Automated Vulnerability Detection. Vulnerability detection is one of the security tests that aims at pinpointing potential security leaks. Fixing those leaks results in protecting smart-phones and tablet mobile device users against attacks. This paper focuses on building a hybrid approach of static and dynamic analysis for detecting the vulnerabilities of Android applications. This approach is capsuled in a usable platform (web application) to make it easy to use for both public users and professional developers. Static analysis, on one hand, performs code analysis. It does not require running the application to detect vulnerabilities. Dynamic analysis, on the other hand, detects the vulnerabilities that are dependent on the run-time behaviour of the application and cannot be detected using static analysis. The model is evaluated against different applications with different security vulnerabilities. Compared with other detection platforms, our model detects information leaks as well as insecure network requests alongside other commonly detected flaws that harm users’ privacy. The code is available through a GitHub repository for public contribution

    Inferring gene regulatory networks from gene expression data by a dynamic Bayesian network-based model

    Get PDF
    Enabled by recent advances in bioinformatics, the inference of gene regulatory networks (GRNs) from gene expression data has garnered much interest from researchers. This is due to the need of researchers to understand the dynamic behavior and uncover the vast information lay hidden within the networks. In this regard, dynamic Bayesian network (DBN) is extensively used to infer GRNs due to its ability to handle time-series microarray data and modeling feedback loops. However, the efficiency of DBN in inferring GRNs is often hampered by missing values in expression data, and excessive computation time due to the large search space whereby DBN treats all genes as potential regulators for a target gene. In this paper, we proposed a DBN-based model with missing values imputation to improve inference efficiency, and potential regulators detection which aims to lessen computation time by limiting potential regulators based on expression changes. The performance of the proposed model is assessed by using time-series expression data of yeast cell cycle. The experimental results showed reduced computation time and improved efficiency in detecting gene-gene relationships

    Inferring gene regulatory networks from gene expression data by a dynamic Bayesian network-based model

    Get PDF
    Enabled by recent advances in bioinformatics, the inference of gene regulatory networks (GRNs) from gene expression data has garnered much interest from researchers. This is due to the need of researchers to understand the dynamic behavior and uncover the vast information lay hidden within the networks. In this regard, dynamic Bayesian network (DBN) is extensively used to infer GRNs due to its ability to handle time-series microarray data and modeling feedback loops. However, the efficiency of DBN in inferring GRNs is often hampered by missing values in expression data, and excessive computation time due to the large search space whereby DBN treats all genes as potential regulators for a target gene. In this paper, we proposed a DBN-based model with missing values imputation to improve inference efficiency, and potential regulators detection which aims to lessen computation time by limiting potential regulators based on expression changes. The performance of the proposed model is assessed by using time-series expression data of yeast cell cycle. The experimental results showed reduced computation time and improved efficiency in detecting gene-gene relationships
    • 

    corecore