118 research outputs found

    A Diffusion Model of Dynamic Participant Inflow Management

    Full text link
    This paper studies a diffusion control problem motivated by challenges faced by public health agencies who run clinics to serve the public. A key challenge for these agencies is to motivate individuals to participate in the services provided. They must manage the flow of (voluntary) participants so that the clinic capacity is highly utilized, but not overwhelmed. The organization can deploy costly promotion activities to increase the inflow of participants. Ideally, the system manager would like to have enough participants waiting in a queue to serve as many individuals as possible and efficiently use clinic capacity. However, if too many participants sign up, resulting in a long wait, participants may become irritated and hesitate to participate again in the future. We develop a diffusion model of managing participant inflow mechanisms. Each mechanism corresponds to choosing a particular drift rate parameter for the diffusion model. The system manager seeks to balance three different costs optimally: i) a linear holding cost that captures the congestion concerns; ii) an idleness penalty corresponding to wasted clinic capacity and negative impact on public health, and iii) costs of promotion activities. We show that a nested-threshold policy for deployment of participant inflow mechanisms is optimal under the long-run average cost criterion. In this policy, the system manager progressively deploys mechanisms in increasing order of cost, as the number of participants in the queue decreases. We derive explicit formulas for the queue length thresholds that trigger each promotion activity, providing the system manager with guidance on when to use each mechanism

    A Dynamic Model for Managing Volunteer Engagement

    Full text link
    Non-profit organizations that provide food, shelter, and other services to people in need, rely on volunteers to deliver their services. Unlike paid labor, non-profit organizations have less control over unpaid volunteers' schedules, efforts, and reliability. However, these organizations can invest in volunteer engagement activities to ensure a steady and adequate supply of volunteer labor. We study a key operational question of how a non-profit organization can manage its volunteer workforce capacity to ensure consistent provision of services. In particular, we formulate a multiclass queueing network model to characterize the optimal engagement activities for the non-profit organization to minimize the costs of enhancing volunteer engagement, while maximizing productive work done by volunteers. Because this problem appears intractable, we formulate an approximating Brownian control problem in the heavy traffic limit and study the dynamic control of that system. Our solution is a nested threshold policy with explicit congestion thresholds that indicate when the non-profit should optimally pursue various types of volunteer engagement activities. A numerical example calibrated using data from a large food bank shows that our dynamic policy for deploying engagement activities can significantly reduce the food bank's total annual cost of its volunteer operations while still maintaining almost the same level of social impact. This improvement in performance does not require any additional resources - it only requires that the food bank strategically deploy its engagement activities based on the number of volunteers signed up to work volunteer shifts

    On the modelling and performance measurement of service networks with heterogeneous customers

    Get PDF
    Service networks are common throughout the modern world, yet understanding how their individual services effect each other and contribute to overall system performance can be difficult. An important metric in these systems is the quality of service. This is an often overlooked measure when modelling and relates to how customers are affected by a service. Presented is a novel perspective for evaluating the performance of multi-class queueing networks through a combination of operational performance and service quality—denoted the “flow of outcomes”. Here, quality is quantified by customers moving between or remaining in classes as a result of receiving service or lacking service. Importantly, each class may have different flow parameters, hence the positive/negative impact of service quality on the system’s operational performance is captured. A fluid–diffusion approximation for networks of stochastic queues is used since it allows for several complex flow dynamics: the sequential use of multiple services; abandonment and possible rejoin; reuse of the same service; multiple customers classes; and, class and time dependent parameters. The scalability of the approach is a significant benefit since, the modelled systems may be relatively large, and the included flow dynamics may render the system analytically intractable or computationally burdensome. Under the right conditions, this method provides a framework for quickly modelling large time-dependent systems. This combination of computational speed and the “flow of outcomes” provides new avenues for the analysis of multi-class service networks where both service quality and operational efficiency interact

    Optimal buffer size and dynamic rate control for a queueing system with impatient customers in heavy traffic

    Get PDF
    AbstractWe address a rate control problem associated with a single server Markovian queueing system with customer abandonment in heavy traffic. The controller can choose a buffer size for the queueing system and also can dynamically control the service rate (equivalently the arrival rate) depending on the current state of the system. An infinite horizon cost minimization problem is considered here. The cost function includes a penalty for each rejected customer, a control cost related to the adjustment of the service rate and a penalty for each abandoning customer. We obtain an explicit optimal strategy for the limiting diffusion control problem (the Brownian control problem or BCP) which consists of a threshold-type optimal rejection process and a feedback-type optimal drift control. This solution is then used to construct an asymptotically optimal control policy, i.e. an optimal buffer size and an optimal service rate for the queueing system in heavy traffic. The properties of generalized regulator maps and weak convergence techniques are employed to prove the asymptotic optimality of this policy. In addition, we identify the parameter regimes where the infinite buffer size is optimal

    Operational macroscopic modeling of complex urban road intersections

    Get PDF
    This article describes a new approach to the macroscopic first order modeling and simulation of traffic flow in complex urban road intersections. The framework is theoretically sound, operational, and comprises a large body of models presented so far in the literature. Working within the generic node model class of Tampere et al. (forthcoming), the approach is developed in two steps. First, building on the incremental transfer principle of Daganzo et al. (1997), an incremental node model for general road intersections is developed. A limitation of this model (as of the original incremental transfer principle) is that it does not capture situations where the increase of one flow decreases another flow, e.g., due to conflicts. In a second step, the new model is therefore supplemented with the capability to describe such situations. A fixed-point formulation of the enhanced model is given, solution existence and uniqueness are investigated, and two solution algorithms are developed. The feasibility and realism of the new approach is demonstrated through both a synthetic and a real case study

    Control of multiclass queueing systems with abandonments and adversarial customers

    Get PDF
    This thesis considers the defensive surveillance of multiple public areas which are the open, exposed targets of adversarial attacks. We address the operational problem of identifying a real time decision-making rule for a security team in order to minimise the damage an adversary can inflict within the public areas. We model the surveillance scenario as a multiclass queueing system with customer abandonments, wherein the operational problem translates into developing service policies for a server in order to minimise the expected damage an adversarial customer can inflict on the system. We consider three different surveillance scenarios which may occur in realworld security operations. In each scenario it is only possible to calculate optimal policies in small systems or in special cases, hence we focus on developing heuristic policies which can be computed and demonstrate their effectiveness in numerical experiments. In the random adversary scenario, the adversary attacks the system according to a probability distribution known to the server. This problem is a special case of a more general stochastic scheduling problem. We develop new results which complement the existing literature based on priority policies and an effective approximate policy improvement algorithm. We also consider the scenario of a strategic adversary who chooses where to attack. We model the interaction of the server and adversary as a two-person zero-sum game. We develop an effective heuristic based on an iterative algorithm which populates a small set of service policies to be randomised over. Finally, we consider the scenario of a strategic adversary who chooses both where and when to attack and formulate it as a robust optimisation problem. In this case, we demonstrate the optimality of the last-come first-served policy in single queue systems. In systems with multiple queues, we develop effective heuristic policies based on the last-come first-served policy which incorporates randomisation both within service policies and across service policies
    • …
    corecore