1,132 research outputs found

    Online Learning for Offloading and Autoscaling in Energy Harvesting Mobile Edge Computing

    Full text link
    Mobile edge computing (a.k.a. fog computing) has recently emerged to enable in-situ processing of delay-sensitive applications at the edge of mobile networks. Providing grid power supply in support of mobile edge computing, however, is costly and even infeasible (in certain rugged or under-developed areas), thus mandating on-site renewable energy as a major or even sole power supply in increasingly many scenarios. Nonetheless, the high intermittency and unpredictability of renewable energy make it very challenging to deliver a high quality of service to users in energy harvesting mobile edge computing systems. In this paper, we address the challenge of incorporating renewables into mobile edge computing and propose an efficient reinforcement learning-based resource management algorithm, which learns on-the-fly the optimal policy of dynamic workload offloading (to the centralized cloud) and edge server provisioning to minimize the long-term system cost (including both service delay and operational cost). Our online learning algorithm uses a decomposition of the (offline) value iteration and (online) reinforcement learning, thus achieving a significant improvement of learning rate and run-time performance when compared to standard reinforcement learning algorithms such as Q-learning. We prove the convergence of the proposed algorithm and analytically show that the learned policy has a simple monotone structure amenable to practical implementation. Our simulation results validate the efficacy of our algorithm, which significantly improves the edge computing performance compared to fixed or myopic optimization schemes and conventional reinforcement learning algorithms.Comment: arXiv admin note: text overlap with arXiv:1701.01090 by other author

    Optimal Resource Allocation in Ultra-low Power Fog-computing SWIPT-based Networks

    Full text link
    In this paper, we consider a fog computing system consisting of a multi-antenna access point (AP), an ultra-low power (ULP) single antenna device and a fog server. The ULP device is assumed to be capable of both energy harvesting (EH) and information decoding (ID) using a time-switching simultaneous wireless information and power transfer (SWIPT) scheme. The ULP device deploys the harvested energy for ID and either local computing or offloading the computations to the fog server depending on which strategy is most energy efficient. In this scenario, we optimize the time slots devoted to EH, ID and local computation as well as the time slot and power required for the offloading to minimize the energy cost of the ULP device. Numerical results are provided to study the effectiveness of the optimized fog computing system and the relevant challenges

    Exploiting Non-Causal CPU-State Information for Energy-Efficient Mobile Cooperative Computing

    Full text link
    Scavenging the idling computation resources at the enormous number of mobile devices can provide a powerful platform for local mobile cloud computing. The vision can be realized by peer-to-peer cooperative computing between edge devices, referred to as co-computing. This paper considers a co-computing system where a user offloads computation of input-data to a helper. The helper controls the offloading process for the objective of minimizing the user's energy consumption based on a predicted helper's CPU-idling profile that specifies the amount of available computation resource for co-computing. Consider the scenario that the user has one-shot input-data arrival and the helper buffers offloaded bits. The problem for energy-efficient co-computing is formulated as two sub-problems: the slave problem corresponding to adaptive offloading and the master one to data partitioning. Given a fixed offloaded data size, the adaptive offloading aims at minimizing the energy consumption for offloading by controlling the offloading rate under the deadline and buffer constraints. By deriving the necessary and sufficient conditions for the optimal solution, we characterize the structure of the optimal policies and propose algorithms for computing the policies. Furthermore, we show that the problem of optimal data partitioning for offloading and local computing at the user is convex, admitting a simple solution using the sub-gradient method. Last, the developed design approach for co-computing is extended to the scenario of bursty data arrivals at the user accounting for data causality constraints. Simulation results verify the effectiveness of the proposed algorithms.Comment: Submitted to possible journa
    corecore