173 research outputs found

    Pruning, Pushdown Exception-Flow Analysis

    Full text link
    Statically reasoning in the presence of exceptions and about the effects of exceptions is challenging: exception-flows are mutually determined by traditional control-flow and points-to analyses. We tackle the challenge of analyzing exception-flows from two angles. First, from the angle of pruning control-flows (both normal and exceptional), we derive a pushdown framework for an object-oriented language with full-featured exceptions. Unlike traditional analyses, it allows precise matching of throwers to catchers. Second, from the angle of pruning points-to information, we generalize abstract garbage collection to object-oriented programs and enhance it with liveness analysis. We then seamlessly weave the techniques into enhanced reachability computation, yielding highly precise exception-flow analysis, without becoming intractable, even for large applications. We evaluate our pruned, pushdown exception-flow analysis, comparing it with an established analysis on large scale standard Java benchmarks. The results show that our analysis significantly improves analysis precision over traditional analysis within a reasonable analysis time.Comment: 14th IEEE International Working Conference on Source Code Analysis and Manipulatio

    Dynamic Complexity of Formal Languages

    Get PDF
    The paper investigates the power of the dynamic complexity classes DynFO, DynQF and DynPROP over string languages. The latter two classes contain problems that can be maintained using quantifier-free first-order updates, with and without auxiliary functions, respectively. It is shown that the languages maintainable in DynPROP exactly are the regular languages, even when allowing arbitrary precomputation. This enables lower bounds for DynPROP and separates DynPROP from DynQF and DynFO. Further, it is shown that any context-free language can be maintained in DynFO and a number of specific context-free languages, for example all Dyck-languages, are maintainable in DynQF. Furthermore, the dynamic complexity of regular tree languages is investigated and some results concerning arbitrary structures are obtained: there exist first-order definable properties which are not maintainable in DynPROP. On the other hand any existential first-order property can be maintained in DynQF when allowing precomputation.Comment: Contains the material presenten at STACS 2009, extendes with proofs and examples which were omitted due lack of spac

    Optimal Dyck reachability for data-dependence and Alias analysis

    Get PDF
    A fundamental algorithmic problem at the heart of static analysis is Dyck reachability. The input is a graph where the edges are labeled with different types of opening and closing parentheses, and the reachability information is computed via paths whose parentheses are properly matched. We present new results for Dyck reachability problems with applications to alias analysis and data-dependence analysis. Our main contributions, that include improved upper bounds as well as lower bounds that establish optimality guarantees, are as follows: First, we consider Dyck reachability on bidirected graphs, which is the standard way of performing field-sensitive points-to analysis. Given a bidirected graph with n nodes and m edges, we present: (i) an algorithm with worst-case running time O(m + n · α(n)), where α(n) is the inverse Ackermann function, improving the previously known O(n2) time bound; (ii) a matching lower bound that shows that our algorithm is optimal wrt to worst-case complexity; and (iii) an optimal average-case upper bound of O(m) time, improving the previously known O(m · logn) bound. Second, we consider the problem of context-sensitive data-dependence analysis, where the task is to obtain analysis summaries of library code in the presence of callbacks. Our algorithm preprocesses libraries in almost linear time, after which the contribution of the library in the complexity of the client analysis is only linear, and only wrt the number of call sites. Third, we prove that combinatorial algorithms for Dyck reachability on general graphs with truly sub-cubic bounds cannot be obtained without obtaining sub-cubic combinatorial algorithms for Boolean Matrix Multiplication, which is a long-standing open problem. Thus we establish that the existing combinatorial algorithms for Dyck reachability are (conditionally) optimal for general graphs. We also show that the same hardness holds for graphs of constant treewidth. Finally, we provide a prototype implementation of our algorithms for both alias analysis and data-dependence analysis. Our experimental evaluation demonstrates that the new algorithms significantly outperform all existing methods on the two problems, over real-world benchmarks

    The Fine-Grained Complexity of CFL Reachability

    Full text link
    Many problems in static program analysis can be modeled as the context-free language (CFL) reachability problem on directed labeled graphs. The CFL reachability problem can be generally solved in time O(n3)O(n^3), where nn is the number of vertices in the graph, with some specific cases that can be solved faster. In this work, we ask the following question: given a specific CFL, what is the exact exponent in the monomial of the running time? In other words, for which cases do we have linear, quadratic or cubic algorithms, and are there problems with intermediate runtimes? This question is inspired by recent efforts to classify classic problems in terms of their exact polynomial complexity, known as {\em fine-grained complexity}. Although recent efforts have shown some conditional lower bounds (mostly for the class of combinatorial algorithms), a general picture of the fine-grained complexity landscape for CFL reachability is missing. Our main contribution is lower bound results that pinpoint the exact running time of several classes of CFLs or specific CFLs under widely believed lower bound conjectures (Boolean Matrix Multiplication and kk-Clique). We particularly focus on the family of Dyck-kk languages (which are strings with well-matched parentheses), a fundamental class of CFL reachability problems. We present new lower bounds for the case of sparse input graphs where the number of edges mm is the input parameter, a common setting in the database literature. For this setting, we show a cubic lower bound for Andersen's Pointer Analysis which significantly strengthens prior known results.Comment: Appeared in POPL 2023. Please note the erratum on the first pag

    IST Austria Technical Report

    Get PDF
    A fundamental algorithmic problem at the heart of static analysis is Dyck reachability. The input is a graphwhere the edges are labeled with different types of opening and closing parentheses, and the reachabilityinformation is computed via paths whose parentheses are properly matched. We present new results for Dyckreachability problems with applications to alias analysis and data-dependence analysis. Our main contributions,that include improved upper bounds as well as lower bounds that establish optimality guarantees, are asfollows:First, we consider Dyck reachability on bidirected graphs, which is the standard way of performing field-sensitive points-to analysis. Given a bidirected graph withnnodes andmedges, we present: (i) an algorithmwith worst-case running timeO(m+n·α(n)), whereα(n)is the inverse Ackermann function, improving thepreviously knownO(n2)time bound; (ii) a matching lower bound that shows that our algorithm is optimalwrt to worst-case complexity; and (iii) an optimal average-case upper bound ofO(m)time, improving thepreviously knownO(m·logn)bound.Second, we consider the problem of context-sensitive data-dependence analysis, where the task is to obtainanalysis summaries of library code in the presence of callbacks. Our algorithm preprocesses libraries in almostlinear time, after which the contribution of the library in the complexity of the client analysis is only linear,and only wrt the number of call sites.Third, we prove that combinatorial algorithms for Dyck reachability on general graphs with truly sub-cubic bounds cannot be obtained without obtaining sub-cubic combinatorial algorithms for Boolean MatrixMultiplication, which is a long-standing open problem. Thus we establish that the existing combinatorialalgorithms for Dyck reachability are (conditionally) optimal for general graphs. We also show that the samehardness holds for graphs of constant treewidth.Finally, we provide a prototype implementation of our algorithms for both alias analysis and data-dependenceanalysis. Our experimental evaluation demonstrates that the new algorithms significantly outperform allexisting methods on the two problems, over real-world benchmarks

    IST Austria Thesis

    Get PDF
    This dissertation focuses on algorithmic aspects of program verification, and presents modeling and complexity advances on several problems related to the static analysis of programs, the stateless model checking of concurrent programs, and the competitive analysis of real-time scheduling algorithms. Our contributions can be broadly grouped into five categories. Our first contribution is a set of new algorithms and data structures for the quantitative and data-flow analysis of programs, based on the graph-theoretic notion of treewidth. It has been observed that the control-flow graphs of typical programs have special structure, and are characterized as graphs of small treewidth. We utilize this structural property to provide faster algorithms for the quantitative and data-flow analysis of recursive and concurrent programs. In most cases we make an algebraic treatment of the considered problem, where several interesting analyses, such as the reachability, shortest path, and certain kind of data-flow analysis problems follow as special cases. We exploit the constant-treewidth property to obtain algorithmic improvements for on-demand versions of the problems, and provide data structures with various tradeoffs between the resources spent in the preprocessing and querying phase. We also improve on the algorithmic complexity of quantitative problems outside the algebraic path framework, namely of the minimum mean-payoff, minimum ratio, and minimum initial credit for energy problems. Our second contribution is a set of algorithms for Dyck reachability with applications to data-dependence analysis and alias analysis. In particular, we develop an optimal algorithm for Dyck reachability on bidirected graphs, which are ubiquitous in context-insensitive, field-sensitive points-to analysis. Additionally, we develop an efficient algorithm for context-sensitive data-dependence analysis via Dyck reachability, where the task is to obtain analysis summaries of library code in the presence of callbacks. Our algorithm preprocesses libraries in almost linear time, after which the contribution of the library in the complexity of the client analysis is (i)~linear in the number of call sites and (ii)~only logarithmic in the size of the whole library, as opposed to linear in the size of the whole library. Finally, we prove that Dyck reachability is Boolean Matrix Multiplication-hard in general, and the hardness also holds for graphs of constant treewidth. This hardness result strongly indicates that there exist no combinatorial algorithms for Dyck reachability with truly subcubic complexity. Our third contribution is the formalization and algorithmic treatment of the Quantitative Interprocedural Analysis framework. In this framework, the transitions of a recursive program are annotated as good, bad or neutral, and receive a weight which measures the magnitude of their respective effect. The Quantitative Interprocedural Analysis problem asks to determine whether there exists an infinite run of the program where the long-run ratio of the bad weights over the good weights is above a given threshold. We illustrate how several quantitative problems related to static analysis of recursive programs can be instantiated in this framework, and present some case studies to this direction. Our fourth contribution is a new dynamic partial-order reduction for the stateless model checking of concurrent programs. Traditional approaches rely on the standard Mazurkiewicz equivalence between traces, by means of partitioning the trace space into equivalence classes, and attempting to explore a few representatives from each class. We present a new dynamic partial-order reduction method called the Data-centric Partial Order Reduction (DC-DPOR). Our algorithm is based on a new equivalence between traces, called the observation equivalence. DC-DPOR explores a coarser partitioning of the trace space than any exploration method based on the standard Mazurkiewicz equivalence. Depending on the program, the new partitioning can be even exponentially coarser. Additionally, DC-DPOR spends only polynomial time in each explored class. Our fifth contribution is the use of automata and game-theoretic verification techniques in the competitive analysis and synthesis of real-time scheduling algorithms for firm-deadline tasks. On the analysis side, we leverage automata on infinite words to compute the competitive ratio of real-time schedulers subject to various environmental constraints. On the synthesis side, we introduce a new instance of two-player mean-payoff partial-information games, and show how the synthesis of an optimal real-time scheduler can be reduced to computing winning strategies in this new type of games
    • …
    corecore