300,879 research outputs found

    Dynamic Control of Mobile Multirobot Systems: The Cluster Space Formulation

    Get PDF
    The formation control technique called cluster space control promotes simplified specification and monitoring of the motion of mobile multirobot systems of limited size. Previous paper has established the conceptual foundation of this approach and has experimentally verified and validated its use for various systems implementing kinematic controllers. In this paper, we briefly review the definition of the cluster space framework and introduce a new cluster space dynamic model. This model represents the dynamics of the formation as a whole as a function of the dynamics of the member robots. Given this model, generalized cluster space forces can be applied to the formation, and a Jacobian transpose controller can be implemented to transform cluster space compensation forces into robot-level forces to be applied to the robots in the formation. Then, a nonlinear model-based partition controller is proposed. This controller cancels out the formation dynamics and effectively decouples the cluster space variables. Computer simulations and experimental results using three autonomous surface vessels and four land rovers show the effectiveness of the approach. Finally, sensitivity to errors in the estimation of cluster model parameters is analyzed.Fil: Mas, Ignacio Agustin. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kitts, Christopher. Santa Clara University; Estados Unido

    Direct Observation of Early-stage Quantum Dot Growth Mechanisms with High-temperature Ab Initio Molecular Dynamics

    Get PDF
    Colloidal quantum dots (QDs) exhibit highly desirable size- and shape-dependent properties for applications from electronic devices to imaging. Indium phosphide QDs have emerged as a primary candidate to replace the more toxic CdSe QDs, but production of InP QDs with the desired properties lags behind other QD materials due to a poor understanding of how to tune the growth process. Using high-temperature ab initio molecular dynamics (AIMD) simulations, we report the first direct observation of the early stage intermediates and subsequent formation of an InP cluster from separated indium and phosphorus precursors. In our simulations, indium agglomeration precedes formation of In-P bonds. We observe a predominantly intercomplex pathway in which In-P bonds form between one set of precursor copies while the carboxylate ligand of a second indium precursor in the agglomerated indium abstracts a ligand from the phosphorus precursor. This process produces an indium-rich cluster with structural properties comparable to those in bulk zinc-blende InP crystals. Minimum energy pathway characterization of the AIMD-sampled reaction events confirms these observations and identifies that In-carboxylate dissociation energetics solely determine the barrier along the In-P bond formation pathway, which is lower for intercomplex (13 kcal/mol) than intracomplex (21 kcal/mol) mechanisms. The phosphorus precursor chemistry, on the other hand, controls the thermodynamics of the reaction. Our observations of the differing roles of precursors in controlling QD formation strongly suggests that the challenges thus far encountered in InP QD synthesis optimization may be attributed to an overlooked need for a cooperative tuning strategy that simultaneously addresses the chemistry of both indium and phosphorus precursors.Comment: 40 pages, 9 figures, submitted for publicatio

    A General Spatio-Temporal Clustering-Based Non-local Formulation for Multiscale Modeling of Compartmentalized Reservoirs

    Full text link
    Representing the reservoir as a network of discrete compartments with neighbor and non-neighbor connections is a fast, yet accurate method for analyzing oil and gas reservoirs. Automatic and rapid detection of coarse-scale compartments with distinct static and dynamic properties is an integral part of such high-level reservoir analysis. In this work, we present a hybrid framework specific to reservoir analysis for an automatic detection of clusters in space using spatial and temporal field data, coupled with a physics-based multiscale modeling approach. In this work a novel hybrid approach is presented in which we couple a physics-based non-local modeling framework with data-driven clustering techniques to provide a fast and accurate multiscale modeling of compartmentalized reservoirs. This research also adds to the literature by presenting a comprehensive work on spatio-temporal clustering for reservoir studies applications that well considers the clustering complexities, the intrinsic sparse and noisy nature of the data, and the interpretability of the outcome. Keywords: Artificial Intelligence; Machine Learning; Spatio-Temporal Clustering; Physics-Based Data-Driven Formulation; Multiscale Modelin

    Phosphorylation of nephrin induces phase separated domains that move through actomyosin contraction

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kim, S., Kalappurakkal, J. M., Mayor, S., & Rosen, M. K. Phosphorylation of nephrin induces phase separated domains that move through actomyosin contraction. Molecular Biology of the Cell, 30(24), (2019): 2996–3012, doi:10.1091/mbc.E18-12-0823.The plasma membrane of eukaryotic cells is organized into lipid and protein microdomains, whose assembly mechanisms and functions are incompletely understood. We demonstrate that proteins in the nephrin/Nck/N-WASP actin-regulatory pathway cluster into micron-scale domains at the basal plasma membrane upon triggered phosphorylation of transmembrane protein nephrin. The domains are persistent but readily exchange components with their surroundings, and their formation is dependent on the number of Nck SH3 domains, suggesting they are phase separated polymers assembled through multivalent interactions among the three proteins. The domains form independent of the actin cytoskeleton, but acto-myosin contractility induces their rapid lateral movement. Nephrin phosphorylation induces larger clusters at the cell periphery, which are associated with extensive actin assembly and dense filopodia. Our studies illustrate how multivalent interactions between proteins at the plasma membrane can produce micron-scale organization of signaling molecules, and how the resulting clusters can both respond to and control the actin cytoskeleton.We thank Hongtao Yu (University of Texas Southwestern Medical Center [UTSW]) for providing the HeLa cell line used in this work; Dan Billadeau and Timothy Gomez (Mayo Clinic) for providing antibodies; Nico Stuurman (University of California, San Francisco) for assistance with STORM imaging; Kate Luby-Phelps and Abhijit Bugde (UTSW Live Cell Imaging Core Facility) for their assistance in epifluorescence and spinning disk confocal experiments; Sudeep Banjade for advice on designing the S3, S2, S1 constructs; Khuloud Jaqaman (UTSW) for advice on cluster motility analysis; Salman Banani and Jonathan Ditlev (UTSW) for critical reading of the manuscript; and members of the Rosen lab and participants in the MBL/HHMI Summer Institutes for advice and helpful discussions. This work was supported by a Howard Hughes Medical Institute Collaborative Innovation Award; the Welch Foundation (I-1544 to M.K.R.); a J.C. Bose Fellowship from the Department of Science and Technology, government of India (to S.M.); a Margadarshi Fellowship from the Wellcome Trust—Department of Biotechnology, India Alliance (IA/M/15/1/502018 to S.M.). Research in the Rosen lab is supported by the Howard Hughes Medical Institute

    Emergence of the mitochondrial reticulum from fission and fusion dynamics

    Get PDF
    Mitochondria form a dynamic tubular reticulum within eukaryotic cells. Currently, quantitative understanding of its morphological characteristics is largely absent, despite major progress in deciphering the molecular fission and fusion machineries shaping its structure. Here we address the principles of formation and the large-scale organization of the cell-wide network of mitochondria. On the basis of experimentally determined structural features we establish the tip-to-tip and tip-to-side fission and fusion events as dominant reactions in the motility of this organelle. Subsequently, we introduce a graph-based model of the chondriome able to encompass its inherent variability in a single framework. Using both mean-field deterministic and explicit stochastic mathematical methods we establish a relationship between the chondriome structural network characteristics and underlying kinetic rate parameters. The computational analysis indicates that mitochondrial networks exhibit a percolation threshold. Intrinsic morphological instability of the mitochondrial reticulum resulting from its vicinity to the percolation transition is proposed as a novel mechanism that can be utilized by cells for optimizing their functional competence via dynamic remodeling of the chondriome. The detailed size distribution of the network components predicted by the dynamic graph representation introduces a relationship between chondriome characteristics and cell function. It forms a basis for understanding the architecture of mitochondria as a cell-wide but inhomogeneous organelle. Analysis of the reticulum adaptive configuration offers a direct clarification for its impact on numerous physiological processes strongly dependent on mitochondrial dynamics and organization, such as efficiency of cellular metabolism, tissue differentiation and aging
    • …
    corecore