2,649 research outputs found

    Dynamic Spectrum Reservation for CR Networks in the Presence of Channel Failures: Channel Allocation and Reliability Analysis

    Full text link
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this[EN] Providing channel access opportunities for new service requests and guaranteeing continuous connections for ongoing flows until service completion are two challenges for service provisioning in wireless networks. Channel failures, which are typically caused by hardware and software failures or/and by intrinsic instability in radio transmissions, can easily result in network performance degradation. In cognitive radio networks (CRNs), secondary transmissions are inherently vulnerable to connection breaks due to licensed users' arrivals as well as channel failures. To explore the advantages of channel reservation on performance improvement in error-prone channels, we propose and analyze a dynamic channel reservation (DCR) algorithm and a dynamic spectrum access (DSA) scheme with three access privilege variations. The key idea of the DCR algorithm is to reserve a dynamically adjustable number of channels for the interrupted services to maintain service retainability for ongoing users or to enhance channel availability for new users. Furthermore, the DCR algorithm is embedded in the DSA scheme enabling spectrum access of primary and secondary users with different access privileges based on access flexibility for licensed shared access. The performance of such a CRN in the presence of homogeneous and heterogeneous channel failures is investigated considering different channel failure and repair rates.The work of V. Pla was supported by the Spanish Ministry of Economy, Industry and Competitiveness under Grant TIN2013-47272-C2-1-R.Balapuwaduge, IAM.; Li, F.; Pla, V. (2018). Dynamic Spectrum Reservation for CR Networks in the Presence of Channel Failures: Channel Allocation and Reliability Analysis. IEEE Transactions on Wireless Communications. 17(2):882-898. https://doi.org/10.1109/TWC.2017.2772240S88289817

    Licensed Shared Access Evolution to Provide Exclusive and Dynamic Shared Spectrum Access for Novel 5G Use Cases

    Get PDF
    This chapter studies the Licensed Shared Access (LSA) concept, which was initially developed to enable the use of the vacant spectrum resources in 2.3–2.4 GHz band for mobile broadband (MBB) through long-term static licenses. The LSA system was developed to guarantee LSA licensees a predictable quality of service (QoS) and exclusive access to shared spectrum resources. This chapter describes the development and architecture of LSA for 2.3–2.4 GHz band and compares the LSA briefly to the Spectrum Access System (SAS) concept developed in the USA. 5G and its new use cases require a more dynamic approach to access shared spectrum resources than the LSA system developed for 2.3–2.4 GHz band can provide. Thus, a concept called LSA evolution is currently under development. The novel concepts introduced in LSA evolution include spectrum sensing, short-term license periods, possibility to allocate spectrum locally, and support for co-primary sharing, which can guarantee the quality of service (QoS) from spectrum perspective. The chapter also describes a demonstration of LSA evolution system with spectrum user prioritization, which was created for Programme Making and Special Events (PMSE) use case
    • …
    corecore