4 research outputs found

    Deliverable D4.1: VLC modulation schemes

    Get PDF
    This report presents the analysis of different modulation schemes D4.1 for VLC systems of the VIDAS project. Considering the final prototype design and application, the deliverable D4.1 was projected. The detail analysis of various modulation schemes are carried out and a robust technique based on direct sequence spread spectrum (DSSS) is followed. DSSS technique though necessitates use of high bandwidth while minimizing the effect of noise. Since the final application does not require very high dat a rate of transmission but robustness against the noise (external lights) becomes necessary. The analysis is followed by model development using Matlab/Simulink. The performance of both of these systems are compared and evaluated. Some of the simulation results are presented

    Sistemas de comunicação por luz visível na segurança rodoviária

    Get PDF
    Doutoramento em MAP-TeleEsta tese apresenta um estudo exploratório sobre sistemas de comunicação por luz visível e as suas aplicações em sistemas de transporte inteligentes como forma a melhorar a segurança nas estradas. Foram desenvolvidos neste trabalho, modelos conceptuais e analíticos adequados à caracterização deste tipo de sistemas. Foi desenvolvido um protótipo de baixo custo, capaz de suportar a disseminação de informação utilizando semáforos. A sua realização carece de um estudo detalhado, nomeadamente: i) foi necessário obter modelos capazes de descrever os padrões de radiação numa área de serviço pré-definida; ii) foi necessário caracterizar o meio de comunicações; iii) foi necessário estudar o comportamento de vários esquemas de modulação de forma a optar pelo mais robusto; finalmente, iv) obter a implementação do sistema baseado em FPGA e componentes discretos. O protótipo implementado foi testado em condições reais. Os resultados alcançados mostram os méritos desta solução, chegando mesmo a encorajar a utilização desta tecnologia em outros cenários de aplicação.This thesis presents a study carried out on the exploration of visible light communication (VLC) for road safety applications in intelligent transportation systems (ITS). We developed conceptual and analytical models for the usage of VLC technologies for human safety. A low cost VLC prototype traffic broadcast system was hardware designed and implemented. In order to realize this prototype a number of exhaustive steps have been designed and implemented. An optimized illumination distribution was achieved in a defined service area from LED-based traffic lights associated with a VLC emitter. A traffic light system set-up was modeled and designed for optimum performance. The optical wireless channel was characterized and examined. Depending on the characteristics of the channel and specific applications, a robust modulation technique based on direct sequence spread spectrum using sequence inverse keying (DSSS SIK) was analyzed, developed, and implemented. The complete prototype VLC transceiver system was then implemented with field programmable gate arrays (FPGA) and discrete components. Simulation and experimental validation of system was performed in different scenarios and environments. The obtained results have shown the merits of our approach. A number of findings was experienced which are illustrated at the end. These observations would enhance and encourage potential research in the area and optimize performance of VLC systems for a number of interesting applications in future. A summary of future research challenges is presented at the end

    Analysis of OFDM-based intensity modulation techniques for optical wireless communications

    Get PDF
    Optical wireless communication (OWC) is a promising alternative to radio frequency (RF) communication with a significantly larger and unregulated spectrum. Impairments in the physical layer, such as the non-linear transfer characteristic of the transmitter, the dispersive optical wireless channel and the additive white Gaussian noise (AWGN) at the receiver, reduce the capacity of the OWC system. Single-carrier multi-level pulse position modulation (M-PPM) and multilevel pulse amplitude modulation (M-PAM) suffer from inter-symbol interference (ISI) in the dispersive channel which reduces their capacity even after channel equalization. Multi-carrier modulation such as optical orthogonal frequency division multiplexing (O-OFDM) with multilevel quadrature amplitude modulation (M-QAM) is known to maximize the channel capacity through bit and power loading. There are two general signal structures: bipolar Gaussian signal with a direct current (DC) bias, i.e. DC-biased O-OFDM (DCO-OFDM), or unipolar half- Gaussian signal, employing only the odd subcarriers, i.e. asymmetrically clipped O-OFDM (ACO-OFDM). In this thesis, the signal distortion from the transmitter nonlinearity is minimized through pre-distortion, optimum signal scaling and DC-biasing. The optical front-ends impose minimum, average and maximum optical power constraints, as well as an average electrical power constraint, on the information-carrying signals. In this thesis, the optical signals are conditioned within these constraints through optimum signal scaling and DC-biasing. The presented analysis of the optical-to-electrical (O/E) conversion enables the derivation of the electrical signal-to-noise ratio (SNR) at the receiver, including or excluding the additional DC bias power, which is translated into bit-error rate (BER) performance. In addition, a generalized piecewise polynomial model for the non-linear transfer characteristic of the transmitter is proposed. The non-linear distortion in O-OFDM is translated by means of the Bussgang theorem and the central limit theorem (CLT) into attenuation of the data-carrying subcarriers at the receiver plus zero-mean complex-valued Gaussian noise. The attenuation factor and the variance of the non-linear distortion noise are derived in closed form, and they are accounted towards the received electrical SNR. Through pre-distortion with the inverse of the proposed piecewise polynomial function, the linear dynamic range of the transmitter is maximized, reducing the non-linear distortion to double-sided signal clipping. Finally, the OWC schemes are compared in terms of spectral efficiency and electrical SNR requirement as the signal bandwidth exceeds the coherence bandwidth of the optical wireless channel for a practical 10 dB linear dynamic range. Through optimum signal scaling and DCbiasing, DCO-OFDM is found to achieve the highest spectral efficiency for a target SNR, neglecting the additional DC bias power. When the DC bias power is counted towards the signal power, DCO-OFDM outperforms PAM with linear equalization, approaching the performance of the more computationally intensive PAM with non-linear equalization. In addition, the average optical power in O-OFDM is varied over dynamic ranges of 10 dB, 20 dB and 30 dB. When the additional DC bias power is neglected, DCO-OFDM is shown to achieve the Shannon capacity, while ACO-OFDM exhibits a 3 dB gap which grows with higher SNR targets. When the DC bias power is included, DCO-OFDM outperforms ACO-OFDM for the majority of average optical power levels with the increase of the SNR target or the dynamic range
    corecore