19,817 research outputs found

    Dynamic behavior analysis via structured rank minimization

    Get PDF
    Human behavior and affect is inherently a dynamic phenomenon involving temporal evolution of patterns manifested through a multiplicity of non-verbal behavioral cues including facial expressions, body postures and gestures, and vocal outbursts. A natural assumption for human behavior modeling is that a continuous-time characterization of behavior is the output of a linear time-invariant system when behavioral cues act as the input (e.g., continuous rather than discrete annotations of dimensional affect). Here we study the learning of such dynamical system under real-world conditions, namely in the presence of noisy behavioral cues descriptors and possibly unreliable annotations by employing structured rank minimization. To this end, a novel structured rank minimization method and its scalable variant are proposed. The generalizability of the proposed framework is demonstrated by conducting experiments on 3 distinct dynamic behavior analysis tasks, namely (i) conflict intensity prediction, (ii) prediction of valence and arousal, and (iii) tracklet matching. The attained results outperform those achieved by other state-of-the-art methods for these tasks and, hence, evidence the robustness and effectiveness of the proposed approach

    Dynamic behavior analysis via structured rank minimization

    Get PDF
    Human behavior and affect is inherently a dynamic phenomenon involving temporal evolution of patterns manifested through a multiplicity of non-verbal behavioral cues including facial expressions, body postures and gestures, and vocal outbursts. A natural assumption for human behavior modeling is that a continuous-time characterization of behavior is the output of a linear time-invariant system when behavioral cues act as the input (e.g., continuous rather than discrete annotations of dimensional affect). Here we study the learning of such dynamical system under real-world conditions, namely in the presence of noisy behavioral cues descriptors and possibly unreliable annotations by employing structured rank minimization. To this end, a novel structured rank minimization method and its scalable variant are proposed. The generalizability of the proposed framework is demonstrated by conducting experiments on 3 distinct dynamic behavior analysis tasks, namely (i) conflict intensity prediction, (ii) prediction of valence and arousal, and (iii) tracklet matching. The attained results outperform those achieved by other state-of-the-art methods for these tasks and, hence, evidence the robustness and effectiveness of the proposed approach

    Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery

    Full text link
    PCA is one of the most widely used dimension reduction techniques. A related easier problem is "subspace learning" or "subspace estimation". Given relatively clean data, both are easily solved via singular value decomposition (SVD). The problem of subspace learning or PCA in the presence of outliers is called robust subspace learning or robust PCA (RPCA). For long data sequences, if one tries to use a single lower dimensional subspace to represent the data, the required subspace dimension may end up being quite large. For such data, a better model is to assume that it lies in a low-dimensional subspace that can change over time, albeit gradually. The problem of tracking such data (and the subspaces) while being robust to outliers is called robust subspace tracking (RST). This article provides a magazine-style overview of the entire field of robust subspace learning and tracking. In particular solutions for three problems are discussed in detail: RPCA via sparse+low-rank matrix decomposition (S+LR), RST via S+LR, and "robust subspace recovery (RSR)". RSR assumes that an entire data vector is either an outlier or an inlier. The S+LR formulation instead assumes that outliers occur on only a few data vector indices and hence are well modeled as sparse corruptions.Comment: To appear, IEEE Signal Processing Magazine, July 201

    Measure What Should be Measured: Progress and Challenges in Compressive Sensing

    Full text link
    Is compressive sensing overrated? Or can it live up to our expectations? What will come after compressive sensing and sparsity? And what has Galileo Galilei got to do with it? Compressive sensing has taken the signal processing community by storm. A large corpus of research devoted to the theory and numerics of compressive sensing has been published in the last few years. Moreover, compressive sensing has inspired and initiated intriguing new research directions, such as matrix completion. Potential new applications emerge at a dazzling rate. Yet some important theoretical questions remain open, and seemingly obvious applications keep escaping the grip of compressive sensing. In this paper I discuss some of the recent progress in compressive sensing and point out key challenges and opportunities as the area of compressive sensing and sparse representations keeps evolving. I also attempt to assess the long-term impact of compressive sensing
    corecore