16,660 research outputs found

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page

    Dynamic Multi-Arm Bandit Game Based Multi-Agents Spectrum Sharing Strategy Design

    Full text link
    For a wireless avionics communication system, a Multi-arm bandit game is mathematically formulated, which includes channel states, strategies, and rewards. The simple case includes only two agents sharing the spectrum which is fully studied in terms of maximizing the cumulative reward over a finite time horizon. An Upper Confidence Bound (UCB) algorithm is used to achieve the optimal solutions for the stochastic Multi-Arm Bandit (MAB) problem. Also, the MAB problem can also be solved from the Markov game framework perspective. Meanwhile, Thompson Sampling (TS) is also used as benchmark to evaluate the proposed approach performance. Numerical results are also provided regarding minimizing the expectation of the regret and choosing the best parameter for the upper confidence bound

    Evaluating Resilience of Cyber-Physical-Social Systems

    Get PDF
    Nowadays, protecting the network is not the only security concern. Still, in cyber security, websites and servers are becoming more popular as targets due to the ease with which they can be accessed when compared to communication networks. Another threat in cyber physical social systems with human interactions is that they can be attacked and manipulated not only by technical hacking through networks, but also by manipulating people and stealing users’ credentials. Therefore, systems should be evaluated beyond cy- ber security, which means measuring their resilience as a piece of evidence that a system works properly under cyber-attacks or incidents. In that way, cyber resilience is increas- ingly discussed and described as the capacity of a system to maintain state awareness for detecting cyber-attacks. All the tasks for making a system resilient should proactively maintain a safe level of operational normalcy through rapid system reconfiguration to detect attacks that would impact system performance. In this work, we broadly studied a new paradigm of cyber physical social systems and defined a uniform definition of it. To overcome the complexity of evaluating cyber resilience, especially in these inhomo- geneous systems, we proposed a framework including applying Attack Tree refinements and Hierarchical Timed Coloured Petri Nets to model intruder and defender behaviors and evaluate the impact of each action on the behavior and performance of the system.Hoje em dia, proteger a rede não é a única preocupação de segurança. Ainda assim, na segurança cibernética, sites e servidores estão se tornando mais populares como alvos devido à facilidade com que podem ser acessados quando comparados às redes de comu- nicação. Outra ameaça em sistemas sociais ciberfisicos com interações humanas é que eles podem ser atacados e manipulados não apenas por hackers técnicos através de redes, mas também pela manipulação de pessoas e roubo de credenciais de utilizadores. Portanto, os sistemas devem ser avaliados para além da segurança cibernética, o que significa medir sua resiliência como uma evidência de que um sistema funciona adequadamente sob ataques ou incidentes cibernéticos. Dessa forma, a resiliência cibernética é cada vez mais discutida e descrita como a capacidade de um sistema manter a consciência do estado para detectar ataques cibernéticos. Todas as tarefas para tornar um sistema resiliente devem manter proativamente um nível seguro de normalidade operacional por meio da reconfi- guração rápida do sistema para detectar ataques que afetariam o desempenho do sistema. Neste trabalho, um novo paradigma de sistemas sociais ciberfisicos é amplamente estu- dado e uma definição uniforme é proposta. Para superar a complexidade de avaliar a resiliência cibernética, especialmente nesses sistemas não homogéneos, é proposta uma estrutura que inclui a aplicação de refinamentos de Árvores de Ataque e Redes de Petri Coloridas Temporizadas Hierárquicas para modelar comportamentos de invasores e de- fensores e avaliar o impacto de cada ação no comportamento e desempenho do sistema

    Real-time fusion and projection of network intrusion activity

    Get PDF
    Intrusion Detection Systems (IDS) warn of suspicious or malicious network activity and are a fundamental, yet passive, defense-in-depth layer for modern networks. Prior research has applied information fusion techniques to correlate the alerts of multiple IDSs and group those belonging to the same multi-stage attack into attack tracks. Projecting the next likely step in these tracks potentially enhances an analyst’s situational awareness; however, the reliance on attack plans, complicated algorithms, or expert knowledge of the respective network is prohibitive and prone to obsolescence with the continual deployment of new technology and evolution of hacker tradecraft. This thesis presents a real-time continually learning system capable of projecting attack tracks that does not require a priori knowledge about network architecture or rely on static attack templates. Prediction correctness over time and other metrics are used to assess the system’s performance. The system demonstrates the successful real-time adaptation of the model, including enhancements such as the prediction that a never before observed event is about to occur. The intrusion projection system is framed as part of a larger information fusion and impact assessment architecture for cyber security

    Kinetic and Cyber

    Full text link
    We compare and contrast situation awareness in cyber warfare and in conventional, kinetic warfare. Situation awareness (SA) has a far longer history of study and applications in such areas as control of complex enterprises and in conventional warfare, than in cyber warfare. Far more is known about the SA in conventional military conflicts, or adversarial engagements, than in cyber ones. By exploring what is known about SA in conventional, also commonly referred to as kinetic, battles, we may gain insights and research directions relevant to cyber conflicts. We discuss the nature of SA in conventional (often called kinetic) conflict, review what is known about this kinetic SA (KSA), and then offer a comparison with what is currently understood regarding the cyber SA (CSA). We find that challenges and opportunities of KSA and CSA are similar or at least parallel in several important ways. With respect to similarities, in both kinetic and cyber worlds, SA strongly impacts the outcome of the mission. Also similarly, cognitive biases are found in both KSA and CSA. As an example of differences, KSA often relies on commonly accepted, widely used organizing representation - map of the physical terrain of the battlefield. No such common representation has emerged in CSA, yet.Comment: A version of this paper appeared as a book chapter in Cyber Defense and Situational Awareness, Springer, 2014. Prepared by US Government employees in their official duties; approved for public release, distribution unlimited. Cyber Defense and Situational Awareness. Springer International Publishing, 2014. 29-4
    corecore