32 research outputs found

    Eulerian digraphs and Dyck words, a bijection

    Full text link
    The main goal of this work is to establish a bijection between Dyck words and a family of Eulerian digraphs. We do so by providing two algorithms implementing such bijection in both directions. The connection between Dyck words and Eulerian digraphs exploits a novel combinatorial structure: a binary matrix, we call Dyck matrix, representing the cycles of an Eulerian digraph

    Complexity of Token Swapping and its Variants

    Full text link
    In the Token Swapping problem we are given a graph with a token placed on each vertex. Each token has exactly one destination vertex, and we try to move all the tokens to their destinations, using the minimum number of swaps, i.e., operations of exchanging the tokens on two adjacent vertices. As the main result of this paper, we show that Token Swapping is W[1]W[1]-hard parameterized by the length kk of a shortest sequence of swaps. In fact, we prove that, for any computable function ff, it cannot be solved in time f(k)no(k/log⁥k)f(k)n^{o(k / \log k)} where nn is the number of vertices of the input graph, unless the ETH fails. This lower bound almost matches the trivial nO(k)n^{O(k)}-time algorithm. We also consider two generalizations of the Token Swapping, namely Colored Token Swapping (where the tokens have different colors and tokens of the same color are indistinguishable), and Subset Token Swapping (where each token has a set of possible destinations). To complement the hardness result, we prove that even the most general variant, Subset Token Swapping, is FPT in nowhere-dense graph classes. Finally, we consider the complexities of all three problems in very restricted classes of graphs: graphs of bounded treewidth and diameter, stars, cliques, and paths, trying to identify the borderlines between polynomial and NP-hard cases.Comment: 23 pages, 7 Figure

    Enumerative combinatorics, continued fractions and total positivity

    Get PDF
    Determining whether a given number is positive is a fundamental question in mathematics. This can sometimes be answered by showing that the number counts some collection of objects, and hence, must be positive. The work done in this dissertation is in the field of enumerative combinatorics, the branch of mathematics that deals with exact counting. We will consider several problems at the interface between enumerative combinatorics, continued fractions and total positivity. In our first contribution, we exhibit a lower-triangular matrix of polynomials in six indeterminates that appears empirically to be coefficientwise totally positive, and which includes as a special case the Eulerian triangle. This generalises Brenti’s conjecture from 1996. We prove the coefficientwise total positivity of a three-variable case which includes the reversed Stirling subset triangle. Our next contribution is the study of two sequences whose Stieltjes-type continued fraction coefficients grow quadratically; we study the Genocchi and median Genocchi numbers. We find Stieltjes-type and Thron-type continued fractions for some multivariate polynomials that enumerate D-permutations, a class of permutations of 2n, with respect to a very large (sometimes infinite) number of simultaneous statistics that measure cycle status, record status, crossings and nestings. After this, we interpret the Foata–Zeilberger bijection in terms of Laguerre digraphs, which enables us to count cycles in permutations. Using this interpretation, we obtain Jacobi-type continued fractions for multivariate polynomials enumerating permutations, and also Thron-type and Stieltjes-type continued fractions for multivariate polynomials enumerating D-permutations, in both cases including the counting of cycles. This enables us to prove some conjectured continued fractions due to Sokal–Zeng from 2022, and Randrianarivony–Zeng from 1996. Finally, we introduce the higher-order Stirling cycle and subset numbers; these generalise the Stirling cycle and subset numbers, respectively. We introduce some conjectures which involve different total-positivity questions for these triangular arrays and then answer some of them

    A q-analogue of Catalan Hankel determinants

    Full text link
    In this paper we shall survey the various methods of evaluating Hankel determinants and as an illustration we evaluate some Hankel determinants of a q-analogue of Catalan numbers. Here we consider (aq;q)n(abq2;q)n\frac{(aq;q)_{n}}{(abq^{2};q)_{n}} as a q-analogue of Catalan numbers Cn=1n+1(2nn)C_{n}=\frac1{n+1}\binom{2n}{n}, which is known as the moments of the little q-Jacobi polynomials. We also give several proofs of this q-analogue, in which we use lattice paths, the orthogonal polynomials, or the basic hypergeometric series. We also consider a q-analogue of Schr\"oder Hankel determinants, and give a new proof of Moztkin Hankel determinants using an addition formula for 2F1{}_2F_{1}.Comment: 17 page

    Master index to volumes 251-260

    Get PDF

    Planare Graphen und ihre Dualgraphen auf ZylinderoberflÀchen

    Get PDF
    In this thesis, we investigates plane drawings of undirected and directed graphs on cylinder surfaces. In the case of undirected graphs, the vertices are positioned on a line that is parallel to the cylinder’s axis and the edge curves must not intersect this line. We show that a plane drawing is possible if and only if the graph is a double-ended queue (deque) graph, i. e., the vertices of the graph can be processed according to a linear order and the edges correspond to items in the deque inserted and removed at their end vertices. A surprising consequence resulting from these observations is that the deque characterizes planar graphs with a Hamiltonian path. This result extends the known characterization of planar graphs with a Hamiltonian cycle by two stacks. By these insights, we also obtain a new characterization of queue graphs and their duals. We also consider the complexity of deciding whether a graph is a deque graph and prove that it is NP-complete. By introducing a split operation, we obtain the splittable deque and show that it characterizes planarity. For the proof, we devise an algorithm that uses the splittable deque to test whether a rotation system is planar. In the case of directed graphs, we study upward plane drawings where the edge curves follow the direction of the cylinder’s axis (standing upward planarity; SUP) or they wind around the axis (rolling upward planarity; RUP). We characterize RUP graphs by means of their duals and show that RUP and SUP swap their roles when considering a graph and its dual. There is a physical interpretation underlying this characterization: A SUP graph is to its RUP dual graph as electric current passing through a conductor to the magnetic field surrounding the conductor. Whereas testing whether a graph is RUP is NP-hard in general [Bra14], for directed graphs without sources and sink, we develop a linear-time recognition algorithm that is based on our dual graph characterization of RUP graphs.Die Arbeit beschĂ€ftigt sich mit planaren Zeichnungen ungerichteter und gerichteter Graphen auf ZylinderoberflĂ€chen. Im ungerichteten Fall werden Zeichnungen betrachtet, bei denen die Knoten auf einer Linie parallel zur Zylinderachse positioniert werden und die Kanten diese Linie nicht schneiden dĂŒrfen. Es kann gezeigt werden, dass eine planare Zeichnung genau dann möglich ist, wenn die Kanten des Graphen in einer double-ended queue (Deque) verarbeitet werden können. Ebenso lassen sich dadurch Queue, Stack und Doppelstack charakterisieren. Eine ĂŒberraschende Konsequenz aus diesen Erkenntnissen ist, dass die Deque genau die planaren Graphen mit Hamiltonpfad charakterisiert. Dies erweitert die bereits bekannte Charakterisierung planarer Graphen mit Hamiltonkreis durch den Doppelstack. Im gerichteten Fall mĂŒssen die Kantenkurven entweder in Richtung der Zylinderachse verlaufen (SUP-Graphen) oder sich um die Achse herumbewegen (RUP-Graphen). Die Arbeit charakterisiert RUP-Graphen und zeigt, dass RUP und SUP ihre Rollen tauschen, wenn man Graph und Dualgraph betrachtet. Der SUP-Graph verhĂ€lt sich dabei zum RUP-Graphen wie elektrischer Strom durch einen Leiter zum induzierten Magnetfeld. Ausgehend von dieser Charakterisierung ist es möglich einen Linearzeit-Algorithmus zu entwickeln, der entscheidet ob ein gerichteter Graph ohne Quellen und Senken ein RUP-Graph ist, wĂ€hrend der allgemeine Fall NP-hart ist [Bra14]
    corecore