12 research outputs found

    Dyck path triangulations and extendability

    Get PDF
    We introduce the Dyck path triangulation of the cartesian product of two simplices Δn−1×Δn−1\Delta_{n-1}\times\Delta_{n-1}. The maximal simplices of this triangulation are given by Dyck paths, and its construction naturally generalizes to produce triangulations of Δr n−1×Δn−1\Delta_{r\ n-1}\times\Delta_{n-1} using rational Dyck paths. Our study of the Dyck path triangulation is motivated by extendability problems of partial triangulations of products of two simplices. We show that whenever m≥k>nm\geq k>n, any triangulation of Δm−1(k−1)×Δn−1\Delta_{m-1}^{(k-1)}\times\Delta_{n-1} extends to a unique triangulation of Δm−1×Δn−1\Delta_{m-1}\times\Delta_{n-1}. Moreover, with an explicit construction, we prove that the bound k>nk>n is optimal. We also exhibit interesting interpretations of our results in the language of tropical oriented matroids, which are analogous to classical results in oriented matroid theory.Comment: 15 pages, 14 figures. Comments very welcome

    Dyck path triangulations and extendability (extended abstract)

    Get PDF
    International audienceWe introduce the Dyck path triangulation of the cartesian product of two simplices Δn−1×Δn−1\Delta_{n-1}\times\Delta_{n-1}. The maximal simplices of this triangulation are given by Dyck paths, and its construction naturally generalizes to produce triangulations of Δr n−1×Δn−1\Delta_{r\ n-1}\times\Delta_{n-1} using rational Dyck paths. Our study of the Dyck path triangulation is motivated by extendability problems of partial triangulations of products of two simplices. We show that wheneverm≥k>nm\geq k>n, any triangulations of Δm−1(k−1)×Δn−1\Delta_{m-1}^{(k-1)}\times\Delta_{n-1} extends to a unique triangulation of Δm−1×Δn−1\Delta_{m-1}\times\Delta_{n-1}. Moreover, with an explicit construction, we prove that the bound k>nk>n is optimal. We also exhibit interpretations of our results in the language of tropical oriented matroids, which are analogous to classical results in oriented matroid theory.Nous introduisons la triangulation par chemins de Dyck du produit cartésien de deux simplexes Δn−1×Δn−1\Delta_{n-1}\times\Delta_{n-1}. Les simplexes maximaux de cette triangulation sont donnés par des chemins de Dyck, et cette construction se généralise de façon naturelle pour produire des triangulations Δr n−1×Δn−1\Delta_{r\ n-1}\times\Delta_{n-1} qui utilisent des chemins de Dyck rationnels. Notre étude de la triangulation par chemins de Dyck est motivée par des problèmes de prolongement de triangulations partielles de produits de deux simplexes. On montre que m≥k>nm\geq k>n alors toute triangulation de Δm−1(k−1)×Δn−1\Delta_{m-1}^{(k-1)}\times\Delta_{n-1} se prolonge en une unique triangulation de Δm−1×Δn−1\Delta_{m-1}\times\Delta_{n-1}. De plus, avec une construction explicite, nous montrons que la borne k>nk>n est optimale. Nous présentons aussi des interprétations de nos résultats dans le langage des matroïdes orientés tropicaux, qui sont analogues aux résultats classiques de la théorie des matroïdes orientés

    Dyck path triangulations and extendability (extended abstract)

    Get PDF
    We introduce the Dyck path triangulation of the cartesian product of two simplices Δn−1×Δn−1\Delta_{n-1}\times\Delta_{n-1}. The maximal simplices of this triangulation are given by Dyck paths, and its construction naturally generalizes to produce triangulations of Δr n−1×Δn−1\Delta_{r\ n-1}\times\Delta_{n-1} using rational Dyck paths. Our study of the Dyck path triangulation is motivated by extendability problems of partial triangulations of products of two simplices. We show that wheneverm≥k>nm\geq k>n, any triangulations of Δm−1(k−1)×Δn−1\Delta_{m-1}^{(k-1)}\times\Delta_{n-1} extends to a unique triangulation of Δm−1×Δn−1\Delta_{m-1}\times\Delta_{n-1}. Moreover, with an explicit construction, we prove that the bound k>nk>n is optimal. We also exhibit interpretations of our results in the language of tropical oriented matroids, which are analogous to classical results in oriented matroid theory

    Matching Ensembles (Extended Abstract)

    Get PDF
    International audienceWe introduce an axiom system for a collection of matchings that describes the triangulation of product of simplices.Nous introduisons un système d’axiomes pour une collection de couplages qui décrit la triangulation de produit de simplexes

    Statistical tests for large tree-structured data

    Get PDF
    We develop a general statistical framework for the analysis and inference of large tree-structured data, with a focus on developing asymptotic goodness-of-fit tests. We first propose a consistent statistical model for binary trees, from which we develop a class of invariant tests. Using the model for binary trees, we then construct tests for general trees by using the distributional properties of the Continuum Random Tree, which arises as the invariant limit for a broad class of models for tree-structured data based on conditioned Galton–Watson processes. The test statistics for the goodness-of-fit tests are simple to compute and are asymptotically distributed as χ2 and F random variables. We illustrate our methods on an important application of detecting tumour heterogeneity in brain cancer. We use a novel approach with tree-based representations of magnetic resonance images and employ the developed tests to ascertain tumor heterogeneity between two groups of patients

    Matching Ensembles (Extended Abstract)

    Get PDF
    We introduce an axiom system for a collection of matchings that describes the triangulation of product of simplices

    Statistical tests for large tree-structured data

    Get PDF
    We develop a general statistical framework for the analysis and inference of large tree-structured data, with a focus on developing asymptotic goodness-of-fit tests. We first propose a consistent statistical model for binary trees, from which we develop a class of invariant tests. Using the model for binary trees, we then construct tests for general trees by using the distributional properties of the Continuum Random Tree, which arises as the invariant limit for a broad class of models for tree-structured data based on conditioned Galton–Watson processes. The test statistics for the goodness-of-fit tests are simple to compute and are asymptotically distributed as χ2 and F random variables. We illustrate our methods on an important application of detecting tumour heterogeneity in brain cancer. We use a novel approach with tree-based representations of magnetic resonance images and employ the developed tests to ascertain tumor heterogeneity between two groups of patients

    Master index to volumes 251-260

    Get PDF
    corecore