11 research outputs found

    Multi-Pair Two-Way Relay Channel with Multiple Antenna Relay Station

    Full text link

    Linear Precoders for Non-Regenerative Asymmetric Two-way Relaying in Cellular Systems

    Full text link
    Two-way relaying (TWR) reduces the spectral-efficiency loss caused in conventional half-duplex relaying. TWR is possible when two nodes exchange data simultaneously through a relay. In cellular systems, data exchange between base station (BS) and users is usually not simultaneous e.g., a user (TUE) has uplink data to transmit during multiple access (MAC) phase, but does not have downlink data to receive during broadcast (BC) phase. This non-simultaneous data exchange will reduce TWR to spectrally-inefficient conventional half-duplex relaying. With infrastructure relays, where multiple users communicate through a relay, a new transmission protocol is proposed to recover the spectral loss. The BC phase following the MAC phase of TUE is now used by the relay to transmit downlink data to another user (RUE). RUE will not be able to cancel the back-propagating interference. A structured precoder is designed at the multi-antenna relay to cancel this interference. With multiple-input multiple-output (MIMO) nodes, the proposed precoder also triangulates the compound MAC and BC phase MIMO channels. The channel triangulation reduces the weighted sum-rate optimization to power allocation problem, which is then cast as a geometric program. Simulation results illustrate the effectiveness of the proposed protocol over conventional solutions.Comment: 30 pages, 7 figures, submitted to IEEE Transactions on Wireless Communication

    Joint Source and Relay Precoding Designs for MIMO Two-Way Relaying Based on MSE Criterion

    Full text link
    Properly designed precoders can significantly improve the spectral efficiency of multiple-input multiple-output (MIMO) relay systems. In this paper, we investigate joint source and relay precoding design based on the mean-square-error (MSE) criterion in MIMO two-way relay systems, where two multi-antenna source nodes exchange information via a multi-antenna amplify-and-forward relay node. This problem is non-convex and its optimal solution remains unsolved. Aiming to find an efficient way to solve the problem, we first decouple the primal problem into three tractable sub-problems, and then propose an iterative precoding design algorithm based on alternating optimization. The solution to each sub-problem is optimal and unique, thus the convergence of the iterative algorithm is guaranteed. Secondly, we propose a structured precoding design to lower the computational complexity. The proposed precoding structure is able to parallelize the channels in the multiple access (MAC) phase and broadcast (BC) phase. It thus reduces the precoding design to a simple power allocation problem. Lastly, for the special case where only a single data stream is transmitted from each source node, we present a source-antenna-selection (SAS) based precoding design algorithm. This algorithm selects only one antenna for transmission from each source and thus requires lower signalling overhead. Comprehensive simulation is conducted to evaluate the effectiveness of all the proposed precoding designs.Comment: 32 pages, 10 figure

    Precoding Method Interference Management for Quasi-EVD Channel

    Get PDF
    The Cholesky decomposition-block diagonalization (CD-BD) interference alignment (IA) for a multiuser multiple input multiple output (MU-MIMO) relay system is proposed, which designs precoders for the multiple access channel (MAC) by employing the singular value decomposition (SVD) as well as the mean square error (MSE) detector for the broadcast Hermitian channel (BHC) taken advantage of in our design. Also, in our proposed CD-BD IA algorithm, the relaying function is made use to restructure the quasieigenvalue decomposition (quasi-EVD) equivalent channel. This approach used for the design of BD precoding matrix can significantly reduce the computational complexity and proposed algorithm can address several optimization criteria, which is achieved by designing the precoding matrices in two steps. In the first step, we use Cholesky decomposition to maximize the sum-of-rate (SR) with the minimum mean square error (MMSE) detection. In the next step, we optimize the system BER performance with the overlap of the row spaces spanned by the effective channel matrices of different users. By iterating the closed form of the solution, we are able not only to maximize the achievable sum-of-rate (ASR), but also to minimize the BER performance at a high signal-to-noise ratio (SNR) region

    Comparison of analog and digital network coding approaches for bidirectional relaying with private messages to the relay

    Full text link

    Multiantenna analog network coding for multihop wireless networks

    Get PDF
    This paper proposes a two-phase minimum mean-square-error bidirectional amplify-and forward (MMSE-BAF) relaying protocol to allow two sources exchange independent messages via a relay node equipped with multiple antennas. MMSE-BAF performs a joint linear MMSE filtering of the received signal after the multiple access phase before amplifying and forwarding the filtered signal using a single transmit antenna, possibly through a specific antenna selection procedure, during the broadcast phase. The proposed protocol extends upon the so-called analog network coding schemes in the literature in that it inherently exploits the multiple antennas at the relay station to reduce the noise enhancement typical of an AF protocol, and can also compensate for link imbalances between the relay and the sources and is agnostic to sources' modulation and coding schemes. We derive the instantaneous signal-to-noise ratio expressions for the received signal by the sources in the downlink and provide extensive linklevel simulations for the MMSE-BAF protocol subject to both frequency flat and selective fading. Furthermore, we pinpoint the modifications to be incorporated into the IEEE 802.16e orthogonal-frequency-division multiple access (OFDMA) cellular standard (mobile WiMax) to enable support of multiantenna bidirectional communications and show that MMSE-BAF is a viable solution within that framework

    Interference reduction in multiuser relay networks

    Get PDF
    In future multiuser wireless systems, the limited system resources have to be extensively reused for serving several users. This results in received interferences at the users which limit the performance of the system. A scenario with several source-destination node pairs communicating unidirectionally through a shared medium is considered. The communication among the nodes is assisted by some relays and takes place in two time slots. The present dissertation focuses on investigating how the relay and the filter coefficients can be smartly adjusted such that the system performance is enhanced.In zukünftigen Mehrbenutzerfunksystemen müssen die begrenzten Systemressourcen intensiv wiederverwendet werden. Dadurch empfangen die Benutzer Interferenzsignale, sodass die Performanz des Funksystems begrenzt wird. Es wird ein Szenario, bestehend aus mehreren Paaren von Quell- und Zielknoten, betrachtet. Die Knotenpaare kommunizieren unidirektional miteinander durch ein Relay. Diese Dissertation konzentriert sich auf die Untersuchung, wie die Relay- und die Filterkoeffizienten intelligent angepasst werden können, sodass die Performanz des Funksystems erhöht wird

    Duplex Schemes in Multiple Antenna Two-Hop Relaying

    No full text
    A novel scheme for two-hop relaying defined as space division duplex (SDD) relaying is proposed. In SDD relaying, multiple antenna beamforming techniques are applied at the intermediate relay station (RS) in order to separate downlink and uplink signals of a bi-directional two-hop communication between two nodes, namely, S1 and S2. For conventional amplify-and-forward two-hop relaying, there appears a loss in spectral efficiency due to the fact that the RS cannot receive and transmit simultaneously on the same channel resource. In SDD relaying, this loss in spectral efficiency is circumvented by giving up the strict separation of downlink and uplink signals by either time division duplex or frequency division duplex. Two novel concepts for the derivation of the linear beamforming filters at the RS are proposed; they can be designed either by a three-step or a one-step concept. In SDD relaying, receive signals at S1 are interfered by transmit signals of S1, and receive signals at S2 are interfered by transmit signals of S2. An efficient method in order to combat this kind of interference is proposed in this paper. Furthermore, it is shown how the overall spectral efficiency of SDD relaying can be improved if the channels from S1 and S2 to the RS have different qualities

    Advanced Signal Processing Techniques for Two-Way Relaying Networks and Full-Duplex Communication Systems

    Get PDF
    Sehr hohe Datenraten und ständig verfügbare Netzabdeckung in zukünftigen drahtlosen Netzwerken erfordern neue Algorithmen auf der physischen Schicht. Die Nutzung von Relais stellt ein vielversprechendes Verfahren dar, da die Netzabdeckung gesteigert werden kann. Zusätzlich steht hierdurch im Vergleich zu Kupfer- oder Glasfaserleitungen eine preiswerte Lösung zur Anbindung an die Netzinfrastruktur zur Verfügung. Traditionelle Einwege-Relais-Techniken (One-Way Relaying [OWR]) nutzen Halbduplex-Verfahren (HD-Verfahren), welche das Übertragungssystem ausbremst und zu spektralen Verlusten führt. Einerseits erlauben es Zweiwege-Relais-Techniken (Two-Way Relaying [TWR]), simultan sowohl an das Relais zu senden als auch von diesem zu empfangen, wodurch im Vergleich zu OWR das Spektrum effizienter genutzt wird. Aus diesem Grunde untersuchen wir Zweiwege-Relais und im Speziellen TWR-Systeme für den Mehrpaar-/Mehrnutzer-Betrieb unter Nutzung von Amplify-and-forward-Relais (AF-Relais). Derartige Szenarien leiden unter Interferenzen zwischen Paaren bzw. zwischen Nutzern. Um diesen Interferenzen Herr zu werden, werden hochentwickelte Signalverarbeitungsalgorithmen – oder in anderen Worten räumliche Mehrfachzugriffsverfahren (Spatial Division Multiple Access [SDMA]) – benötigt. Andererseits kann der spektrale Verlust durch den HD-Betrieb auch kompensiert werden, wenn das Relais im Vollduplexbetrieb arbeitet. Nichtsdestotrotz ist ein FD-Gerät in der Praxis aufgrund starker interner Selbstinterferenz (SI) und begrenztem Dynamikumfang des Tranceivers schwer zu realisieren. Aus diesem Grunde sollten fortschrittliche Verfahren zur SI-Ünterdrückung entwickelt werden. Diese Dissertation trägt diesen beiden Zielen Rechnung, indem optimale und/oder effiziente algebraische Lösungen entwickelt werden, welche verschiedenen Nutzenfunktionen, wie Summenrate und minimale Sendeleistung, maximieren.Im ersten Teil studieren wir zunächst Mehrpaar-TWR-Netzwerke mit einem einzelnen Mehrantennen-AF-Relais. Dieser Anwendungsfall kann auch so betrachtet werden, dass sich mehrere verschiedene Dienstoperatoren Relais und Spektrum teilen, wobei verschiedene Nutzerpaare zu verschiedenen Dienstoperatoren gehören. Aktuelle Ansätzen zielen auf Interferenzunterdrückung ab. Wir schlagen ein auf Projektion basiertes Verfahren zur Trennung mehrerer Dienstoperatoren (projection based separation of multiple operators [ProBaSeMO]) vor. ProBaSeMO ist leicht anpassbar für den Fall, dass jeder Nutzer mehrere Antennen besitzt oder unterschiedliche Systemdesignkriterien angewendet werden müssen. Als Bewertungsmaßstab für ProBaSeMO entwickeln wir optimale Algorithmen zur Maximierung der Summenrate, zur Minimierung der Sendeleistung am Relais oder zur Maximierung des minimalen Signal-zu-Interferenz-und-Rausch-Verhältnisses (Signal to Interference and Noise Ratio [SINR]) am Nutzer. Zur Maximierung der Summenrate wurden spezifische gradientenbasierte Methoden entwickelt, die unabhängig davon sind, ob ein Nutzer mit einer oder mehr Antennen ausgestattet ist. Um im Falle eines „Worst-Case“ immer noch eine polynomielle Laufzeit zu garantieren, entwickelten wir einen Algorithmus mit polynomieller Laufzeit. Dieser ist inspiriert von der „Polynomial Time Difference of Convex Functions“-Methode (POTDC-Methode). Bezüglich der Summenrate des Systems untersuchen wir zuletzt, welche Bedingungen erfüllt sein müssen, um einen Gewinn durch gemeinsames Nutzen zu erhalten. Hiernach untersuchen wir die Maximierung der Summenrate eines Mehrpaar-TWR-Netzwerkes mit mehreren Einantennen-AF-Relais und Einantennen-Nutzern. Das daraus resultierende Problem der Summenraten-Maximierung, gebunden an eine bestimmte Gesamtsendeleistung aller Relais im Netzwerk, ist ähnlich dem des vorangegangenen Szenarios. Dementsprechend kann eine optimale Lösung für das eine Szenario auch für das jeweils andere Szenario genutzt werden. Weiterhin werden basierend auf dem Polynomialzeitalgorithmus global optimale Lösungen entwickelt. Diese Lösungen sind entweder an eine maximale Gesamtsendeleistung aller Relais oder an eine maximale Sendeleistung jedes einzelnen Relais gebunden. Zusätzlich entwickeln wir suboptimale Lösungen, die effizient in ihrer Laufzeit sind und eine Approximation der optimalen Lösung darstellen. Hiernach verlegen wir unser Augenmerk auf ein Mehrpaar-TWR-Netzwerk mit mehreren Mehrantennen-AF-Relais und mehreren Repeatern. Solch ein Szenario ist allgemeiner, da die vorherigen beiden Szenarien als spezielle Realisierungen dieses Szenarios aufgefasst werden können. Das Interferenz-Management in diesem Szenario ist herausfordernder aufgrund der vorhandenen Repeater. Interferenzneutralisierung (IN) stellt eine Lösung dar, um diese Art Interferenz zu handhaben. Im Zuge dessen werden notwendige und ausreichende Bedingungen zur Aufhebung der Interferenz hergeleitet. Weiterhin wird ein Framework entwickelt, dass verschiedene Systemnutzenfunktionen optimiert, wobei IN im jeweiligen Netzwerk vorhanden sein kann oder auch nicht. Dies ist unabhängig davon, ob die Relais einer maximalen Gesamtsendeleistung oder einer individuellen maximalen Sendeleistung unterliegen. Letztendlich entwickeln wir ein Übertragungsverfahren sowie ein Vorkodier- und Dekodierverfahren für Basisstationen (BS) in einem TWR-assistierten Mehrbenutzer-MIMO-Downlink-Kanal. Im Vergleich mit dem Mehrpaar-TWR-Netzwerk leidet dieses Szenario unter Interferenzen zwischen den Kanälen. Wir entwickeln drei suboptimale Algorithmen, welche auf Kanalinversion basieren. ProBaSeMO und „Zero-Forcing Dirty Paper Coding“ (ZFDPC), welche eine geringe Zeitkomplexität aufweisen, schaffen eine Balance zwischen Leistungsfähigkeit und Komplexität. Zusätzlich gibt es jeweils nur geringe Einbrüche in stark beanspruchten Kommunikationssystemen.Im zweiten Teil untersuchen wir Techniken zur SI-Unterdrückung, um den FD-Gewinn in einem Punkt-zu-Punkt-System auszunutzen. Zunächst entwickeln wir ein Übertragungsverfahren, dass auf SI Rücksicht nimmt und die SI-Unterdrückung gegen den Multiplexgewinn abwägt. Die besten Ergebnisse werden durch die perfekte Kenntnis des Kanals erzielt, was praktisch nicht genau der Fall ist. Aus diesem Grund werden Übertragungstechniken für den „Worst Case“ entwickelt, die den Kanalschätzfehlern Rechnung tragen. Diese Fehler werden deterministisch modelliert und durch Ellipsoide beschränkt. In praktischen Szenarien ist der HF-Schaltkreise nicht perfekt. Dies hat Einfluss auf die Verfahren zur SI-Unterdrückung und führt zu einer Restselbstinterferenz. Wir entwickeln effiziente Übertragungstechniken mittels Beamforming, welche auf dem Signal-zu-Verlust-und-Rausch-Verhältnis (signal to leakage plus noise ratio [SLNR]) aufbauen, um Unvollkommenheiten der HF-Schaltkreise auszugleichen. Zusätzlich können alle Designkonzepte auf FD-OWR-Systeme erweitert werden.To enable ultra-high data rate and ubiquitous coverage in future wireless networks, new physical layer techniques are desired. Relaying is a promising technique for future wireless networks since it can boost the coverage and can provide low cost wireless backhauling solutions, as compared to traditional wired backhauling solutions via fiber and copper. Traditional one-way relaying (OWR) techniques suffer from the spectral loss due to the half-duplex (HD) operation at the relay. On one hand, two-way relaying (TWR) allows the communication partners to transmit to and/or receive from the relay simultaneously and thus uses the spectrum more efficiently than OWR. Therefore, we study two-way relays and more specifically multi-pair/multi-user TWR systems with amplify-and-forward (AF) relays. These scenarios suffer from inter-pair or inter-user interference. To deal with the interference, advanced signal processing algorithms, in other words, spatial division multiple access (SDMA) techniques, are desired. On the other hand, if the relay is a full-duplex (FD) relay, the spectral loss due to a HD operation can also be compensated. However, in practice, a FD device is hard to realize due to the strong loop-back self-interference and the limited dynamic range at the transceiver. Thus, advanced self-interference suppression techniques should be developed. This thesis contributes to the two goals by developing optimal and/or efficient algebraic solutions for different scenarios subject to different utility functions of the system, e.g., sum rate maximization and transmit power minimization. In the first part of this thesis, we first study a multi-pair TWR network with a multi-antenna AF relay. This scenario can be also treated as the sharing of the relay and the spectrum among multiple operators assuming that different pairs of users belong to different operators. Existing approaches focus on interference suppression. We propose a projection based separation of multiple operators (ProBaSeMO) scheme, which can be easily extended when each user has multiple antennas or when different system design criteria are applied. To benchmark the ProBaSeMO scheme, we develop optimal relay transmit strategies to maximize the system sum rate, minimize the required transmit power at the relay, or maximize the minimum signal to interference plus noise ratio (SINR) of the users. Specifically for the sum rate maximization problem, gradient based methods are developed regardless whether each user has a single antenna or multiple antennas. To guarantee a worst-case polynomial time solution, we also develop a polynomial time algorithm which has been inspired by the polynomial time difference of convex functions (POTDC) method. Finally, we analyze the conditions for obtaining the sharing gain in terms of the sum rate. Then we study the sum rate maximization problem of a multi-pair TWR network with multiple single antenna AF relays and single antenna users. The resulting sum rate maximization problem, subject to a total transmit power constraint of the relays in the network, yields a similar problem structure as in the previous scenario. Therefore the optimal solution for one scenario can be used for the other. Moreover, a global optimal solution, which is based on the polyblock approach, and several suboptimal solutions, which are more computationally efficient and approximate the optimal solution, are developed when there is a total transmit power constraint of the relays in the network or each relay has its own transmit power constraint. We then shift our focus to a multi-pair TWR network with multiple multi-antenna AF relays and multiple dumb repeaters. This scenario is more general because the previous two scenarios can be seen as special realizations of this scenario. The interference management in this scenario is more challenging due to the existence of the repeaters. Interference neutralization (IN) is a solution for dealing with this kind of interference. Thereby, necessary and sufficient conditions for neutralizing the interference are derived. Moreover, a general framework to optimize different system utility functions in this network with or without IN is developed regardless whether the AF relays in the network have a total transmit power limit or individual transmit power limits. Finally, we develop the relay transmit strategy as well as base station (BS) precoding and decoding schemes for a TWR assisted multi-user MIMO (MU-MIMO) downlink channel. Compared to the multi-pair TWR network, this scenario suffers from the co-channel interference. We develop three suboptimal algorithms which are based on channel inversion, ProBaSeMO and zero-forcing dirty paper coding (ZFDPC), which has a low computational complexity, provides a balance between the performance and the complexity, and suffers only a little when the system is heavily loaded, respectively.In the second part of this thesis, we investigate self-interference (SI) suppression techniques to exploit the FD gain for a point-to-point MIMO system. We first develop SI aware transmit strategies, which provide a balance between the SI suppression and the multiplexing gain of the system. To get the best performance, perfect channel state information (CSI) is needed, which is imperfect in practice. Thus, worst case transmit strategies to combat the imperfect CSI are developed, where the CSI errors are modeled deterministically and bounded by ellipsoids. In real word applications, the RF chain is imperfect. This affects the performance of the SI suppression techniques and thus results in residual SI. We develop efficient transmit beamforming techniques, which are based on the signal to leakage plus noise ratio (SLNR) criterion, to deal with the imperfections in the RF chain. All the proposed design concepts can be extended to FD OWR systems
    corecore