22 research outputs found

    Discovery of the D-basis in binary tables based on hypergraph dualization

    Get PDF
    Discovery of (strong) association rules, or implications, is an important task in data management, and it nds application in arti cial intelligence, data mining and the semantic web. We introduce a novel approach for the discovery of a speci c set of implications, called the D-basis, that provides a representation for a reduced binary table, based on the structure of its Galois lattice. At the core of the method are the D-relation de ned in the lattice theory framework, and the hypergraph dualization algorithm that allows us to e ectively produce the set of transversals for a given Sperner hypergraph. The latter algorithm, rst developed by specialists from Rutgers Center for Operations Research, has already found numerous applications in solving optimization problems in data base theory, arti cial intelligence and game theory. One application of the method is for analysis of gene expression data related to a particular phenotypic variable, and some initial testing is done for the data provided by the University of Hawaii Cancer Cente

    Discovery of the D-basis in binary tables based on hypergraph dualization

    Get PDF
    Discovery of (strong) association rules, or implications, is an important task in data management, and it nds application in arti cial intelligence, data mining and the semantic web. We introduce a novel approach for the discovery of a speci c set of implications, called the D-basis, that provides a representation for a reduced binary table, based on the structure of its Galois lattice. At the core of the method are the D-relation de ned in the lattice theory framework, and the hypergraph dualization algorithm that allows us to e ectively produce the set of transversals for a given Sperner hypergraph. The latter algorithm, rst developed by specialists from Rutgers Center for Operations Research, has already found numerous applications in solving optimization problems in data base theory, arti cial intelligence and game theory. One application of the method is for analysis of gene expression data related to a particular phenotypic variable, and some initial testing is done for the data provided by the University of Hawaii Cancer Cente

    On the complexity of enumerating pseudo-intents

    Get PDF
    AbstractWe investigate whether the pseudo-intents of a given formal context can efficiently be enumerated. We show that they cannot be enumerated in a specified lexicographic order with polynomial delay unless P=NP. Furthermore we show that if the restriction on the order of enumeration is removed, then the problem becomes at least as hard as enumerating minimal transversals of a given hypergraph. We introduce the notion of minimal pseudo-intents and show that recognizing minimal pseudo-intents is polynomial. Despite their less complicated nature, surprisingly it turns out that minimal pseudo-intents cannot be enumerated in output-polynomial time unless P=NP

    On the Usability of Probably Approximately Correct Implication Bases

    Full text link
    We revisit the notion of probably approximately correct implication bases from the literature and present a first formulation in the language of formal concept analysis, with the goal to investigate whether such bases represent a suitable substitute for exact implication bases in practical use-cases. To this end, we quantitatively examine the behavior of probably approximately correct implication bases on artificial and real-world data sets and compare their precision and recall with respect to their corresponding exact implication bases. Using a small example, we also provide qualitative insight that implications from probably approximately correct bases can still represent meaningful knowledge from a given data set.Comment: 17 pages, 8 figures; typos added, corrected x-label on graph
    corecore