Increasing the role of the D-basis in applications

K. Adaricheva

Nazarbayev University (NU), Astana
June 6, 2015
AAA90 Workshop
Novi Sad, Serbia

Based on papers:

"Ordered direct basis of a finite closure system" joint work with J.B.Nation and R.Rand, Disc. Appl. Math. 2013
"Discovery of the D-basis in binary tables based on hypergraph dualization", 2012 joint work with J.B.Nation, submitted to Theoretical Computer Science, in arxiv
"Measuring the implications of the D-basis in analysis of data in biomedical studies", 2015 joint work with J.B.Nation, G. Okimoto, K. Alibek and others, Proceedings of ICFCA-2015, Spain

Last paper's support:

The project has been supported by the research grant N 13/42
" Algebraic methods of data retrieval"
Nazarbayev University, 2013-2015
and grant N 0112PK02175, 2012-2014,
Ministry of Healthcare and Social Development of RK

History of events

- Novi Sad Algebraic Conference, 2005, Kira's talk on "Relatively convex sets and Jamison problem"
- meeting Gyuri Turan, AMS conference in Urbana-Champaign in 2009
- visiting Turan and Bob Sloan in Chicago in 2010, Bertet-Monjardet's paper in TCS, 2010, just out
- first draft of D-basis paper, summer 2010 in Chicago
- Robert Rand and his honor's project, 2010-2011
- talk on the D-basis at RUTCOR seminar, with Endre Boros and Vladimir Gurvich attending, October 2011
- visit of Karell Bertet to New York, May 2012
- first version of paper on the D-basis retrieval, November 2012
- Kira's arrival in Astana, on-line course with Yeshiva University students, grant of Nazarbayev University, Spring 2013

Outline

(1) Closure systems, lattices and implications
(2) Famous implicational bases
(3) D-basis

4 Ordered direct bases
(5) Binary tables and Galois connection

6 D-basis retrieval from the binary table

Closure systems

$\langle X, \phi\rangle$ is a closure system, if

- X is non-empty set (finite in this talk);
- ϕ is a closure operator on X, i.e. $\phi: 2^{X} \rightarrow 2^{X}$ with
(1) $Y \subseteq \phi(Y)$;
(2) $Y \subseteq Z$ implies $\phi(Y) \subseteq \phi(Z)$;
(3) $\phi(\phi(Y))=\phi(Y)$, for all $Y, Z \subseteq X$.
- Closed set: $A=\phi(A)$;
- Lattice of closed sets: $C /(X, \phi)$.

Closure systems

$\langle X, \phi\rangle$ is a closure system, if

- X is non-empty set (finite in this talk);
- ϕ is a closure operator on X, i.e. $\phi: 2^{X} \rightarrow 2^{X}$ with (1) $Y \subseteq \phi(Y)$;
(2) $Y \subseteq Z$ implies $\phi(Y) \subseteq \phi(Z)$;
(3) $\phi(\phi(Y))=\phi(Y)$, for all $Y, Z \subseteq X$.
- Closed set: $A=\phi(A)$;
- Lattice of closed sets: $C /(X, \phi)$.

Closure systems

$\langle X, \phi\rangle$ is a closure system, if

- X is non-empty set (finite in this talk);
- ϕ is a closure operator on X, i.e. $\phi: 2^{X} \rightarrow 2^{X}$ with
(1) $Y \subseteq \phi(Y)$;
(2) $Y \subseteq Z$ implies $\phi(Y) \subseteq \phi(Z)$;
(3) $\phi(\phi(Y))=\phi(Y)$, for all $Y, Z \subseteq X$.
- Closed set: $A=\phi(A)$;
- Lattice of closed sets: $C /(X, \phi)$.

Closure systems

$\langle X, \phi\rangle$ is a closure system, if

- X is non-empty set (finite in this talk);
- ϕ is a closure operator on X, i.e. $\phi: 2^{X} \rightarrow 2^{X}$ with
(1) $Y \subseteq \phi(Y)$;
(2) $Y \subseteq Z$ implies $\phi(Y) \subseteq \phi(Z)$;
- Closed set: $A=\phi(A)$;
- Lattice of closed sets: $C /(X, \phi)$.

Closure systems

$\langle X, \phi\rangle$ is a closure system, if

- X is non-empty set (finite in this talk);
- ϕ is a closure operator on X, i.e. $\phi: 2^{X} \rightarrow 2^{X}$ with
(1) $Y \subseteq \phi(Y)$;
(2) $Y \subseteq Z$ implies $\phi(Y) \subseteq \phi(Z)$;
(3) $\phi(\phi(Y))=\phi(Y)$, for all $Y, Z \subseteq X$.
- Closed set: $A=\phi(A)$;
- Lattice of closed sets: $C I(X, \phi)$.

Closure systems

$\langle X, \phi\rangle$ is a closure system, if

- X is non-empty set (finite in this talk);
- ϕ is a closure operator on X, i.e. $\phi: 2^{X} \rightarrow 2^{X}$ with
(1) $Y \subseteq \phi(Y)$;
(2) $Y \subseteq Z$ implies $\phi(Y) \subseteq \phi(Z)$;
(3) $\phi(\phi(Y))=\phi(Y)$, for all $Y, Z \subseteq X$.
- Closed set: $A=\phi(A)$;
- Lattice of closed sets: $C I(X, \phi)$.

Closure systems

$\langle X, \phi\rangle$ is a closure system, if

- X is non-empty set (finite in this talk);
- ϕ is a closure operator on X, i.e. $\phi: 2^{X} \rightarrow 2^{X}$ with
(1) $Y \subseteq \phi(Y)$;
(2) $Y \subseteq Z$ implies $\phi(Y) \subseteq \phi(Z)$;
(3) $\phi(\phi(Y))=\phi(Y)$, for all $Y, Z \subseteq X$.
- Closed set: $A=\phi(A)$;
- Lattice of closed sets: $C I(X, \phi)$.

Yin Yang of a closure system

Algebraic part of a closure system: lattice of closed sets

Logic part of a closure system: set of implications.

Lattices and closure systems

Proposition

Every finite lattice L is the lattice of closed sets of some closure system $\langle X, \phi\rangle$.

- Take $X=\mathrm{Ji}(L)$, the set of join-irreducible elements: $j \in \mathrm{Ji}(L)$, if $j \neq 0$, and $j=a \vee b$ implies $j=a$ or $j=b$;
- Define $\phi(Y)=\{j \in \mathrm{Ji}(L): j \leq \bigvee Y\}, Y \subseteq X$.
- Proof of $L \cong C I(X, \phi)$: every element $x \in L$ corresponds to ϕ-closed set of all join irreducibles below x.
- So defined closure system is always standard.

Lattices and closure systems

Proposition

Every finite lattice L is the lattice of closed sets of some closure system $\langle X, \phi\rangle$.

- Take $X=\mathrm{Ji}(L)$, the set of join-irreducible elements: $j \in \mathrm{Ji}(L)$, if $j \neq 0$, and $j=a \vee b$ implies $j=a$ or $j=b$;
- Define $\phi(Y)=\{j \in J i(L): j \leq \bigvee Y\}, Y \subseteq X$.
- Proof of $L \cong C I(X, \phi)$: every element $x \in L$ corresponds to ϕ-closed set of all join irreducibles below x.
- So defined closure system is always standard.

Lattices and closure systems

Proposition

Every finite lattice L is the lattice of closed sets of some closure system $\langle X, \phi\rangle$.

- Take $X=\mathrm{Ji}(L)$, the set of join-irreducible elements: $j \in \mathrm{Ji}(L)$, if $j \neq 0$, and $j=a \vee b$ implies $j=a$ or $j=b$;
- Define $\phi(Y)=\{j \in \mathrm{Ji}(L): j \leq \bigvee Y\}, Y \subseteq X$.
- Proof of $L \cong C I(X, \phi)$: every element $x \in L$ corresponds to ϕ-closed set of all join irreducibles below x.
- So defined closure system is always standard.

Lattices and closure systems

Proposition

Every finite lattice L is the lattice of closed sets of some closure system $\langle X, \phi\rangle$.

- Take $X=\mathrm{Ji}(L)$, the set of join-irreducible elements: $j \in \mathrm{Ji}(L)$, if $j \neq 0$, and $j=a \vee b$ implies $j=a$ or $j=b$;
- Define $\phi(Y)=\{j \in \mathrm{Ji}(L): j \leq \bigvee Y\}, Y \subseteq X$.
- Proof of $L \cong C I(X, \phi)$: every element $x \in L$ corresponds to ϕ-closed set of all join irreducibles below x.
- So defined closure system is always standard.

Lattices and closure systems

Proposition

Every finite lattice L is the lattice of closed sets of some closure system $\langle X, \phi\rangle$.

- Take $X=\mathrm{Ji}(L)$, the set of join-irreducible elements: $j \in \mathrm{Ji}(L)$, if $j \neq 0$, and $j=a \vee b$ implies $j=a$ or $j=b$;
- Define $\phi(Y)=\{j \in \mathrm{Ji}(L): j \leq \bigvee Y\}, Y \subseteq X$.
- Proof of $L \cong C I(X, \phi)$: every element $x \in L$ corresponds to ϕ-closed set of all join irreducibles below x.
- So defined closure system is always standard.

Lattices and closure systems

Proposition

Every finite lattice L is the lattice of closed sets of some closure system $\langle X, \phi\rangle$.

- Take $X=\mathrm{Ji}(L)$, the set of join-irreducible elements: $j \in \mathrm{Ji}(L)$, if $j \neq 0$, and $j=a \vee b$ implies $j=a$ or $j=b$;
- Define $\phi(Y)=\{j \in \mathrm{Ji}(L): j \leq \bigvee Y\}, Y \subseteq X$.
- Proof of $L \cong C l(X, \phi)$: every element $x \in L$ corresponds to ϕ-closed set of all join irreducibles below x.
- So defined closure system is always standard.

Standard closure systems

- Closure system $\langle X, \phi\rangle$ is standard, when for no $x \in X$ there exists $Y \subseteq X \backslash\{x\}$ such that $\phi(x)=\phi(Y)$.
- For every closure system $\langle Y, \phi\rangle$ one can find $X \subseteq Y$ such that, with restriction ϕ_{X} of ϕ on X, one obtains the standard closure system $\left\langle X, \phi_{X}\right\rangle$, with the lattice of closed sets isomorphic to $C l(Y, \phi)$.
- Moreover, for every $y \in Y \backslash X$ we have $\phi(y)=\phi\left(X^{\prime}\right)$, for some $X^{\prime} \subseteq X$.

Example: Building a closure system associated with lattice A_{12}. $X=\mathrm{Ji}\left(A_{12}\right)=\{1,2,3,4,5,6\} . \phi(\{4,6\})=\{1,3,4,6\}, \phi(\{2,4\})=X$ etc.

Figure: A_{12}

Closure systems and implications

- An implication σ on $X: \quad Y \rightarrow Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.

- Closure system $\left\langle X, \phi_{\mathcal{S}}\right\rangle$ defined by set \mathcal{S} of implications on X : A is closed, if it is σ-closed, for each $\sigma \in \mathcal{S}$
- Every closure system $\langle X, \psi\rangle$ can be presented as $\left\langle X, \phi_{\mathcal{S}}\right\rangle$, for some set \mathcal{S} of implications on X.
- Example: $\mathcal{S}=\{A \rightarrow \phi(A): A \subset X, A \neq \phi(A)\}$.

Closure systems and implications

- An implication σ on $X: \quad Y \rightarrow Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.
- σ-closed subset A of X : if $Y \subseteq A$, then $Z \subseteq A$.
- Closure system $\left\langle X, \phi_{\mathcal{S}}\right\rangle$ defined by set \mathcal{S} of implications on $X: A$ is closed, if it is σ-closed, for each $\sigma \in \mathcal{S}$
- Every closure system $\langle X, \psi\rangle$ can be presented as $\left\langle X, \phi_{S}\right\rangle$, for some set \mathcal{S} of implications on X.
- Example: $\mathcal{S}=\{A \rightarrow \phi(A): A \subseteq X, A \neq \phi(A)\}$

Closure systems and implications

- An implication σ on $X: \quad Y \rightarrow Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.
- σ-closed subset A of X :
if $Y \subseteq A$, then $Z \subseteq A$.
- Closure system $\left\langle X, \phi_{\mathcal{S}}\right\rangle$ defined by set \mathcal{S} of implications on X : A is closed, if it is σ-closed, for each $\sigma \in \mathcal{S}$
- Every closure system $\langle X, \psi\rangle$ can be presented as $\left\langle X, \phi_{\mathcal{S}}\right\rangle$, for some set \mathcal{S} of implications on X.
- Example: $\mathcal{S}=\{A \rightarrow \phi(A): A \subset X, A \neq \phi(A)\}$

Closure systems and implications

- An implication σ on $X: \quad Y \rightarrow Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.
- σ-closed subset A of X : if $Y \subseteq A$, then $Z \subseteq A$.
- Closure system $\left\langle X, \phi_{\mathcal{S}}\right\rangle$ defined by set \mathcal{S} of implications on X : A is closed, if it is σ-closed, for each $\sigma \in \mathcal{S}$
- Every closure system $\langle X, \psi\rangle$ can be presented as $\left\langle X, \phi_{\mathcal{S}}\right\rangle$, for some set \mathcal{S} of implications on X.
- Example: $\mathcal{S}=\{A \rightarrow \phi(A): A \subseteq X, A \neq \phi(A)\}$

Closure systems and implications

- An implication σ on $X: \quad Y \rightarrow Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.
- σ-closed subset A of X : if $Y \subseteq A$, then $Z \subseteq A$.
- Closure system $\left\langle X, \phi_{\mathcal{S}}\right\rangle$ defined by set \mathcal{S} of implications on X : A is closed, if it is σ-closed, for each $\sigma \in \mathcal{S}$
- Every closure system $\langle X, \psi\rangle$ can be presented as $\left\langle X, \phi_{\mathcal{S}}\right\rangle$, for some set \mathcal{S} of implications on X.
- Example: $\mathcal{S}=\{A \rightarrow \phi(A): A \subseteq X, A \neq \phi(A)\}$.

Operator and sets of implications

Note:

- Every set of implications \mathcal{S} on X defines unique closure operator on X.
- There exist numerous sets of implications that define the same operator on X.
Example: Let $X=\{a, b, c\}$. Consider $S_{1}=\{a \rightarrow b c\}$ and

The closure systems defined by \mathcal{S}_{1} and \mathcal{S}_{2} are the same.

Operator and sets of implications

Note:

- Every set of implications \mathcal{S} on X defines unique closure operator on X.
- There exist numerous sets of implications that define the same operator on X.
Example: Let $X=\{a, b, c\}$. Consider $\mathcal{S}_{1}=\{a \rightarrow b c\}$ and

The closure systems defined by \mathcal{S}_{1} and \mathcal{S}_{2} are the same.

Operator and sets of implications

Note:

- Every set of implications \mathcal{S} on X defines unique closure operator on X.
- There exist numerous sets of implications that define the same operator on X.
Example: Let $X=\{a, b, c\}$. Consider $\mathcal{S}_{1}=\{a \rightarrow b c\}$ and $\mathcal{S}_{2}=\{a \rightarrow b c, a b \rightarrow c, a c \rightarrow b, a \rightarrow b, b c \rightarrow c\}$.

Operator and sets of implications

Note:

- Every set of implications \mathcal{S} on X defines unique closure operator on X.
- There exist numerous sets of implications that define the same operator on X.
Example: Let $X=\{a, b, c\}$. Consider $\mathcal{S}_{1}=\{a \rightarrow b c\}$ and
$\mathcal{S}_{2}=\{a \rightarrow b c, a b \rightarrow c, a c \rightarrow b, a \rightarrow b, b c \rightarrow c\}$.
The closure systems defined by \mathcal{S}_{1} and \mathcal{S}_{2} are the same.

The bases of a closure system

Term a base or a basis is used when the set of implications \mathcal{S}^{\prime} that defines the same closure system satisfies some condition of minimality.

We mention two famous bases: canonical and canonical unit direct

The bases of a closure system

Term a base or a basis is used when the set of implications \mathcal{S}^{\prime} that defines the same closure system satisfies some condition of minimality.

We mention two famous bases: canonical and canonical unit direct (CUD).

Canonical basis

D. Maier, Minimum covers in the relational database model, JACM 27 (1980), 664-674.
J.L. Guiques, V. Duquenne, Familles minimales d'implications informatives résultant d'une tables de données binares, Math. Sci. Hum. 95 (1986), 5-18.

- Define critical subsets of X for a given closure system
- Canonical basis \mathcal{S}_{C} is $\{C \rightarrow B: C$ is critical, $B=\phi(C)$
- If \mathcal{S} is any other set of implications generating $\langle X, \phi\rangle$, then for every critical set C one can find $\left(C^{\prime} \rightarrow D\right) \in \mathcal{S}$ such that $C^{\prime} \subseteq C$, and no other critical or closed set Y with $C^{\prime} \subseteq Y \subset C$.
- S_{C} is the minimum basis among all the bases generating

Definition

Set of implications S defining ϕ on A is called minimum basis if $|S|$ is minimal among all sets of implications defining ϕ

Canonical basis

D. Maier, Minimum covers in the relational database model, JACM 27 (1980), 664-674.
J.L. Guiques, V. Duquenne, Familles minimales d'implications informatives résultant d'une tables de données binares, Math. Sci. Hum. 95 (1986), 5-18.

- Define critical subsets of X for a given closure system $\langle X, \phi\rangle$.
- Canonical basis \mathcal{S}_{C} is $\{C \rightarrow B: C$ is critical, $B=\phi(C) \backslash C\}$
- If \mathcal{S} is any other set of implications generating $\langle X, \phi\rangle$, then for every critical set C one can find $\left(C^{\prime} \rightarrow D\right) \in \mathcal{S}$ such that $C^{\prime} \subseteq C$, and no other critical or closed set Y with $C^{\prime} \subseteq Y \subset C$.
- \mathcal{S}_{C} is the minimum basis among all the bases generating

Definition

Set of implications \mathcal{S} defining ϕ on A is called minimum basis if $|\mathcal{S}|$ is minimal among all sets of implications defining ϕ

Canonical basis

D. Maier, Minimum covers in the relational database model, JACM 27 (1980), 664-674.
J.L. Guiques, V. Duquenne, Familles minimales d'implications informatives résultant d'une tables de données binares, Math. Sci. Hum. 95 (1986), 5-18.

- Define critical subsets of X for a given closure system $\langle X, \phi\rangle$.
- Canonical basis \mathcal{S}_{C} is $\{C \rightarrow B: C$ is critical, $B=\phi(C) \backslash C\}$.
 and no other critical or closed set Y with $C^{\prime} \subseteq Y \subset C$.
- \mathcal{S}_{C} is the minimum basis among all the bases generating
\square
Definition
Set of implications S defining o on A is called minimum basis if S is minimal among all sets of implications defining ϕ

Canonical basis

D. Maier, Minimum covers in the relational database model, JACM 27 (1980), 664-674.
J.L. Guiques, V. Duquenne, Familles minimales d'implications informatives résultant d'une tables de données binares, Math. Sci. Hum. 95 (1986), 5-18.

- Define critical subsets of X for a given closure system $\langle X, \phi\rangle$.
- Canonical basis \mathcal{S}_{C} is $\{C \rightarrow B: C$ is critical, $B=\phi(C) \backslash C\}$.
- If \mathcal{S} is any other set of implications generating $\langle X, \phi\rangle$, then for every critical set C one can find $\left(C^{\prime} \rightarrow D\right) \in \mathcal{S}$ such that $C^{\prime} \subseteq C$, and no other critical or closed set Y with $C^{\prime} \subseteq Y \subset C$.
- \mathcal{S}_{C} is the minimum basis among all the bases generating
\square
Set of implications \mathcal{S} defining ϕ on A is called minimum basis if $|\mathcal{S}|$ is minimal among all sets of implications defining

Canonical basis

D. Maier, Minimum covers in the relational database model, JACM 27 (1980), 664-674.
J.L. Guiques, V. Duquenne, Familles minimales d'implications informatives résultant d'une tables de données binares, Math. Sci. Hum. 95 (1986), 5-18.

- Define critical subsets of X for a given closure system $\langle X, \phi\rangle$.
- Canonical basis \mathcal{S}_{C} is $\{C \rightarrow B: C$ is critical, $B=\phi(C) \backslash C\}$.
- If \mathcal{S} is any other set of implications generating $\langle X, \phi\rangle$, then for every critical set C one can find $\left(C^{\prime} \rightarrow D\right) \in \mathcal{S}$ such that $C^{\prime} \subseteq C$, and no other critical or closed set Y with $C^{\prime} \subseteq Y \subset C$.
- \mathcal{S}_{C} is the minimum basis among all the bases generating $\langle X, \phi\rangle$.
\square
Set of implications \mathcal{S} defining ϕ on A is called minimum basis if $|\mathcal{S}|$ is minimal amona all sets of implications defining \varnothing

Canonical basis

D. Maier, Minimum covers in the relational database model, JACM 27 (1980), 664-674.
J.L. Guiques, V. Duquenne, Familles minimales d'implications informatives résultant d'une tables de données binares, Math. Sci. Hum. 95 (1986), 5-18.

- Define critical subsets of X for a given closure system $\langle X, \phi\rangle$.
- Canonical basis \mathcal{S}_{C} is $\{C \rightarrow B: C$ is critical, $B=\phi(C) \backslash C\}$.
- If \mathcal{S} is any other set of implications generating $\langle X, \phi\rangle$, then for every critical set C one can find $\left(C^{\prime} \rightarrow D\right) \in \mathcal{S}$ such that $C^{\prime} \subseteq C$, and no other critical or closed set Y with $C^{\prime} \subseteq Y \subset C$.
- \mathcal{S}_{C} is the minimum basis among all the bases generating $\langle X, \phi\rangle$.

Definition

Set of implications \mathcal{S} defining ϕ on A is called minimum basis if $|\mathcal{S}|$ is minimal among all sets of implications defining ϕ.

Canonical bases from the other

A. Day, The lattice theory of functional dependencies and normal decompositions, Int.J.Alg. Comp. 2(1992), 409-431.

For every set of implications \mathcal{S}, one can find the canonical basis \mathcal{S}_{C} defining the same operator in time $O\left(|s(\mathcal{S})|^{2}\right)$.

Here the size $s(\mathcal{S})$ of the set of implications $\mathcal{S}=\left\{X_{i} \rightarrow Y_{i}: i \leq n\right\}$, is the number $s(\mathcal{S})=\left|X_{1}\right|+\left|Y_{1}\right|+\cdots+\left|X_{n}\right|+\left|Y_{n}\right|$

Canonical bases from the other

A. Day, The lattice theory of functional dependencies and normal decompositions, Int.J.Alg. Comp. 2(1992), 409-431.

For every set of implications \mathcal{S}, one can find the canonical basis \mathcal{S}_{C} defining the same operator in time $O\left(|s(\mathcal{S})|^{2}\right)$.

Here the size $s(\mathcal{S})$ of the set of implications $\mathcal{S}=\left\{X_{i} \rightarrow Y_{i}: i \leq n\right\}$, is the number $s(\mathcal{S})=\left|X_{1}\right|+\left|Y_{1}\right|+\cdots+\left|X_{n}\right|+\left|Y_{n}\right|$.

Canonical direct unit basis

K.Bertet, B.Monjardet, The multiple facets of the canonical direct unit implicational basis, Theoretical Computer Science 411 (2010), 2155-2166.

Basis \mathcal{S} is unit, if it comprises implications $Y \rightarrow b$, with the singleton
$b \in X$ on the right.

Given unit basis \mathcal{S} and $Y \subset X$, define

A unit implicational basis is called direct, if $\phi_{\mathcal{S}}(Y)=\pi_{\mathcal{S}}(Y)$, for all $Y \subseteq X$.

Canonical direct unit basis

K.Bertet, B.Monjardet, The multiple facets of the canonical direct unit implicational basis, Theoretical Computer Science 411 (2010), 2155-2166.

Basis \mathcal{S} is unit, if it comprises implications $Y \rightarrow b$, with the singleton $b \in X$ on the right.

A unit implicational basis is called direct, if $\phi_{\mathcal{S}}(Y)=\pi_{\mathcal{S}}(Y)$, for all $Y \subseteq X$.

Canonical direct unit basis

K.Bertet, B.Monjardet, The multiple facets of the canonical direct unit implicational basis, Theoretical Computer Science 411 (2010), 2155-2166.

Basis \mathcal{S} is unit, if it comprises implications $Y \rightarrow b$, with the singleton $b \in X$ on the right.

Given unit basis \mathcal{S} and $Y \subset X$, define $\pi_{\mathcal{S}}(Y)=Y \cup \bigcup\{b:(A \rightarrow b) \in \mathcal{S}, A \subseteq Y\}$.

A unit implicational basis is called direct, if $\phi_{\mathcal{S}}(Y)=\pi_{\mathcal{S}}(Y)$, for all $Y \subseteq X$.

Canonical direct unit basis

K.Bertet, B.Monjardet, The multiple facets of the canonical direct unit implicational basis, Theoretical Computer Science 411 (2010), 2155-2166.

Basis \mathcal{S} is unit, if it comprises implications $Y \rightarrow b$, with the singleton $b \in X$ on the right.

Given unit basis \mathcal{S} and $Y \subset X$, define $\pi_{\mathcal{S}}(Y)=Y \cup \bigcup\{b:(A \rightarrow b) \in \mathcal{S}, A \subseteq Y\}$. Then $\phi_{\mathcal{S}}(Y)=\pi_{\mathcal{S}}(Y) \cup \pi_{\mathcal{S}}^{2}(Y) \cup \pi_{\mathcal{S}}^{3}(Y) \cup \ldots$

A unit implicational basis is called direct, if $\phi_{\mathcal{S}}(Y)=\pi_{\mathcal{S}}(Y)$, for all $Y \subseteq X$.

Canonical direct unit basis

K.Bertet, B.Monjardet, The multiple facets of the canonical direct unit implicational basis, Theoretical Computer Science 411 (2010), 2155-2166.

Basis \mathcal{S} is unit, if it comprises implications $Y \rightarrow b$, with the singleton $b \in X$ on the right.

Given unit basis \mathcal{S} and $Y \subset X$, define $\pi_{\mathcal{S}}(Y)=Y \cup \bigcup\{b:(A \rightarrow b) \in \mathcal{S}, A \subseteq Y\}$.
Then $\phi_{\mathcal{S}}(Y)=\pi_{\mathcal{S}}(Y) \cup \pi_{\mathcal{S}}^{2}(Y) \cup \pi_{\mathcal{S}}^{3}(Y) \cup \ldots$

A unit implicational basis is called direct, if $\phi_{\mathcal{S}}(Y)=\pi_{\mathcal{S}}(Y)$, for all $Y \subseteq X$.

Example

Canonical basis \mathcal{S}_{C} of $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$ has 8 implications: $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$. $\pi^{3}(Y)=\{2,4,1,3,6\}, \pi^{4}(Y)=\{1,2,3,4,5,6\}=\phi(Y)$. This basis is not direct.

Example

Canonical basis \mathcal{S}_{C} of $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$ has 8 implications: $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.
Consider $Y=\{2,4\}$. $\pi^{3}(Y)=\{2,4,1,3,6\}, \pi^{4}(Y)=\{1,2,3,4,5,6\}=\phi(Y)$. This basis is not direct.

Example

Canonical basis \mathcal{S}_{C} of $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$ has 8 implications: $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$. Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1\}$, $\pi^{3}(Y)=\{2,4,1,3,6\}, \pi^{4}(Y)=\{1,2,3,4,5,6\}=\phi(Y)$. This basis is not direct.

Example

Canonical basis \mathcal{S}_{C} of $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$ has 8 implications: $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.
Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1\}, \pi^{2}(Y)=\{2,4,1,3\}$,
$\pi^{3}(Y)=\{2,4,1,3,6\}, \pi^{4}(Y)=\{1,2,3,4,5,6\}=\phi(Y)$. This basis is not direct.

Example

Canonical basis \mathcal{S}_{C} of $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$ has 8 implications: $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$. Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1\}, \pi^{2}(Y)=\{2,4,1,3\}$, $\pi^{3}(Y)=\{2,4,1,3,6\}$,

Example

Canonical basis \mathcal{S}_{C} of $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$ has 8 implications: $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$. Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1\}, \pi^{2}(Y)=\{2,4,1,3\}$, $\pi^{3}(Y)=\{2,4,1,3,6\}, \pi^{4}(Y)=\{1,2,3,4,5,6\}=\phi(Y)$. This basis is not

Example

Canonical basis \mathcal{S}_{C} of $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$ has 8 implications: $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$. Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1\}, \pi^{2}(Y)=\{2,4,1,3\}$, $\pi^{3}(Y)=\{2,4,1,3,6\}, \pi^{4}(Y)=\{1,2,3,4,5,6\}=\phi(Y)$. This basis is not direct.

Example: continued

Canonical unit basis \mathcal{S}_{U} for $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$ has 13 implications: $2 \rightarrow 1,6 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,24 \rightarrow 3,15 \rightarrow 3$, $23 \rightarrow 6,15 \rightarrow 6,25 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.
Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1,3,5,6\}=\phi(Y)$. This basis is direct.

Example: continued

Canonical unit basis \mathcal{S}_{U} for $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$ has 13 implications: $2 \rightarrow 1,6 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,24 \rightarrow 3,15 \rightarrow 3$, $23 \rightarrow 6,15 \rightarrow 6,25 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.
Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1,3,5,6\}=\phi(Y)$. This basis is

Example: continued

Canonical unit basis \mathcal{S}_{U} for $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$ has 13 implications: $2 \rightarrow 1,6 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,24 \rightarrow 3,15 \rightarrow 3$, $23 \rightarrow 6,15 \rightarrow 6,25 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.
Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1,3,5,6\}=\phi(Y)$. This basis is

Example: continued

Canonical unit basis \mathcal{S}_{U} for $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$ has 13 implications: $2 \rightarrow 1,6 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,24 \rightarrow 3,15 \rightarrow 3$, $23 \rightarrow 6,15 \rightarrow 6,25 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.
Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1,3,5,6\}=\phi(Y)$. This basis is direct.

Types of direct bases

Various unit direct bases surveyed in B-M:

- Left-minimal basis: D. Maier, The theory of relational databases, 1983
and T Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Meak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

Theorem (Bertet-Monjardet 2010)

For every finite closure system $\langle X, \phi\rangle$ all these bases are the same.

Types of direct bases

Various unit direct bases surveyed in B-M:

- Left-minimal basis: D. Maier, The theory of relational databases, 1983 and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

Theorem (Bertet-Monjardet 2010)
 For every finite closure system $\langle X, \phi\rangle$ all these bases are the same.

Types of direct bases

Various unit direct bases surveyed in B-M:

- Left-minimal basis: D. Maier, The theory of relational databases, 1983
and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

Theorem (Bertet-Monjardet 2010)
 For every finite closure system $\langle\boldsymbol{X}, \varphi\rangle$ all these bases are the same.

Types of direct bases

Various unit direct bases surveyed in B-M:

- Left-minimal basis: D. Maier, The theory of relational databases, 1983
and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

Theorem (Bertet-Monjardet 2010)
 For every finite closure system $\langle X, \phi\rangle$ all these bases are the same.

Types of direct bases

Various unit direct bases surveyed in B-M:

- Left-minimal basis: D. Maier, The theory of relational databases, 1983
and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.
\square
Theorem (Bertet-Monjardet 2010)
For every finite closure system $\langle X, \varphi\rangle$ all these bases are the same.

Types of direct bases

Various unit direct bases surveyed in B-M:

- Left-minimal basis: D. Maier, The theory of relational databases, 1983
and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

[^0]
Types of direct bases

Various unit direct bases surveyed in B-M:

- Left-minimal basis: D. Maier, The theory of relational databases, 1983 and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

Theorem (Bertet-Monjardet 2010)

For every finite closure system $\langle X, \phi\rangle$ all these bases are the same.

Minimality

Theorem (Bertet-Monjardet 2010)

For every finite closure system $\langle X, \phi\rangle$ all these bases are the same.

This basis is called canonical unit direct.

Corollary (Bertet-Monjardet 2010)

For a given closure system $\langle X, \phi\rangle$, the canonical unit direct basis is the least basis, with respect to inclusion, among all unit direct sets of implications defining the system.

Minimality

Theorem (Bertet-Monjardet 2010)

For every finite closure system $\langle X, \phi\rangle$ all these bases are the same.
This basis is called canonical unit direct.
Corolary (Bertet-Monjardet 2010)
For a given closure system $\langle X, \phi\rangle$, the canonical unit direct basis is the least basis, with respect to inclusion, among all unit direct sets of implications defining the system.

Minimality

Theorem (Bertet-Monjardet 2010)

For every finite closure system $\langle X, \phi\rangle$ all these bases are the same.
This basis is called canonical unit direct.
Corollary (Bertet-Monjardet 2010)
For a given closure system $\langle X, \phi\rangle$, the canonical unit direct basis is the least basis, with respect to inclusion, among all unit direct sets of implications defining the system.

Pre-cursor of the D-basis

OD-graph of a finite lattice: J.B.Nation, An approach to lattice varieties of finite height, Alg. Universalis 27 (1990), 521-543.

The full information about finite lattice L can be compactly recorded in - partially ordered set of join-irreducible elements $\langle\mathrm{Ji}(L), \leq\rangle$;

- the minimal join-covers of join-irreducible elements.

Pre-cursor of the D-basis

OD-graph of a finite lattice:
J.B.Nation, An approach to lattice varieties of finite height, Alg. Universalis 27 (1990), 521-543.

The full information about finite lattice L can be compactly recorded in

- partially ordered set of join-irreducible elements
- the minimal join-covers of join-irreducible elements.

Pre-cursor of the D-basis

OD-graph of a finite lattice:
J.B.Nation, An approach to lattice varieties of finite height, Alg. Universalis 27 (1990), 521-543.

The full information about finite lattice L can be compactly recorded in

- partially ordered set of join-irreducible elements $\langle\mathrm{Ji}(L), \leq\rangle$;
- the minimal join-covers of join-irreducible elements.

Pre-cursor of the D-basis

OD-graph of a finite lattice:
J.B.Nation, An approach to lattice varieties of finite height, Alg. Universalis 27 (1990), 521-543.

The full information about finite lattice L can be compactly recorded in

- partially ordered set of join-irreducible elements $\langle\mathrm{Ji}(L), \leq\rangle$;
- the minimal join-covers of join-irreducible elements.

Example

Figure: A_{12}

For lattice A_{12}, the poset of join-irreducible elements is: $\left\langle\mathrm{Ji}\left(A_{12}\right), \leq\right\rangle=\langle\{1,2,3,4,5,6\},, 1 \leq 2,1 \leq 3 \leq 6,4 \leq 5\rangle$.

Example continued

A join-cover is an expression $j \leq j_{1} \vee \cdots \vee j_{k}, j \not \leq j_{i}, i \leq k$, for some $j, j_{1}, \ldots, j_{k} \in \mathrm{Ji}(L)$.
Examples: $3 \leq 1 \vee 4$, or $6 \leq 2 \vee 5$.
A join-cover $j \leq j_{1} \vee \cdots \vee j_{k}$ is called minimal, if none of j_{1}, \ldots, j_{k} can be replaced by smaller join-irreducibles or dropped so that one gets
another join-cover.
$3 \leq 1 \vee 4$ is a minimal cover.
$6 \leq 2 \vee 5$ is not a minimal cover: since $4 \leq 5$ and $6 \leq 2 \vee 4$ is a cover.

Example continued

A join-cover is an expression $j \leq j_{1} \vee \cdots \vee j_{k}, j \not \leq j_{i}, i \leq k$, for some $j, j_{1}, \ldots, j_{k} \in \mathrm{Ji}(L)$.
Examples: $3 \leq 1 \vee 4$, or $6 \leq 2 \vee 5$.
A join-cover $j \leq j_{1} \vee \cdots \vee j_{k}$ is called minimal, if none of j_{1}, \ldots, j_{k} can be replaced by smaller join-irreducibles or dropped so that one gets
another join-cover.
$3 \leq 1 \vee 4$ is a minimal cover.
$6 \leq 2 \vee 5$ is not a minimal cover: since $4 \leq 5$ and $6 \leq 2 \vee 4$ is a cover.

Example continued

A join-cover is an expression $j \leq j_{1} \vee \cdots \vee j_{k}, j \not \leq j_{i}, i \leq k$, for some $j, j_{1}, \ldots, j_{k} \in \mathrm{Ji}(L)$.
Examples: $3 \leq 1 \vee 4$, or $6 \leq 2 \vee 5$.
A join-cover $j \leq j_{1} \vee \cdots \vee j_{k}$ is called minimal, if none of j_{1}, \ldots, j_{k} can be replaced by smaller join-irreducibles or dropped so that one gets
another join-cover.
$3 \leq 1 \vee 4$ is a minimal cover.
$6 \leq 2 \vee 5$ is not a minimal cover: since $4 \leq 5$ and $6 \leq 2 \vee 4$ is a cover.

Example continued

A join-cover is an expression $j \leq j_{1} \vee \cdots \vee j_{k}, j \not \leq j_{i}, i \leq k$, for some $j, j_{1}, \ldots, j_{k} \in \mathrm{Ji}(L)$.
Examples: $3 \leq 1 \vee 4$, or $6 \leq 2 \vee 5$.
A join-cover $j \leq j_{1} \vee \cdots \vee j_{k}$ is called minimal, if none of j_{1}, \ldots, j_{k} can be replaced by smaller join-irreducibles or dropped so that one gets another join-cover.
$3 \leq 1 \vee 4$ is a minimal cover.
$6 \leq 2 \vee 5$ is not a minimal cover: since $4 \leq 5$ and $6 \leq 2 \vee 4$ is a cover.

Example continued

A join-cover is an expression $j \leq j_{1} \vee \cdots \vee j_{k}, j \not \leq j_{i}, i \leq k$, for some $j, j_{1}, \ldots, j_{k} \in \mathrm{Ji}(L)$.
Examples: $3 \leq 1 \vee 4$, or $6 \leq 2 \vee 5$.
A join-cover $j \leq j_{1} \vee \cdots \vee j_{k}$ is called minimal, if none of j_{1}, \ldots, j_{k} can be replaced by smaller join-irreducibles or dropped so that one gets another join-cover.
$3 \leq 1 \vee 4$ is a minimal cover.
$6 \leq 2 \vee 5$ is not a minimal cover: since $4 \leq 5$ and $6 \leq 2 \vee 4$ is a cover.

Example continued

A join-cover is an expression $j \leq j_{1} \vee \cdots \vee j_{k}, j \not \leq j_{i}, i \leq k$, for some $j, j_{1}, \ldots, j_{k} \in \mathrm{Ji}(L)$.
Examples: $3 \leq 1 \vee 4$, or $6 \leq 2 \vee 5$.
A join-cover $j \leq j_{1} \vee \cdots \vee j_{k}$ is called minimal, if none of j_{1}, \ldots, j_{k} can be replaced by smaller join-irreducibles or dropped so that one gets another join-cover.
$3 \leq 1 \vee 4$ is a minimal cover.
$6 \leq 2 \vee 5$ is not a minimal cover: since $4 \leq 5$ and $6 \leq 2 \vee 4$ is a cover.

Example continued

A join-cover is an expression $j \leq j_{1} \vee \cdots \vee j_{k}, j \not \leq j_{i}, i \leq k$, for some $j, j_{1}, \ldots, j_{k} \in \mathrm{Ji}(L)$.
Examples: $3 \leq 1 \vee 4$, or $6 \leq 2 \vee 5$.
A join-cover $j \leq j_{1} \vee \cdots \vee j_{k}$ is called minimal, if none of j_{1}, \ldots, j_{k} can be replaced by smaller join-irreducibles or dropped so that one gets another join-cover.
$3 \leq 1 \vee 4$ is a minimal cover.
$6 \leq 2 \vee 5$ is not a minimal cover: since $4 \leq 5$ and $6 \leq 2 \vee 4$ is a cover.

D-basis

The D-basis is introduced and studied in K. Adaricheva, J.B. Nation and R. Rand, Ordered direct implicational basis of a finite closure system, Disc. Appl. Math. 161 (2013), 707-723.

Definition

Let $\langle X, \phi\rangle$ be a standard closure system with $L=C I(X, \phi)$.
The set of implications \mathcal{S}_{D} is called the D-basis of $\langle X, \phi\rangle$, if it is made of two parts:

This part is called a binary part of the basis.

D-basis

The D-basis is introduced and studied in K. Adaricheva, J.B. Nation and R. Rand, Ordered direct implicational basis of a finite closure system, Disc. Appl. Math. 161 (2013), 707-723.

Definition

Let $\langle X, \phi\rangle$ be a standard closure system with $L=C I(X, \phi)$.
The set of implications \mathcal{S}_{D} is called the D-basis of $\langle X, \phi\rangle$, if it is made of two parts:

- $\{a \rightarrow b: b \in \phi(a)\}$; equivalently, $b \leq a$ in $\langle J i(L), \leq\rangle$.

D-basis

The D-basis is introduced and studied in K. Adaricheva, J.B. Nation and R. Rand, Ordered direct implicational basis of a finite closure system, Disc. Appl. Math. 161 (2013), 707-723.

Definition

Let $\langle X, \phi\rangle$ be a standard closure system with $L=C I(X, \phi)$.
The set of implications \mathcal{S}_{D} is called the D-basis of $\langle X, \phi\rangle$, if it is made of two parts:

- $\{a \rightarrow b: b \in \phi(a)\}$; equivalently, $b \leq a$ in $\langle J i(L), \leq\rangle$.

This part is called a binary part of the basis.

D-basis

The D-basis is introduced and studied in K. Adaricheva, J.B. Nation and R. Rand, Ordered direct implicational basis of a finite closure system, Disc. Appl. Math. 161 (2013), 707-723.

Definition

Let $\langle X, \phi\rangle$ be a standard closure system with $L=C I(X, \phi)$.
The set of implications \mathcal{S}_{D} is called the D-basis of $\langle X, \phi\rangle$, if it is made of two parts:

- $\{a \rightarrow b: b \in \phi(a)\}$; equivalently, $b \leq a$ in $\langle J i(L), \leq\rangle$.

This part is called a binary part of the basis.

- $\left\{j_{1} \ldots j_{k} \rightarrow j: j \leq j_{1} \vee \cdots \vee j_{k}\right.$ is a minimal cover in $\left.L\right\}$.

The D-relation and the D-basis

Why D in the name of the basis?

D-relation is an important concept in the study of free lattices, see R. Freese, J. Jezek, J.B. Nation "Free Lattices", 1995.

Definition

Given $b, c \in \mathrm{Ji}(L)$, one defines $b D c$, when there is a minimal cover $b \leq c \vee j_{1} \vee \cdots \vee j_{k}$, for some $j_{1}, \ldots, j_{k} \in \mathrm{Ji}(L)$.

Equivalently: $b D c$ iff there exists $Y \rightarrow b$ in the D-basis such that $c \in Y$.

Important: for every $Y \rightarrow b$ in the D-basis, $Y \subseteq b D=\{c \in \mathrm{Ji}(L): b D c\}$.

The D-relation and the D-basis

Why D in the name of the basis?
D-relation is an important concept in the study of free lattices, see R. Freese, J. Jezek, J.B. Nation "Free Lattices", 1995.

Definition

Given $b, c \in \mathrm{Ji}(L)$, one defines $b D \mathrm{c}$, when there is a minimal cover $b \leq c \vee j_{1} \vee \cdots \vee j_{k}$, for some $j_{1}, \ldots, j_{k} \in \mathrm{Ji}(L)$

Equivalently: bDc iff there exists $Y \rightarrow b$ in the D-basis such that $c \in Y$ Important: for every $Y \rightarrow b$ in the D-basis, $Y \subseteq b D=\{c \in \operatorname{Ji}(L): b D c\}$

The D-relation and the D-basis

Why D in the name of the basis?
D-relation is an important concept in the study of free lattices, see R. Freese, J. Jezek, J.B. Nation "Free Lattices", 1995.

Definition

Given $b, c \in \mathrm{Ji}(L)$, one defines $b D c$, when there is a minimal cover $b \leq c \vee j_{1} \vee \cdots \vee j_{k}$, for some $j_{1}, \ldots, j_{k} \in \operatorname{Ji}(L)$.

Equivalently: $b D c$ iff there exists $Y \rightarrow b$ in the D-basis such that $c \in Y$ Important: for every $Y \rightarrow b$ in the D-basis, $Y \subseteq b D=\{c \in \mathrm{Ji}(L): b D c\}$

The D-relation and the D-basis

Why D in the name of the basis?
D-relation is an important concept in the study of free lattices, see R. Freese, J. Jezek, J.B. Nation "Free Lattices", 1995.

Definition

Given $b, c \in \mathrm{Ji}(L)$, one defines $b D c$, when there is a minimal cover $b \leq c \vee j_{1} \vee \cdots \vee j_{k}$, for some $j_{1}, \ldots, j_{k} \in \operatorname{Ji}(L)$.

Equivalently: $b D c$ iff there exists $Y \rightarrow b$ in the D-basis such that $c \in Y$. Important: for every $Y \rightarrow b$ in the D-basis, $Y \subseteq b D=\{c \in \operatorname{Ji}(L): b D c\}$

The D-relation and the D-basis

Why D in the name of the basis?
D-relation is an important concept in the study of free lattices, see R. Freese, J. Jezek, J.B. Nation "Free Lattices", 1995.

Definition

Given $b, c \in \mathrm{Ji}(L)$, one defines $b D c$, when there is a minimal cover $b \leq c \vee j_{1} \vee \cdots \vee j_{k}$, for some $j_{1}, \ldots, j_{k} \in \mathrm{Ji}(L)$.

Equivalently: $b D c$ iff there exists $Y \rightarrow b$ in the D-basis such that $c \in Y$.

Important: for every $Y \rightarrow b$ in the D-basis, $Y \subseteq b D=\{c \in \mathrm{Ji}(L): b D c\}$.

The D-basis and the canonical unit basis

Theorem (ANR-2013)

- \mathcal{S}_{D} generates $\langle X, \phi\rangle$, i.e., D-basis is, indeed, a basis of this closure system.
- \mathcal{S}_{\square} is a subset of the canonical unit basis SU.

The D-basis and the canonical unit basis

Theorem (ANR-2013)

- \mathcal{S}_{D} generates $\langle X, \phi\rangle$, i.e., D-basis is, indeed, a basis of this closure system.

The D-basis and the canonical unit basis

Theorem (ANR-2013)

- \mathcal{S}_{D} generates $\langle X, \phi\rangle$, i.e., D-basis is, indeed, a basis of this closure system.
- \mathcal{S}_{D} is a subset of the canonical unit basis \mathcal{S}_{U}.

Comparison

Canonical direct unit basis $\mathcal{S}_{\mathcal{U}}$ for $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$ has 13 implications. $2 \rightarrow 1,6 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,24 \rightarrow 3,15 \rightarrow 3$, $23 \rightarrow 6,15 \rightarrow 6,25 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.

Comparison

Canonical direct unit basis \mathcal{S}_{U} for $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$ has 13 implications. $2 \rightarrow 1,6 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,24 \rightarrow 3,15 \rightarrow 3$, $23 \rightarrow 6,15 \rightarrow 6,25 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.
D-basis has 9 implications.
$2 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,23 \rightarrow 6,15 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.

Ordered iteration

Suppose the set of implications \mathcal{S} are put into some linear order:

$$
\mathcal{S}=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle
$$

A mapping $\rho_{S}: 2^{X} \rightarrow 2^{X}$ associated with this ordering is called an ordered iteration of \mathcal{S} :

- For any $Y \subseteq X$, let $Y_{0}=Y$
- If Y_{k} is computed and implication s_{k+1} is $A \rightarrow b$, then

- Finally, $\rho_{\mathcal{S}}(Y)=Y_{n}$.

Definition

An implicational basis of $\langle X, \phi\rangle$, together with its order: $\mathcal{S}=\left\langle s_{1}, \ldots, s_{n}\right\rangle$
is called ordered direct, if $\rho(Y)=\phi(Y)$, for every $Y \subseteq X$.

Ordered iteration

Suppose the set of implications \mathcal{S} are put into some linear order:

$$
\mathcal{S}=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle
$$

A mapping $\rho_{\mathcal{S}}: 2^{X} \rightarrow 2^{X}$ associated with this ordering is called an ordered iteration of \mathcal{S} :

- For any $Y \subseteq X$, let $Y_{0}=Y$.
- If Y_{k} is computed and implication s_{k+1} is $A \rightarrow b$, then

- Finally, $\rho_{\mathcal{S}}(Y)=Y_{n}$.

Definition

An implicational basis of $\langle X, \phi\rangle$, together with its order: $\mathcal{S}=\left\langle s_{1}\right.$ is called ordered direct, if $\rho(Y)=\phi(Y)$, for every $Y \subseteq X$.

Ordered iteration

Suppose the set of implications \mathcal{S} are put into some linear order:

$$
\mathcal{S}=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle
$$

A mapping $\rho_{\mathcal{S}}: 2^{X} \rightarrow 2^{X}$ associated with this ordering is called an ordered iteration of \mathcal{S} :

- For any $Y \subseteq X$, let $Y_{0}=Y$.
- If Y_{k} is computed and implication s_{k+1} is $A \rightarrow b$, then

- Finally, $\rho_{\mathcal{S}}(Y)=Y_{n}$.
\square
Definition
An implicational basis of $\langle X, \phi\rangle$, together with its order: $\mathcal{S}=\left\langle s_{1}\right.$ is called ordered direct, if $\rho(Y)=\phi(Y)$, for every $Y \subseteq X$.

Ordered iteration

Suppose the set of implications \mathcal{S} are put into some linear order:

$$
\mathcal{S}=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle
$$

A mapping $\rho_{\mathcal{S}}: 2^{X} \rightarrow 2^{X}$ associated with this ordering is called an ordered iteration of \mathcal{S} :

- For any $Y \subseteq X$, let $Y_{0}=Y$.
- If Y_{k} is computed and implication s_{k+1} is $A \rightarrow b$, then

$$
Y_{k+1}= \begin{cases}Y_{k} \cup\{b\}, & \text { if } A \subseteq Y_{k} \\ Y_{k}, & \text { otherwise }\end{cases}
$$

- Finally, $\rho_{\mathcal{S}}(Y)=Y_{n}$.

Ordered iteration

Suppose the set of implications \mathcal{S} are put into some linear order:

$$
\mathcal{S}=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle
$$

A mapping $\rho_{\mathcal{S}}: 2^{X} \rightarrow 2^{X}$ associated with this ordering is called an ordered iteration of \mathcal{S} :

- For any $Y \subseteq X$, let $Y_{0}=Y$.
- If Y_{k} is computed and implication s_{k+1} is $A \rightarrow b$, then

$$
Y_{k+1}= \begin{cases}Y_{k} \cup\{b\}, & \text { if } A \subseteq Y_{k} \\ Y_{k}, & \text { otherwise }\end{cases}
$$

- Finally, $\rho_{\mathcal{S}}(Y)=Y_{n}$.

Definition

An implicational basis of $\langle X, \phi\rangle$, together with its order: $\mathcal{S}=\left\langle s_{1}\right.$ is called ordered direct, if $\rho(Y)=\phi(Y)$, for every $Y \subseteq X$

Ordered iteration

Suppose the set of implications \mathcal{S} are put into some linear order:

$$
\mathcal{S}=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle
$$

A mapping $\rho_{\mathcal{S}}: 2^{X} \rightarrow 2^{X}$ associated with this ordering is called an ordered iteration of \mathcal{S} :

- For any $Y \subseteq X$, let $Y_{0}=Y$.
- If Y_{k} is computed and implication s_{k+1} is $A \rightarrow b$, then

$$
Y_{k+1}= \begin{cases}Y_{k} \cup\{b\}, & \text { if } A \subseteq Y_{k} \\ Y_{k}, & \text { otherwise }\end{cases}
$$

- Finally, $\rho_{\mathcal{S}}(Y)=Y_{n}$.

Definition

An implicational basis of $\langle X, \phi\rangle$, together with its order: $\mathcal{S}=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ is called ordered direct, if $\rho(Y)=\phi(Y)$, for every $Y \subseteq X$.

Example

Take \mathcal{S}_{C}, the set of implications for $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$, in its original order: $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$. Consider $Y=\{2,4\}$.

Then $\pi(Y)=\{2,4,1\}$, while $\rho(Y)=\{2,4,1,3,6,5\}=\phi(Y)$.

Example

Take \mathcal{S}_{C}, the set of implications for $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$, in its original order: $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.

Consider $Y=\{2,4\}$.
Then $\pi(Y)=\{2,4,1\}$, while
$\rho(Y)=\{2,4,1,3,6,5\}=\phi(Y)$.

Example

Take \mathcal{S}_{C}, the set of implications for $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$, in its original order:
$2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.

Consider $Y=\{2,4\}$.
Then $\pi(Y)=\{2,4,1\}$, while

Example

Take \mathcal{S}_{C}, the set of implications for $\left\langle\mathrm{Ji}\left(A_{12}\right), \phi\right\rangle$, in its original order:
$2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.

Consider $Y=\{2,4\}$.
Then $\pi(Y)=\{2,4,1\}$, while
$\rho(Y)=\{2,4,1,3,6,5\}=\phi(Y)$.

Ordered direct basis

Theorem (ANR-2013)

- \mathcal{S}_{D} is an ordered direct basis, associated with any order, where the binary part precedes the rest of implications.
- There exist closure systems, for which the canonical basis cannot be ordered.

Algorithmic aspects

If \mathcal{S} is a any unit direct basis of $\langle X, \phi\rangle$ of size $s=s(\mathcal{S})$ with m implications, then

- it takes time $O\left(s^{2}\right)$ to extract D-basis from \mathcal{S};
- it takes time $O(m)$ to put extracted D-basis into a proper order.

Algorithmic aspects

If \mathcal{S} is a any unit direct basis of $\langle X, \phi\rangle$ of size $s=s(\mathcal{S})$ with m implications, then

- it takes time $O\left(s^{2}\right)$ to extract D-basis from \mathcal{S};
- it takes time $O(m)$ to put extracted D-basis into a proper order.

Algorithmic aspects

If \mathcal{S} is a any unit direct basis of $\langle X, \phi\rangle$ of size $s=s(\mathcal{S})$ with m implications, then

- it takes time $O\left(s^{2}\right)$ to extract D-basis from \mathcal{S};
- it takes time $O(m)$ to put extracted D-basis into a proper order.

Mid-talk conclusions

- For all practical purposes canonical direct unit basis can be replaced by the considerably shorter D-basis.
- The D-basis preserves the property of direct processing, assuming negligible pre-processing time for its ordering.

Binary tables and the Galois connection

	C_{1}	C_{2}	$D E$	$P D E$	$M P$
1	1	0	0	0	0
2	1	1	1	0	0
3	1	1	1	1	0
4	1	1	0	1	0
5	0	0	1	1	1
6	0	0	0	1	1

$U=\{1,2,3,4,5,6\}$ is the set of objects.
$A=\left\{C_{1}, C_{2}, D E, P D E, M P\right\}$ is the set of attributes.

Binary tables and the Galois connection

	C_{1}	C_{2}	$D E$	$P D E$	$M P$
1	1	0	0	0	0
2	1	1	1	0	0
3	1	1	1	1	0
4	1	1	0	1	0
5	0	0	1	1	1
6	0	0	0	1	1

$U=\{1,2,3,4,5,6\}$ is the set of objects. $A=\left\{C_{1}, C_{2}, D E, P D E, M P\right\}$ is the set of attributes.

Closure systems associated with a binary table

Table $\mathcal{T}=\langle U, A, R\rangle$, where $R \subseteq A \times U$ is a relation between U and A. $S_{A}: 2^{A} \rightarrow 2^{U}$ is a support function on A $S_{A}(Z)=\{y \in U:(z, y) \in R$, for all $z \in Z\}$, for $Z \in 2^{A}$. $S_{U}: 2^{U} \rightarrow 2^{A}$ is a support function on U $S_{U}(Y)=\{z \in A:(z, y) \in R$, for all $y \in Y\}$, for $Y \in 2^{U}$

Lemma

Let $\mathcal{T}=\langle U, A, R\rangle$ be a table with support functions S_{A} and S_{U}.

- S_{A} and S_{U} yield Galois connection between the power sets 2^{A} and
- Mapping $\phi_{A}: Z \mapsto S_{U}\left(S_{A}(Z)\right)$, with $Z \in 2^{A}$, is a closure operator on A.
- Similarly, mapping $\phi_{U}: Y \mapsto S_{A}\left(S_{U}(Y)\right)$, with $Y \in 2^{U}$, is a closure operator on U.

Closure systems associated with a binary table

Table $\mathcal{T}=\langle U, A, R\rangle$, where $R \subseteq A \times U$ is a relation between U and A. $S_{A}: 2^{A} \rightarrow 2^{U}$ is a support function on A $S_{A}(Z)=\{y \in U:(z, y) \in R$, for all $z \in Z\}$, for $Z \in 2^{A}$.
$S_{U}(Y)=\{z \in A:(z, y) \in R$, for all $y \in Y\}$, for $Y \in 2^{U}$

Lemma

Let $\mathcal{T}=\langle U, A, R\rangle$ be a table with support functions S_{A} and S_{U}

- S_{A} and S_{U} yield Galois connection between the power sets 2^{A} and
- Mapping $\phi_{A}: Z \mapsto S_{U}\left(S_{A}(Z)\right)$, with $Z \in 2^{A}$, is a closure operator on A.
- Similarly, mapping $\phi_{U}: Y \mapsto S_{A}\left(S_{U}(Y)\right)$, with $Y \in 2^{U}$, is a closure operator on U.

Closure systems associated with a binary table

Table $\mathcal{T}=\langle U, A, R\rangle$, where $R \subseteq A \times U$ is a relation between U and A. $S_{A}: 2^{A} \rightarrow 2^{U}$ is a support function on A
$S_{A}(Z)=\{y \in U:(z, y) \in R$, for all $z \in Z\}$, for $Z \in 2^{A}$.
$S_{U}: 2^{U} \rightarrow 2^{A}$ is a support function on U
$S_{U}(Y)=\{z \in A:(z, y) \in R$, for all $y \in Y\}$, for $Y \in 2^{U}$.
Lemma
Let $\mathcal{T}=\langle U, A, R\rangle$ be a table with support functions S_{A} and S_{U}

- S_{A} and S_{11} yield Galois connection between the power sets 2^{A} and
- Mapping $\phi_{A}: Z \mapsto S_{U}\left(S_{A}(Z)\right)$, with $Z \in 2^{A}$, is a closure operator on A.
- Similarly, mapping $\phi_{U}: Y \mapsto S_{A}\left(S_{U}(Y)\right)$, with $Y \in 2^{U}$, is a closure operator on U.

Closure systems associated with a binary table

Table $\mathcal{T}=\langle U, A, R\rangle$, where $R \subseteq A \times U$ is a relation between U and A. $S_{A}: 2^{A} \rightarrow 2^{U}$ is a support function on A
$S_{A}(Z)=\{y \in U:(z, y) \in R$, for all $z \in Z\}$, for $Z \in 2^{A}$.
$S_{U}: 2^{U} \rightarrow 2^{A}$ is a support function on U
$S_{U}(Y)=\{z \in A:(z, y) \in R$, for all $y \in Y\}$, for $Y \in 2^{U}$.

Lemma

Let $\mathcal{T}=\langle U, A, R\rangle$ be a table with support functions S_{A} and S_{U}.

- S_{A} and S_{U} yield Galois connection between the power sets 2^{A} and 2^{U}.
- Mapping $\phi_{A}: Z \mapsto S_{U}\left(S_{A}(Z)\right)$, with $Z \in 2^{A}$, is a closure operator
- Similarly, mapping $\phi_{U}: Y \mapsto S_{A}\left(S_{U}(Y)\right)$, with $Y \in 2^{U}$, is a closure operator on U.

Closure systems associated with a binary table

Table $\mathcal{T}=\langle U, A, R\rangle$, where $R \subseteq A \times U$ is a relation between U and A. $S_{A}: 2^{A} \rightarrow 2^{U}$ is a support function on A
$S_{A}(Z)=\{y \in U:(z, y) \in R$, for all $z \in Z\}$, for $Z \in 2^{A}$.
$S_{U}: 2^{U} \rightarrow 2^{A}$ is a support function on U
$S_{U}(Y)=\{z \in A:(z, y) \in R$, for all $y \in Y\}$, for $Y \in 2^{U}$.

Lemma

Let $\mathcal{T}=\langle U, A, R\rangle$ be a table with support functions S_{A} and S_{U}.

- S_{A} and S_{U} yield Galois connection between the power sets 2^{A} and 2^{U}.
- Mapping $\phi_{A}: Z \mapsto S_{U}\left(S_{A}(Z)\right)$, with $Z \in 2^{A}$, is a closure operator on A.
- Similarly, mapping $\phi_{U}: Y \mapsto S_{A}\left(S_{U}(Y)\right)$, with $Y \in 2^{U}$, is a closure operator on U.

Background

- G. Birkhoff, Lattice Theory, AMS Colloquium Publications 25 (1st ed), Providence, RI, 1940.
- M. Barbut and B. Monjardet, Ordres et classifications: Algebre et combinatoire, Hachette, Paris 1970.
- B. Ganter and R. Wille, Formal Concert Analysis, Mathematical foundations, Springer Ferlag, Berlin, 1999.

Background

- G. Birkhoff, Lattice Theory, AMS Colloquium Publications 25 (1st ed), Providence, RI, 1940.
- M. Barbut and B. Monjardet, Ordres et classifications: Algebre et combinatoire, Hachette, Paris 1970.
- B. Ganter and R. Wille, Formal Concept Analysis, Mathematical foundations, Springer Ferlag, Berlin, 1999.

Background

- G. Birkhoff, Lattice Theory, AMS Colloquium Publications 25 (1st ed), Providence, RI, 1940.
- M. Barbut and B. Monjardet, Ordres et classifications: Algebre et combinatoire, Hachette, Paris 1970.
- B. Ganter and R. Wille, Formal Concept Analysis, Mathematical foundations, Springer Ferlag, Berlin, 1999.

Lattice and implicational sets of a binary table

	C_{1}	C_{2}	$D E$	$P D E$	$M P$
1	1	0	0	0	0
2	1	1	1	0	0
3	1	1	1	1	0
4	1	1	0	1	0
5	0	0	1	1	1
6	0	0	0	1	1

- The lattice of closed sets: Galois lattice or concept lattice.
- Implications: usually on the set of attributes.

Examples: $\left(C_{2} \rightarrow C_{1}\right),\left(C_{1}, D E \rightarrow C_{2}\right)$.

Retrieval of a basis from a binary table

- As-of 2012 talk of K. Bertet at Combinatorics Seminar of CUNY, both problems of canonical and canonical unit direct bases generation from a binary table were reported open.
- All existing algorithms required generation of a closure system or a concept lattice, before attempting the basis retrieval.
- The size of the closure system or concept lattice is (worst case) exponential in the size of the table.

Complexity of retrieval of the canonical basis

*Courtesy of Vincent Duquenne and Sergei Kuznetsov

Nails in the Coffin

Retrieval of the CUD basis and the D-basis

- U. Ryssel, F. Distel and D. Borchmann, Fast algorithms for implication bases and attribute exploration using proper premises, Ann. Math. Art. Intell. 70 (2014), 25-53.
- K. Adaricheva, J.B. Nation, Discovery of the D-basis in binary tables based on hypergraph dualization, arxiv, subm. TCS, 2015.

Hypergraph Dualization problem

- $V=\left\{v_{1}, \ldots, v_{7}\right\}$ is the set of vertices, $E=\left\{e_{1}, \ldots, e_{4}\right\} \subseteq \mathbf{2}^{V}$ is the set of hyper-edges.
- $H=\langle V, E\rangle$ is a hypergraph.
- $T \subseteq V$ is a transversal, if $T \cap e_{i} \neq \emptyset$, for all $e_{i} \in E$.
- Problem: find all minimal transversals of given hypergraph H.
- Solution: $H^{d}=\left\{V, E^{d}=\left\{v_{4} v_{3}, v_{4} v_{2} v_{5}, v_{4} v_{2} v_{6}\right\}\right\}$ is a dual
hypergraph.

Hypergraph Dualization problem

- $V=\left\{v_{1}, \ldots, v_{7}\right\}$ is the set of vertices, $E=\left\{e_{1}, \ldots, e_{4}\right\} \subseteq \mathbf{2}^{V}$ is the set of hyper-edges.
- $H=\langle V, E\rangle$ is a hypergraph.
- $T \subseteq V$ is a transversal, if $T \cap e_{i} \neq \emptyset$, for all $e_{i} \in E$.
- Problem: find all minimal transversals of given hypergraph H.
- Solution: $H^{d}=\left\{V, E^{d}=\left\{v_{4} v_{3}, v_{4} v_{2} v_{5}, v_{4} v_{2} v_{6}\right\}\right\}$ is a dual
hypergraph.

Hypergraph Dualization problem

- $V=\left\{v_{1}, \ldots, v_{7}\right\}$ is the set of vertices, $E=\left\{e_{1}, \ldots, e_{4}\right\} \subseteq \mathbf{2}^{V}$ is the set of hyper-edges.
- $H=\langle V, E\rangle$ is a hypergraph.
- $T \subseteq V$ is a transversal, if $T \cap e_{i} \neq \emptyset$, for all $e_{i} \in E$.
- Problem: find all minimal transversals of given hypergraph H.
- Solution: $H^{d}=\left\{V, E^{d}=\left\{v_{4} v_{3}, v_{4} v_{2} v_{5}, v_{4} v_{2} v_{6}\right\}\right\}$ is a dual
hypergraph.

Hypergraph Dualization problem

- $V=\left\{v_{1}, \ldots, v_{7}\right\}$ is the set of vertices, $E=\left\{e_{1}, \ldots, e_{4}\right\} \subseteq \mathbf{2}^{V}$ is the set of hyper-edges.
- $H=\langle V, E\rangle$ is a hypergraph.
- $T \subseteq V$ is a transversal, if $T \cap e_{i} \neq \emptyset$, for all $e_{i} \in E$.
- Problem: find all minimal transversals of given hypergraph H.
- Solution: $H^{d}=\left\{V, E^{d}=\left\{v_{4} v_{3}, v_{4} v_{2} v_{5}, v_{4} v_{2} v_{6}\right\}\right\}$ is a dual hypergraph.

Hypergraph Dualization problem

- $V=\left\{v_{1}, \ldots, v_{7}\right\}$ is the set of vertices, $E=\left\{e_{1}, \ldots, e_{4}\right\} \subseteq \mathbf{2}^{V}$ is the set of hyper-edges.
- $H=\langle V, E\rangle$ is a hypergraph.
- $T \subseteq V$ is a transversal, if $T \cap e_{i} \neq \emptyset$, for all $e_{i} \in E$.
- Problem: find all minimal transversals of given hypergraph H.
- Solution: $H^{d}=\left\{V, E^{d}=\left\{v_{4} v_{3}, v_{4} v_{2} v_{5}, v_{4} v_{2} v_{6}\right\}\right\}$ is a dual hypergraph.

Algorithmic solutions to Hypergraph Dualization

- M. Fredman and L. Khachiyan, On the complexity of dualization of monotone disjunctive forms, J. Algorithms 21 (1996), 618-628.

```
time \(O\left(N^{o(\log N)}\right)\) time, where \(N\) is the size of input and output.
- Test results of code implementation of algorithm are presented in L. Khachiyan, E. Boros, K. Elbassioni and V. Gurvich, Disc. Appl. Math. 154 (2006), 2350-2372.
- Recent implementation: K. Murakami and T. Uno, Efficient algorithms for generating large scale hypergraphs, Disc. Appl. Math. 170 (2014), 83-94.
```


Algorithmic solutions to Hypergraph Dualization

- M. Fredman and L. Khachiyan, On the complexity of dualization of monotone disjunctive forms, J. Algorithms 21 (1996), 618-628. Problem of generating all minimal transversals can be solved in time $O\left(N^{o(\log N)}\right)$ time, where N is the size of input and output.

Algorithmic solutions to Hypergraph Dualization

- M. Fredman and L. Khachiyan, On the complexity of dualization of monotone disjunctive forms, J. Algorithms 21 (1996), 618-628. Problem of generating all minimal transversals can be solved in time $O\left(N^{o(\log N)}\right)$ time, where N is the size of input and output.
- Test results of code implementation of algorithm are presented in L. Khachiyan, E. Boros, K. Elbassioni and V. Gurvich, Disc. Appl. Math. 154 (2006), 2350-2372.
- Recent implementation: K. Murakami and T. Uno, Efficient algorithms for generating large scale hypergraphs, Disc. Appl. Math. 170 (2014), 83-94.

Algorithmic solutions to Hypergraph Dualization

- M. Fredman and L. Khachiyan, On the complexity of dualization of monotone disjunctive forms, J. Algorithms 21 (1996), 618-628. Problem of generating all minimal transversals can be solved in time $O\left(N^{o(\log N)}\right)$ time, where N is the size of input and output.
- Test results of code implementation of algorithm are presented in L. Khachiyan, E. Boros, K. Elbassioni and V. Gurvich, Disc. Appl. Math. 154 (2006), 2350-2372.
- Recent implementation: K. Murakami and T. Uno, Efficient algorithms for generating large scale hypergraphs, Disc. Appl. Math. 170 (2014), 83-94.

Instance of HD problem for the D-basis retrieval

- Fix $b \in A$, one particular attribute. The goal: obtain all $Y \rightarrow b$ from the D-basis.
- Due to the definition of the D-basis, all such Y are subsets of $b D=\{c \in A: b D c\}$
- Use Lemma 11.10 from Free Lattices book: bDc, for $b, c \in J i(L)$ iff there exists $p \in \operatorname{Mi}(L)$ such that $b \uparrow p$ and $p \downarrow c$.
- Attributes of the table play the role of join-irreducibles and the objects the role of meet-irreducibles of the concept lattice.
- \uparrow and \downarrow relations between the attributes and objects of the table can be found in time polynomial in the size of the table.
- Hypergraph associated with the fixed $b \in A$: set of vertices $V=b D$; hyperedges are $H_{p}=\{c \in b D: c R p\}$, for each $p \in U$, for which $b \uparrow p$.

Instance of HD problem for the D-basis retrieval

- Fix $b \in A$, one particular attribute. The goal: obtain all $Y \rightarrow b$ from the D-basis.
- Due to the definition of the D-basis, all such Y are subsets of $b D=\{c \in A: b D c\}$.
- Use Lemma 11.10 from Free Lattices book: bDc, for $b, c \in J i(L)$ iff there exists $p \in \operatorname{Mi}(L)$ such that $b \uparrow p$ and $p \downarrow c$.
- Attributes of the table play the role of join-irreducibles and the objects the role of meet-irreducibles of the concept lattice.
- \uparrow and \downarrow relations between the attributes and objects of the table can be found in time polynomial in the size of the table.
- Hypergraph associated with the fixed $b \in A$: set of vertices $V=b D$; hyperedges are $H_{p}=\{c \in b D: c R p\}$, for each $p \in U$, for which $b \uparrow p$.

Instance of HD problem for the D-basis retrieval

- Fix $b \in A$, one particular attribute. The goal: obtain all $Y \rightarrow b$ from the D-basis.
- Due to the definition of the D-basis, all such Y are subsets of $b D=\{c \in A: b D c\}$.
- Use Lemma 11.10 from Free Lattices book: $b D c$, for $b, c \in \mathrm{Ji}(L)$ iff there exists $p \in \operatorname{Mi}(L)$ such that $b \uparrow p$ and $p \downarrow c$.
- Attributes of the table play the role of join-irreducibles and the objects the role of meet-irreducibles of the concept lattice.
- \uparrow and \downarrow relations between the attributes and objects of the table can be found in time polynomial in the size of the table.
- Hypergraph associated with the fixed $b \in A$: set of vertices $V=b D$; hyperedges are $H_{p}=\{c \in b D: c R p\}$, for each $p \in U$, for which $b \uparrow p$.

Instance of HD problem for the D-basis retrieval

- Fix $b \in A$, one particular attribute. The goal: obtain all $Y \rightarrow b$ from the D-basis.
- Due to the definition of the D-basis, all such Y are subsets of $b D=\{c \in A: b D c\}$.
- Use Lemma 11.10 from Free Lattices book: $b D c$, for $b, c \in \mathrm{Ji}(L)$ iff there exists $p \in \operatorname{Mi}(L)$ such that $b \uparrow p$ and $p \downarrow c$.
- Attributes of the table play the role of join-irreducibles and the objects the role of meet-irreducibles of the concept lattice.

Instance of HD problem for the D-basis retrieval

- Fix $b \in A$, one particular attribute. The goal: obtain all $Y \rightarrow b$ from the D-basis.
- Due to the definition of the D-basis, all such Y are subsets of $b D=\{c \in A: b D c\}$.
- Use Lemma 11.10 from Free Lattices book: $b D c$, for $b, c \in \mathrm{Ji}(L)$ iff there exists $p \in \operatorname{Mi}(L)$ such that $b \uparrow p$ and $p \downarrow c$.
- Attributes of the table play the role of join-irreducibles and the objects the role of meet-irreducibles of the concept lattice.
- \uparrow and \downarrow relations between the attributes and objects of the table can be found in time polynomial in the size of the table.
- Hypergraph associated with the fixed $b \in A$: set of vertices
$V=b D$; hyperedges are $H_{p}=\{c \in b D: c R p\}$, for each $p \in U$, for

Instance of HD problem for the D-basis retrieval

- Fix $b \in A$, one particular attribute. The goal: obtain all $Y \rightarrow b$ from the D-basis.
- Due to the definition of the D-basis, all such Y are subsets of $b D=\{c \in A: b D c\}$.
- Use Lemma 11.10 from Free Lattices book: $b D c$, for $b, c \in \mathrm{Ji}(L)$ iff there exists $p \in \operatorname{Mi}(L)$ such that $b \uparrow p$ and $p \downarrow c$.
- Attributes of the table play the role of join-irreducibles and the objects the role of meet-irreducibles of the concept lattice.
- \uparrow and \downarrow relations between the attributes and objects of the table can be found in time polynomial in the size of the table.
- Hypergraph associated with the fixed $b \in A$: set of vertices $V=b D$; hyperedges are $H_{p}=\{c \in b D: c R p\}$, for each $p \in U$, for which $b \uparrow p$.

Astana-New York-Honolulu-Tokyo Project

- In May, 2013: the first working code implementation of D-basis retrieval from the binary table via HD, written by students J. Blumenkopf and T. Moldwin (Yeshiva University, New York). It implemented the call to existing code of T. Uno (Tokyo).

50-by-100 matrix of density 0.2 , in 3 min and 30 sec .
In March 2015 the it took 49 hours to retrieve more than 1,000,000 implications of the D-basis pertinent to one attribute in 61-by-287 matrix of density 0.35 , with the medical data from Cancer research lab in Astana.

- One needs to work further with 1,000,000 implications to make sense out of it.
- This work is related to sorting the association rules in data mining, and it is a topic of another presentation on other conference!

Astana-New York-Honolulu-Tokyo Project

- In May, 2013: the first working code implementation of D-basis retrieval from the binary table via HD, written by students J. Blumenkopf and T. Moldwin (Yeshiva University, New York). It implemented the call to existing code of T. Uno (Tokyo).
- In June, 2013: retrieve D-basis of about 49,000 implications from $50-$ by-100 matrix of density 0.2 , in 3 min and 30 sec .
implications of the D-basis pertinent to one attribute in 61-by-287 matrix of density 0.35 , with the medical data from Cancer research lab in Astana.
- One needs to work further with 1,000,000 implications to make sense out of it.
- This work is related to sorting the association rules in data mining, and it is a topic of another presentation on other conference!

Astana-New York-Honolulu-Tokyo Project

- In May, 2013: the first working code implementation of D-basis retrieval from the binary table via HD, written by students J. Blumenkopf and T. Moldwin (Yeshiva University, New York). It implemented the call to existing code of T. Uno (Tokyo).
- In June, 2013: retrieve D-basis of about 49,000 implications from $50-$ by-100 matrix of density 0.2 , in 3 min and 30 sec .
- In March 2015 the it took 49 hours to retrieve more than 1,000,000 implications of the D-basis pertinent to one attribute in 61-by-287 matrix of density 0.35 , with the medical data from Cancer research lab in Astana.
> - One needs to work further with 1,000,000 implications to make sense out of it.
> - This work is related to sorting the association rules in data mining, and it is a topic of another presentation on other conference!

Astana-New York-Honolulu-Tokyo Project

- In May, 2013: the first working code implementation of D-basis retrieval from the binary table via HD, written by students J. Blumenkopf and T. Moldwin (Yeshiva University, New York). It implemented the call to existing code of T. Uno (Tokyo).
- In June, 2013: retrieve D-basis of about 49,000 implications from $50-$ by-100 matrix of density 0.2 , in 3 min and 30 sec .
- In March 2015 the it took 49 hours to retrieve more than 1,000,000 implications of the D-basis pertinent to one attribute in 61-by-287 matrix of density 0.35 , with the medical data from Cancer research lab in Astana.
- One needs to work further with 1,000,000 implications to make sense out of it.
- This work is related to sorting the association rules in data mining, and it is a topic of another presentation on other conference!

Astana-New York-Honolulu-Tokyo Project

- In May, 2013: the first working code implementation of D-basis retrieval from the binary table via HD, written by students J. Blumenkopf and T. Moldwin (Yeshiva University, New York). It implemented the call to existing code of T. Uno (Tokyo).
- In June, 2013: retrieve D-basis of about 49,000 implications from $50-$ by-100 matrix of density 0.2 , in 3 min and 30 sec .
- In March 2015 the it took 49 hours to retrieve more than 1,000,000 implications of the D-basis pertinent to one attribute in 61-by-287 matrix of density 0.35 , with the medical data from Cancer research lab in Astana.
- One needs to work further with 1,000,000 implications to make sense out of it.
- This work is related to sorting the association rules in data mining, and it is a topic of another presentation on other conference!

4th International Workshop
 "Algebra across the borders"

The workshop program will start on September 8-10, 2015, Tuesday to Thursday, in Nazarbayev University, in Astana, the new capital of Kazakhstan.
*Pictures: courtesy of J.B Nation

4th International Workshop
 "Algebra across the borders"

The workshop program will start on September 8-10, 2015, Tuesday to Thursday, in Nazarbayev University, in Astana, the new capital of Kazakhstan.
*Pictures: courtesy of J.B Nation

4th International Workshop
 "Algebra across the borders"

The workshop program will start on September 8-10, 2015, Tuesday to Thursday, in Nazarbayev University, in Astana, the new capital of Kazakhstan.
*Pictures: courtesy of J.B Nation

4th International Workshop
 "Algebra across the borders"

Then we relocate to the Almaty region, for September 11-13, Friday to Sunday, for the second, less formal half of our program, consisting of additional lectures, mutual research collaboration, and opportunities for hiking in the mountains.
Contact: Kira Adaricheva or David Stanovsky

Regards from JB Nation

Figure: JB during hiking in NY State

Acknowledgments

The following people assisted in the project:

- Joshua Blumenkopf (Yeshiva College, New York, 3d year Physics major in 2013)
- Toviah Moldwin (Yeshiva College, New York, 3d year CS major in 2013)
- Takeaki Uno (National Institute of Informatics, Tokyo)
- Gordon Okimoto (University of Hawaii Cancer Center)
- Nazar Seidalin (hospital of Medical Holding, Astana)
- Kenneth Alibek (Graduate School of Medicine, NU)
- Vyacheslav Adarichev (Biology Department, NU)
- Adina Amanbekkyzy (Math Department TA, NU)
- Shuchismita Sarkar (Math Department TA, NU)
- Alibek Sailanbayev (2d year CS student, NU)
- Ulrich Norbisrath (CS Department, NU)
- Mark Sterling (CS Department, NU)

[^0]: Theorem (Bertet-Monjardet 2010)
 For every finite closure system $\langle X, \phi\rangle$ all these bases are the same.

