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History of events
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Robert Rand and his honor’s project, 2010-2011
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Closure systems, lattices and implications

Closure systems

〈X , φ〉 is a closure system, if
X is non-empty set (finite in this talk);
φ is a closure operator on X , i.e. φ : 2X → 2X with
(1) Y ⊆ φ(Y );
(2) Y ⊆ Z implies φ(Y ) ⊆ φ(Z );
(3) φ(φ(Y )) = φ(Y ), for all Y ,Z ⊆ X .

Closed set: A = φ(A);
Lattice of closed sets: Cl(X , φ).
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Closure systems, lattices and implications

Yin Yang of a closure system

Algebraic part of a closure system: lattice of closed sets

Logic part of a closure system: set of implications.
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Closure systems, lattices and implications

Lattices and closure systems

Proposition
Every finite lattice L is the lattice of closed sets of some closure system
〈X , φ〉.

Take X = Ji(L), the set of join-irreducible elements: j ∈ Ji(L), if
j 6= 0, and j = a ∨ b implies j = a or j = b;
Define φ(Y ) = {j ∈ Ji(L) : j ≤

∨
Y}, Y ⊆ X .

Proof of L ∼= Cl(X , φ): every element x ∈ L corresponds to
φ-closed set of all join irreducibles below x .
So defined closure system is always standard.
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Closure systems, lattices and implications

Standard closure systems

Closure system 〈X , φ〉 is standard, when for no x ∈ X there exists
Y ⊆ X \ {x} such that φ(x) = φ(Y ).
For every closure system 〈Y , φ〉 one can find X ⊆ Y such that,
with restriction φX of φ on X , one obtains the standard closure
system 〈X , φX 〉, with the lattice of closed sets isomorphic to
Cl(Y , φ).
Moreover, for every y ∈ Y \ X we have φ(y ) = φ(X ′), for some
X ′ ⊆ X .
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Closure systems, lattices and implications

Example: Building a closure system associated with lattice A12.
X = Ji(A12) = {1,2,3,4,5,6}. φ({4,6}) = {1,3,4,6}, φ({2,4}) = X etc.

1 2 3 4 5

Figure 1. Example 9

1

2

3 4

56

Figure 2. Example 16

1

Figure: A12

K.Adaricheva (Nazarbayev University) D-basis AAA90 10 / 49



Closure systems, lattices and implications

Closure systems and implications

An implication σ on X : Y → Z , for Y ,Z ⊆ X , Z 6= ∅.
σ-closed subset A of X : if Y ⊆ A, then Z ⊆ A.
Closure system 〈X , φS〉 defined by set S of implications on X : A is
closed, if it is σ-closed, for each σ ∈ S
Every closure system 〈X , ψ〉 can be presented as 〈X , φS〉, for
some set S of implications on X .
Example: S = {A→ φ(A) : A ⊆ X ,A 6= φ(A)}.
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Closure systems, lattices and implications

Operator and sets of implications

Note:
Every set of implications S on X defines unique closure operator
on X .
There exist numerous sets of implications that define the same
operator on X .

Example: Let X = {a,b, c}. Consider S1 = {a→ bc} and
S2 = {a→ bc,ab → c,ac → b,a→ b,bc → c}.
The closure systems defined by S1 and S2 are the same.
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Closure systems, lattices and implications

The bases of a closure system

Term a base or a basis is used when the set of implications S ′ that
defines the same closure system satisfies some condition of
minimality.

We mention two famous bases: canonical and canonical unit direct
(CUD).
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Famous implicational bases

Canonical basis

D. Maier, Minimum covers in the relational database model, JACM 27
(1980), 664–674.
J.L. Guiques, V. Duquenne, Familles minimales d’implications
informatives résultant d’une tables de données binares, Math. Sci.
Hum. 95 (1986), 5–18.

Define critical subsets of X for a given closure system 〈X , φ〉.
Canonical basis SC is {C → B : C is critical, B = φ(C) \ C}.
If S is any other set of implications generating 〈X , φ〉, then for
every critical set C one can find (C′ → D) ∈ S such that C′ ⊆ C,
and no other critical or closed set Y with C′ ⊆ Y ⊂ C.
SC is the minimum basis among all the bases generating 〈X , φ〉.

Definition
Set of implications S defining φ on A is called minimum basis if |S| is
minimal among all sets of implications defining φ.
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Famous implicational bases

Canonical bases from the other

A. Day, The lattice theory of functional dependencies and normal
decompositions, Int.J.Alg. Comp. 2(1992), 409–431.

For every set of implications S, one can find the canonical basis SC
defining the same operator in time O(|s(S)|2).

Here the size s(S) of the set of implications S = {Xi → Yi : i ≤ n}, is
the number s(S) = |X1| + |Y1| + · · · + |Xn| + |Yn|.
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Famous implicational bases

Canonical direct unit basis

K.Bertet, B.Monjardet, The multiple facets of the canonical direct unit
implicational basis, Theoretical Computer Science 411 (2010),
2155-2166.

Basis S is unit, if it comprises implications Y → b, with the singleton
b ∈ X on the right.

Given unit basis S and Y ⊂ X , define
πS(Y ) = Y ∪

⋃
{b : (A→ b) ∈ S,A ⊆ Y}.

Then φS(Y ) = πS(Y ) ∪ π2
S(Y ) ∪ π3

S(Y ) ∪ . . .

A unit implicational basis is called direct, if
φS(Y ) = πS(Y ), for all Y ⊆ X .
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Basis S is unit, if it comprises implications Y → b, with the singleton
b ∈ X on the right.

Given unit basis S and Y ⊂ X , define
πS(Y ) = Y ∪

⋃
{b : (A→ b) ∈ S,A ⊆ Y}.

Then φS(Y ) = πS(Y ) ∪ π2
S(Y ) ∪ π3

S(Y ) ∪ . . .

A unit implicational basis is called direct, if
φS(Y ) = πS(Y ), for all Y ⊆ X .
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Famous implicational bases

Example

Canonical basis SC of 〈Ji(A12), φ〉 has 8 implications:
2→ 1,6→ 13,3→ 1,5→ 4,14→ 3,123→ 6,1345→ 6,12346→ 5.
Consider Y = {2,4}. Then π(Y ) = {2,4,1}, π2(Y ) = {2,4,1,3},
π3(Y ) = {2,4,1,3,6}, π4(Y ) = {1,2,3,4,5,6} = φ(Y ). This basis is not
direct.
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Famous implicational bases

Example: continued

Canonical unit basis SU for 〈Ji(A12), φ〉 has 13 implications:
2→ 1,6→ 1,6→ 3,3→ 1,5→ 4,14→ 3,24→ 3,15→ 3,
23→ 6,15→ 6,25→ 6,24→ 5,24→ 6.
Consider Y = {2,4}. Then π(Y ) = {2,4,1,3,5,6} = φ(Y ). This basis is
direct.
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Famous implicational bases

Types of direct bases

Various unit direct bases surveyed in B-M:
Left-minimal basis: D. Maier, The theory of relational databases,
1983
and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
Weak-implication basis: A. Rusch and R. Wille, Data analysis and
Information systems, 1995;
Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

Theorem (Bertet-Monjardet 2010)

For every finite closure system 〈X , φ〉 all these bases are the same.
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Famous implicational bases

Minimality

Theorem (Bertet-Monjardet 2010)

For every finite closure system 〈X , φ〉 all these bases are the same.

This basis is called canonical unit direct.

Corollary (Bertet-Monjardet 2010)

For a given closure system 〈X , φ〉, the canonical unit direct basis is the
least basis, with respect to inclusion, among all unit direct sets of
implications defining the system.
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D-basis

Pre-cursor of the D-basis

OD-graph of a finite lattice:
J.B.Nation, An approach to lattice varieties of finite height,
Alg. Universalis 27 (1990), 521–543.

The full information about finite lattice L can be compactly recorded in
partially ordered set of join-irreducible elements 〈Ji(L),≤〉;
the minimal join-covers of join-irreducible elements.
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D-basis

Example 1 2 3 4 5

Figure 1. Example 9

1

2

3 4

56

Figure 2. Example 16

1

Figure: A12

For lattice A12, the poset of join-irreducible elements is:
〈Ji(A12),≤〉 = 〈{1,2,3,4,5,6, },1 ≤ 2,1 ≤ 3 ≤ 6,4 ≤ 5〉.
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D-basis

Example continued

A join-cover is an expression j ≤ j1 ∨ · · · ∨ jk , j 6≤ ji , i ≤ k , for some
j , j1, . . . , jk ∈ Ji(L).
Examples: 3 ≤ 1 ∨ 4, or 6 ≤ 2 ∨ 5.
A join-cover j ≤ j1 ∨ · · · ∨ jk is called minimal, if none of j1, . . . , jk can be
replaced by smaller join-irreducibles or dropped so that one gets
another join-cover.
3 ≤ 1 ∨ 4 is a minimal cover.
6 ≤ 2 ∨ 5 is not a minimal cover: since 4 ≤ 5 and 6 ≤ 2 ∨ 4 is a cover.
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D-basis

D-basis

The D-basis is introduced and studied in K. Adaricheva, J.B. Nation
and R. Rand, Ordered direct implicational basis of a finite closure
system, Disc. Appl. Math. 161 (2013), 707-723.

Definition
Let 〈X , φ〉 be a standard closure system with L = Cl(X , φ).
The set of implications SD is called the D-basis of 〈X , φ〉, if it is made of
two parts:

{a→ b : b ∈ φ(a)}; equivalently, b ≤ a in 〈Ji(L),≤〉.
This part is called a binary part of the basis.
{j1 . . . jk → j : j ≤ j1 ∨ · · · ∨ jk is a minimal cover in L}.
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D-basis

The D-relation and the D-basis

Why D in the name of the basis?

D-relation is an important concept in the study of free lattices, see R.
Freese, J. Jezek, J.B. Nation “Free Lattices", 1995.

Definition
Given b, c ∈ Ji(L), one defines bDc, when there is a minimal cover
b ≤ c ∨ j1 ∨ · · · ∨ jk , for some j1, . . . , jk ∈ Ji(L).

Equivalently: bDc iff there exists Y → b in the D-basis such that c ∈ Y .

Important: for every Y → b in the D-basis, Y ⊆ bD = {c ∈ Ji(L) : bDc}.
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D-basis

The D-basis and the canonical unit basis

Theorem (ANR-2013)

SD generates 〈X , φ〉, i.e., D-basis is, indeed, a basis of this closure
system.
SD is a subset of the canonical unit basis SU .
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D-basis

Comparison

Canonical direct unit basis SU for 〈Ji(A12), φ〉 has 13 implications.
2→ 1,6→ 1,6→ 3,3→ 1,5→ 4,14→ 3,24→ 3,15→ 3,
23→ 6,15→ 6,25→ 6,24→ 5,24→ 6.

D-basis has 9 implications.
2→ 1,6→ 3,3→ 1,5→ 4,14→ 3,23→ 6,15→ 6,24→ 5,24→ 6.
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Ordered direct bases

Ordered iteration

Suppose the set of implications S are put into some linear order:

S = 〈s1, s2, . . . , sn〉.

A mapping ρS : 2X → 2X associated with this ordering is called an
ordered iteration of S:

For any Y ⊆ X , let Y0 = Y .
If Yk is computed and implication sk+1 is A→ b, then

Yk+1 =
{

Yk ∪ {b}, if A ⊆ Yk ,
Yk , otherwise.

Finally, ρS(Y ) = Yn.

Definition
An implicational basis of 〈X , φ〉, together with its order: S = 〈s1, . . . , sn〉
is called ordered direct, if ρ(Y ) = φ(Y ), for every Y ⊆ X.
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Ordered direct bases

Example

Take SC , the set of implications for 〈Ji(A12), φ〉, in its original order:
2→ 1,6→ 13,3→ 1,5→ 4,14→ 3,123→ 6,1345→ 6,12346→ 5.

Consider Y = {2,4}.

Then π(Y ) = {2,4,1}, while
ρ(Y ) = {2,4,1,3,6,5} = φ(Y ).
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Ordered direct bases

Ordered direct basis

Theorem (ANR-2013)
SD is an ordered direct basis, associated with any order, where
the binary part precedes the rest of implications.
There exist closure systems, for which the canonical basis cannot
be ordered.
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Ordered direct bases

Algorithmic aspects

If S is a any unit direct basis of 〈X , φ〉 of size s = s(S) with m
implications, then

it takes time O(s2) to extract D-basis from S;
it takes time O(m) to put extracted D-basis into a proper order.
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Ordered direct bases

Mid-talk conclusions

For all practical purposes canonical direct unit basis can be
replaced by the considerably shorter D-basis.
The D-basis preserves the property of direct processing,
assuming negligible pre-processing time for its ordering.
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Binary tables and Galois connection

Binary tables and the Galois connection

C1 C2 DE PDE MP

1 1 0 0 0 0

2 1 1 1 0 0

3 1 1 1 1 0

4 1 1 0 1 0

5 0 0 1 1 1

6 0 0 0 1 1

U = {1,2,3,4,5,6} is the set of objects.
A = {C1,C2,DE ,PDE ,MP} is the set of attributes.
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Binary tables and Galois connection

Closure systems associated with a binary table

Table T = 〈U,A,R〉, where R ⊆ A× U is a relation between U and A.
SA : 2A → 2U is a support function on A
SA(Z ) = {y ∈ U : (z, y ) ∈ R, for all z ∈ Z}, for Z ∈ 2A.
SU : 2U → 2A is a support function on U
SU (Y ) = {z ∈ A : (z, y ) ∈ R, for all y ∈ Y}, for Y ∈ 2U .

Lemma
Let T = 〈U,A,R〉 be a table with support functions SA and SU .

SA and SU yield Galois connection between the power sets 2A and
2U .
Mapping φA : Z 7→ SU (SA(Z )), with Z ∈ 2A, is a closure operator
on A.
Similarly, mapping φU : Y 7→ SA(SU (Y )), with Y ∈ 2U , is a closure
operator on U.
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Binary tables and Galois connection

Background

G. Birkhoff, Lattice Theory, AMS Colloquium Publications 25 (1st
ed), Providence, RI, 1940.
M. Barbut and B. Monjardet, Ordres et classifications: Algebre et
combinatoire, Hachette, Paris 1970.
B. Ganter and R. Wille, Formal Concept Analysis, Mathematical
foundations, Springer Ferlag, Berlin, 1999.
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Binary tables and Galois connection

Lattice and implicational sets of a binary table

C1 C2 DE PDE MP

1 1 0 0 0 0

2 1 1 1 0 0

3 1 1 1 1 0

4 1 1 0 1 0

5 0 0 1 1 1

6 0 0 0 1 1

The lattice of closed sets: Galois lattice or concept lattice.
Implications: usually on the set of attributes.
Examples: (C2 → C1), (C1,DE → C2).
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D-basis retrieval from the binary table

Retrieval of a basis from a binary table

As-of 2012 talk of K. Bertet at Combinatorics Seminar of CUNY,
both problems of canonical and canonical unit direct bases
generation from a binary table were reported open.
All existing algorithms required generation of a closure system or
a concept lattice, before attempting the basis retrieval.
The size of the closure system or concept lattice is (worst case)
exponential in the size of the table.
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D-basis retrieval from the binary table

Complexity of retrieval of the canonical basis

*Courtesy of Vincent Duquenne and Sergei Kuznetsov
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D-basis retrieval from the binary table

Retrieval of the CUD basis and the D-basis

U. Ryssel, F. Distel and D. Borchmann, Fast algorithms for
implication bases and attribute exploration using proper premises,
Ann. Math. Art. Intell. 70 (2014), 25–53.
K. Adaricheva, J.B. Nation, Discovery of the D-basis in binary
tables based on hypergraph dualization, arxiv, subm. TCS, 2015.
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D-basis retrieval from the binary table

Hypergraph Dualization problem

V = {v1, . . . , v7} is the set of vertices, E = {e1, . . . ,e4} ⊆ 2V is the
set of hyper-edges.
H = 〈V ,E〉 is a hypergraph.
T ⊆ V is a transversal, if T ∩ ei 6= ∅, for all ei ∈ E .
Problem: find all minimal transversals of given hypergraph H.
Solution: Hd = {V ,Ed = {v4v3, v4v2v5, v4v2v6}} is a dual
hypergraph.
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D-basis retrieval from the binary table

Algorithmic solutions to Hypergraph Dualization

M. Fredman and L. Khachiyan, On the complexity of dualization of
monotone disjunctive forms, J. Algorithms 21 (1996), 618–628.
Problem of generating all minimal transversals can be solved in
time O(No(log N)) time, where N is the size of input and output.
Test results of code implementation of algorithm are presented in
L. Khachiyan, E. Boros, K. Elbassioni and V. Gurvich, Disc. Appl.
Math. 154 (2006), 2350–2372.
Recent implementation: K. Murakami and T. Uno, Efficient
algorithms for generating large scale hypergraphs, Disc. Appl.
Math. 170 (2014), 83–94.
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Problem of generating all minimal transversals can be solved in
time O(No(log N)) time, where N is the size of input and output.
Test results of code implementation of algorithm are presented in
L. Khachiyan, E. Boros, K. Elbassioni and V. Gurvich, Disc. Appl.
Math. 154 (2006), 2350–2372.
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Instance of HD problem for the D-basis retrieval

Fix b ∈ A, one particular attribute. The goal: obtain all Y → b from
the D-basis.
Due to the definition of the D-basis, all such Y are subsets of
bD = {c ∈ A : bDc}.
Use Lemma 11.10 from Free Lattices book: bDc, for b, c ∈ Ji(L) iff
there exists p ∈ Mi(L) such that b ↑ p and p ↓ c.
Attributes of the table play the role of join-irreducibles and the
objects the role of meet-irreducibles of the concept lattice.
↑ and ↓ relations between the attributes and objects of the table
can be found in time polynomial in the size of the table.
Hypergraph associated with the fixed b ∈ A: set of vertices
V = bD; hyperedges are Hp = {c ∈ bD : cRp}, for each p ∈ U, for
which b ↑ p.
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Astana-New York-Honolulu-Tokyo Project

In May, 2013: the first working code implementation of D-basis
retrieval from the binary table via HD, written by students J.
Blumenkopf and T. Moldwin (Yeshiva University, New York). It
implemented the call to existing code of T. Uno (Tokyo).
In June, 2013: retrieve D-basis of about 49,000 implications from
50-by-100 matrix of density 0.2, in 3 min and 30 sec.
In March 2015 the it took 49 hours to retrieve more than 1,000,000
implications of the D-basis pertinent to one attribute in 61-by-287
matrix of density 0.35, with the medical data from Cancer
research lab in Astana.
One needs to work further with 1,000,000 implications to make
sense out of it.
This work is related to sorting the association rules in data mining,
and it is a topic of another presentation on other conference!
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4th International Workshop
"Algebra across the borders"

The workshop program will start on September 8-10, 2015, Tuesday to
Thursday, in Nazarbayev University, in Astana, the new capital of
Kazakhstan.
*Pictures: courtesy of J.B Nation
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4th International Workshop
"Algebra across the borders"

Then we relocate to the Almaty region, for September 11-13, Friday to
Sunday, for the second, less formal half of our program, consisting of
additional lectures, mutual research collaboration, and opportunities
for hiking in the mountains.
Contact: Kira Adaricheva or David Stanovsky
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Regards from JB Nation

Figure: JB during hiking in NY State
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