3,554 research outputs found

    A Basic Result on the Superposition of Arrival Processes in Deterministic Networks

    Full text link
    Time-Sensitive Networking (TSN) and Deterministic Networking (DetNet) are emerging standards to enable deterministic, delay-critical communication in such networks. This naturally (re-)calls attention to the network calculus theory (NC), since a rich set of results for delay guarantee analysis have already been developed there. One could anticipate an immediate adoption of those existing network calculus results to TSN and DetNet. However, the fundamental difference between the traffic specification adopted in TSN and DetNet and those traffic models in NC makes this difficult, let alone that there is a long-standing open challenge in NC. To address them, this paper considers an arrival time function based max-plus NC traffic model. In particular, for the former, the mapping between the TSN / DetNet and the NC traffic model is proved. For the latter, the superposition property of the arrival time function based NC traffic model is found and proved. Appealingly, the proved superposition property shows a clear analogy with that of a well-known counterpart traffic model in NC. These results help make an important step towards the development of a system theory for delay guarantee analysis of TSN / DetNet networks

    Improved Delay Bound for a Service Curve Element with Known Transmission Rate

    Full text link
    Network calculus is often used to prove delay bounds in deterministic networks, using arrival and service curves. We consider a FIFO system that offers a rate-latency service curve and where packet transmission occurs at line rate without pre-emption. The existing network calculus delay bounds take advantage of the service curve guarantee but not of the fact that transmission occurs at full line rate. In this letter, we provide a novel, improved delay bound which takes advantage of these two features. Contrary to existing bounds, ours is per-packet and depends on the packet length. We prove that it is tight.Comment: 4 pages, 2 figure

    Combinatorial Continuous Maximal Flows

    Get PDF
    Maximum flow (and minimum cut) algorithms have had a strong impact on computer vision. In particular, graph cuts algorithms provide a mechanism for the discrete optimization of an energy functional which has been used in a variety of applications such as image segmentation, stereo, image stitching and texture synthesis. Algorithms based on the classical formulation of max-flow defined on a graph are known to exhibit metrication artefacts in the solution. Therefore, a recent trend has been to instead employ a spatially continuous maximum flow (or the dual min-cut problem) in these same applications to produce solutions with no metrication errors. However, known fast continuous max-flow algorithms have no stopping criteria or have not been proved to converge. In this work, we revisit the continuous max-flow problem and show that the analogous discrete formulation is different from the classical max-flow problem. We then apply an appropriate combinatorial optimization technique to this combinatorial continuous max-flow CCMF problem to find a null-divergence solution that exhibits no metrication artefacts and may be solved exactly by a fast, efficient algorithm with provable convergence. Finally, by exhibiting the dual problem of our CCMF formulation, we clarify the fact, already proved by Nozawa in the continuous setting, that the max-flow and the total variation problems are not always equivalent.Comment: 26 page

    Tropical linear algebra with the Lukasiewicz T-norm

    Get PDF
    The max-Lukasiewicz semiring is defined as the unit interval [0,1] equipped with the arithmetics "a+b"=max(a,b) and "ab"=max(0,a+b-1). Linear algebra over this semiring can be developed in the usual way. We observe that any problem of the max-Lukasiewicz linear algebra can be equivalently formulated as a problem of the tropical (max-plus) linear algebra. Based on this equivalence, we develop a theory of the matrix powers and the eigenproblem over the max-Lukasiewicz semiring.Comment: 27 page
    • …
    corecore