23 research outputs found

    Outage Probability Analysis of Mixed RF-FSO System Influenced by Fisher-Snedecor Fading and Gamma-Gamma Atmospheric Turbulence

    Full text link
    In this paper, we investigate a dual-hop relaying system, composed of radio frequency (RF) and free-space optical (FSO) link. Decode-and-forward (DF) relay is employed to integrate the first RF link and the second line-of-sight FSO links. The RF channel is assumed to be subject to recently proposed Fisher-Snedecor fading model, which was shown to be convenient for modeling in realistic wireless communication scenarios. The FSO channel is affected by Gamma-Gamma distributed atmospheric turbulence. Expression for the outage probability is derived and utilized to present numerical results. Based on presented results, the effects of various RF and FSO channels parameters on the overall system performance are examined and discussed.Comment: Presented at 2018 26th Telecommunications Forum (TELFOR

    Second Order Statistics of -Fisher-Snedecor Distribution and Their Application to Burst Error Rate Analysis of Multi-Hop Communications

    Get PDF
    An advantage of using the composite fading models (CFMs) is their ability to concurrently address the impact of multi-path and shadowing phenomena on the system performance in wireless communications. A Fisher-Snedecor (FS) F CFM has been recently proposed as an experimentally verified and tractable fading model that can be efficiently applied for 5G and beyond 5G wireless communication systems. This paper provides second-order (s-order) performance analysis of the product of N independent but not identically distributed (i.n.i.d) FS F random variables (RVs). In particular, accurate and closedform approximations for level crossing rate (LCR) and average fade duration (AFD) of the product of N i.n.i.d FS F(N-FS F) RVs are successfully derived by exploiting a general property of a Laplace approximation method for evaluation of the N -folded integral-form LCR expression. Based on the obtained s-order statistical results, the burst error rate and maximum symbol rate of the N -FS F distribution are addressed and thoroughly examined. The numerical results of the considered performance measures are discussed in relation to the N-FS F multi-path and shadowing severity parameters. Moreover, the impact of the number of hops (N) of the N -FS F CFM on the s-order metrics, the burst error rate and maximum symbol rate are numerically evaluated and investigated. The derived s-order statistical results can be used to address the cooperative relay-assisted (RA) communications for vehicular systems. Monte-Carlo (M - C) simulations for the addressed statistical measures are developed in order to confirm the provided theoretical results.This work was supported in part by UC3M and the European Union's Horizon 2020 Programme under the Marie Sklodowska-Curie Grant through the CONEX-Plus Project under Agreement 801538; in part by the IRENE-EARTH Project under Grant PID2020-115323RB-C33/AEI/10.13039/501100011033; in part by ERDF and the Spanish Government Projects under Grant PID2019-106808RA-I00 AEI/FEDER, UE; in part by CDTI Cervera Project INTEGRA under Grant CER-20211031; in part by the Secretaria d'Universitats i Recerca de la Generalitat de Catalunya under Project 2017-SGR-00376 and Project Fem IoT under Grant 001-P-001662; in part by the European Commission Project CPSoSaware; and in part by the Cost Actions under Grant CA19111, Grant CA20120, and Grant CA16220.Publicad

    RIS-aided secure communications over Fisher-Snedecor F\mathcal{F} Fading Channels

    Full text link
    \textcolor{blue}{In} this paper, we investigate the performance of physical layer security (PLS) over reconfigurable intelligent surfaces (RIS)-aided wireless communication systems, where all fading channels are modeled with Fisher-Snedecor F\mathcal{F} distribution. Specifically, we consider a RIS with NN reflecting elements between the transmitter and the legitimate receiver to develop a smart environment and also meliorate secure communications. In this regard, we derive the closed-form expressions for the secrecy outage probability (SOP) and average secrecy capacity (ASC). \textcolor{blue}{We also analyze the asymptotic behaviour of the SOP and ASC by exploiting the residue approach}. Monte-Carlo (MC) simulation results are provided throughout to validate the correctness of the developed analytical results, showing that considering RIS in wireless communication systems has constructive effects on the secrecy performance

    Performance Analysis of RIS-Assisted FSO Communications over Fisher-Snedecor F Turbulence Channels

    Get PDF
    The Fisher Snedecor (F-S) F distribution has recently been introduced as a tractable turbulence-induced (TI) fading model that fits well with the experimental data. This paper provides a performance evaluation of a free-space optical (FSO) re-configurable intelligent surface (RIS)-assisted communications (ACs) link over the F-S F TI fading channels, assuming the intensity modulation direct detection (IM DD) technique. In particular, novel and closed-form (C-F) analytical expressions for the probability density function (PDF) and cumulative distribution function (CDF) of the end-toend signal-to-noise ratio (SNR) in terms of Gaussian hyper-geometric functions are efficiently derived. Capitalizing on the obtained results, novel C-F analytical expressions for the moment generating function (MMGF), outage probability (OP), average bit error rate (BER) and ergodic channel capacity (Cgamma) of the FSO RIS-ACs system over the F-S F TI fading channels are provided and numerically evaluated under the various TI fading severity conditions. Furthermore, the second-order (S-O) statistical expressions for the level crossing rate (LCR) and average fade duration (AFD) are obtained and thoroughly examined for various FSO RIS-ACs system model parameters.This research was funded by funding from UC3M and the European Unions Horizon 2020 programme under the Marie Skodowska-Curie grant agreement no. 801538 and by project IRENE-EARTH (PID2020-115323RB-C33/AEI/10.13039/501100011033

    Wireless networks physical layer security : modeling and performance characterization

    Get PDF
    Intrigued by the rapid growth and expand of wireless devices, data security is increasingly playing a significant role in our daily transactions and interactions with different entities. Possible examples, including e-healthcare information and online shopping, are becoming vulnerable due to the intrinsic nature of wireless transmission medium and the widespread open access of wireless links. Traditionally, the communication security is mainly regarded as the tasks at the upper layers of layered protocol stack, security techniques, including personal access control, password protection, and end-to-end encryption, have been widely studied in the open literature. More recently, plenty of research interests have been drawn to the physical layer forms of secrecy. As a new but appealing paradigm at physical layer, physical layer security is based on two pioneering works: (i) Shannon’s information-theoretic formulation and (ii) Wyner’s wiretap formulation. On account of the fundamental of physical layer security and the different nature of various wireless network, this dissertation is supposed to further fill the lacking of the existing research outcomes. To be specific, the contributions of this dissertation can be summarized as three-fold:(i) exploration of secrecy metrics to more general fading channels; (ii) characterization a new fading channel model and its reliability and security analysis in digital communication systems; and (iii) investigation of physical layer security over the random multiple-input multiple-output (MIMO) α −μ fading channels. Taking into account the classic Alice-Bob-Eve wiretap model, the first contribution can be divided into four aspects: (i) we have investigated the secrecy performance over single-input single-output (SISO) α −μ fading channels. The probability of non-zero (PNZ) secrecy capacity and the lower bound of secrecy outage probability (SOP) are derived for the special case when the main channel and wiretap channel undergo the same non-linearity fading parameter, i.e., α. Later on, for the purpose of filling the gap of lacking closed-form expression of SOP in the open literature and extending the obtained results in chapter 2 to the single-input multiple-output (SIMO) α − μ wiretap fading channels, utilizing the fact that the received signal-tonoise ratios (SNRs) at the legitimate receiver and eavesdropper can be approximated as new α −μ distributed random variables (RVs), the SOP metric is therefore derived, and given in terms of the bivariate Fox’s H-function; (ii) the secrecy performance over the Fisher-Snedecor F wiretap fading channels is initially considered. The SOP, PNZ, and ASC are finalized in terms of Meijer’s G-function; (iii) in order to generalize the obtained results over α −μ and Fisher-Snedecor F wiretap fading channels, a more flexible and general fading channel, i.e., Fox’s H-function fading model, are taken into consideration. Both the exact and asymptotic analysis of SOP, PNZ, and average secrecy capacity (ASC), are developed with closed-form expressions; and (iv) finally, motivated by the fact that the mixture gamma (MG) distribution is an appealing tool, which can be used to model the received instantaneous SNRs over wireless fading channels, the secrecy metrics over wiretap fading channels are derived based on the MG approach. Due to the limited transmission power and communication range, cooperative relays or multi-hop wireless networks are usually regarded as two promising means to address these concerns. Inspired by the obtained results in Chapters 2 and 3, the second main contribution is to propose a novel but simple fading channel model, namely, the cascaded α −μ. This new distribution is advantageous since it encompasses the existing cascaded Rayleigh, cascaded Nakagami-m, and cascaded Weibull with ease. Based on this, both the reliability and secrecy performance of a digital system over cascaded α −μ fading channels are further evaluated. Closed-form expressions of reliability metrics (including amount of fading (AF), outage probability, average channel capacity, and average symbol error probability (ABEP).) and secrecy metrics (including SOP, PNZ, and ASC) are respectively provided. Besides, their asymptotic behaviors are also performed and compared with the exact results. Considering the impacts of users’ densities, spatial distribution, and the path-loss exponent on secrecy issue, the third aspect of this thesis is detailed in Chapter 8 as the secrecy investigation of stochastic MIMO system over α −μ wiretap fading channels. Both the stochastic geometry and conventional space-time transmission (STT) scheme are used in the system configuration. The secrecy issue is mathematically evaluated by three metrics, i.e., connection outage, the probability of non-zero secrecy capacity and the ergodic secrecy capacity. Those three metrics are later on derived regarding two ordering scheme, and further compared with Monte-Carlo simulations
    corecore