233 research outputs found

    Cycle-Consistent Deep Generative Hashing for Cross-Modal Retrieval

    Full text link
    In this paper, we propose a novel deep generative approach to cross-modal retrieval to learn hash functions in the absence of paired training samples through the cycle consistency loss. Our proposed approach employs adversarial training scheme to lean a couple of hash functions enabling translation between modalities while assuming the underlying semantic relationship. To induce the hash codes with semantics to the input-output pair, cycle consistency loss is further proposed upon the adversarial training to strengthen the correlations between inputs and corresponding outputs. Our approach is generative to learn hash functions such that the learned hash codes can maximally correlate each input-output correspondence, meanwhile can also regenerate the inputs so as to minimize the information loss. The learning to hash embedding is thus performed to jointly optimize the parameters of the hash functions across modalities as well as the associated generative models. Extensive experiments on a variety of large-scale cross-modal data sets demonstrate that our proposed method achieves better retrieval results than the state-of-the-arts.Comment: To appeared on IEEE Trans. Image Processing. arXiv admin note: text overlap with arXiv:1703.10593 by other author

    Hash kernels and structured learning

    Get PDF
    Vast amounts of data being generated, how to process massive data remains a challenge for machine learning algorithms. We propose hash kernels to facilitate efficient kernels which can deal with massive multi-class problems. We show a principled way to compute the kernel matrix for data streams and sparse feature spaces. We further generalise it via sampling to graphs. Later we exploit the connection between hash kernels with compressed sensing, and apply hashing to face recognition which significantly speeds up over the state-of-the-art with competitive accuracy. And we give a recovery rate on the sparse representation and a bounded recognition rate. As hash kernels can deal with data with structures in the input such as graphs and face images, the second part of the thesis moves on to an even more challenging task - dealing with data with structures in the output. Recent advances in machine learning exploit the dependency among data output, hence dealing with complex, structured data becomes possible. We study the most popular structured learning algorithms and categorise them into two categories - probabilistic approaches and Max Margin approaches. We show the connections of different algorithms, reformulate them in the empirical risk minimisation framework, and compare their advantages and disadvantages, which help choose suitable algorithms according to the characteristics of the application. We have made practical and theoretical contributions in this thesis. We show some real-world applications using structured learning as follows: a) We propose a novel approach for automatic paragraph segmentation, namely training Semi-Markov models discriminatively using a Max-Margin method. This method allows us to model the sequential nature of the problem and to incorporate features of a whole paragraph, such as paragraph coherence which cannot be used in previous models. b) We jointly segment and recognise actions in video sequences with a discriminative semi-Markov model framework, which incorporates features that capture the characteristics on boundary frames, action segments and neighbouring action segments. A Viterbi-like algorithm is devised to help efficiently solve the induced optimisation problem. c) We propose a novel hybrid loss of Conditional Random Fields (CRFs) and Support Vector Machines (SVMs). We apply the hybrid loss to various applications such as Text chunking, Named Entity Recognition and Joint Image Categorisation. We have made the following theoretical contributions: a) We study the recent advance in PAC-Bayes bounds, and apply it to structured learning. b) We propose a more refined notion of Fisher consistency, namely Conditional Fisher Consistency for Classification (CFCC), that conditions on the knowledge of the true distribution of class labels. c) We show that the hybrid loss has the advantages of both CRFs and SVMs - it is consistent and has a tight PAC-Bayes bound which shrinks as the margin increases. d) We also introduce Probabilistic margins which take the label distribution into account. And we show that many existing algorithms can be viewed as special cases of the new margin concept which may help understand existing algorithms as well as design new algorithms. At last, we discuss some future directions such as tightening PAC-Bayes bounds, adaptive hybrid losses and graphical model inference via Compressed Sensing

    Asymmetric Transfer Hashing with Adaptive Bipartite Graph Learning

    Full text link
    Thanks to the efficient retrieval speed and low storage consumption, learning to hash has been widely used in visual retrieval tasks. However, existing hashing methods assume that the query and retrieval samples lie in homogeneous feature space within the same domain. As a result, they cannot be directly applied to heterogeneous cross-domain retrieval. In this paper, we propose a Generalized Image Transfer Retrieval (GITR) problem, which encounters two crucial bottlenecks: 1) the query and retrieval samples may come from different domains, leading to an inevitable {domain distribution gap}; 2) the features of the two domains may be heterogeneous or misaligned, bringing up an additional {feature gap}. To address the GITR problem, we propose an Asymmetric Transfer Hashing (ATH) framework with its unsupervised/semi-supervised/supervised realizations. Specifically, ATH characterizes the domain distribution gap by the discrepancy between two asymmetric hash functions, and minimizes the feature gap with the help of a novel adaptive bipartite graph constructed on cross-domain data. By jointly optimizing asymmetric hash functions and the bipartite graph, not only can knowledge transfer be achieved but information loss caused by feature alignment can also be avoided. Meanwhile, to alleviate negative transfer, the intrinsic geometrical structure of single-domain data is preserved by involving a domain affinity graph. Extensive experiments on both single-domain and cross-domain benchmarks under different GITR subtasks indicate the superiority of our ATH method in comparison with the state-of-the-art hashing methods
    • …
    corecore