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segments and neighbouring action segments. A Viterbi-like algorithm is devised
to help efficiently solve the induced optimisation problem. ¢) We propose a novel
hybrid loss of Conditional Random Fields (CRFs) and Support Vector Machines
(SVMs). We apply the hybrid loss to various applications such as Text chunking,
Named Entity Recognition and Joint Immage Categorisation.

We have made the following theoretical contributions: a) We study the re-
cent advance in PAC-Bayes bounds. and apply it to structured learning. b) We
propose a more refined notion of Fisher consistency. namely Conditional Fisher
Consistency for Classification (CFCC), that conditions on the knowledge of the
true distribution of class labels. ¢) We show that the hybrid loss has the ad-
rantages of both CRFs and SVMs — it is consistent and has a tight PAC-Bayes
bound which shrinks as the margin increases. d) We also introduce Probabilistic
margins which take the label distribution into account. And we show that many
existing algorithms can be viewed as special cases of the new margin concept
which may help understand existing algorithms as well as design new algorithms.

At last, we discuss some future directions such as tightening PAC-Baves
bounds, adaptive hybrid losses and graphical model inference via Compressed

Sensing.
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Xxiv NOTATION AND TERMINOLOGY

()4 or [z]+ equals . if 2 > 0 else 0

h hash function or classification hypothesis
son(x) equals 1, if > 0 else -1

d confidence or Kronecker delta

Y margin

& slack variables

1 identity matrix or indicator function

K kernel matrix

k(x.x) kernel value of x and x’

K hash kernel matrix

Zh(x. %) hash kernel value of x and x” with hash function h
#A or |A| cardinality of a set A

In natural logarithm

e base of the natural log

7 learning rate

A a base matrix

a random hashing matrix used in compressed sensing

R a random matrix (such as gaussian random matrix) used in

compressed sensing

Remp empirical risk
R true risk
I prior and posterior distributions over the hyperostosis h or

parameter w
p(- :w) or Py modeled probability /density parameterised by w

P or Pr probability or probability density
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CHAPTER 1. INTRODUCTION

more than 7.000 classes, due to its memory footprint independence in the
number of classes. We show a principled way to compute the kernel matrix
for data streams and sparse feature spaces. We further generalise it via

sampling to graphs.

In Chapter 3. we exploit the connection between hash kernels and com-
pressed sensing. and apply hashing to face recognition (Shi et al.. 2010a)
which significantly speeds up the state-of-the-art with competitive accuracy.
And we give a recovery rate on the sparse representation and a bounded

recognition rate.

In Chapter 4. we categorise the most popular structured learning algorithms
into two categories — probabilistic approaches and Max Margin approaches.
And in fact many structured learning algorithms from both categories can

be viewed in a unified framework. Empirical Risk Minimisation.

In Chapter 5. we propose a novel approach for automatic paragraph seg-
mentation (Shi et al.. 2007) , namely training Semi-Markov models discrim-
inatively using a Max-Margin method. This method allows us to model the
sequential nature of the problem and to incorporate features of a whole
paragraph, such as paragraph coherence which cannot be used in previous

models.

In Chapter 6. we jointly segment and recognise actions in video sequences
with a discriminative semi-Markov model framework (Shi et al.. 2008. 2009d).
which incorporates features that capture the characteristics on boundary
frames. action segments and neighbouring action segments. A Viterbi-like
algorithm is devised to help efficiently solve the induced optimisation prob-

lem.

In Chapter 7, we propose a novel hybrid loss (Shi et al.. 2009¢) of Condi-
tional Random Fields (CRFs) and Support Vector Machines (SVMs). The
hybrid loss has advantages of both CRFs and SVNs - it is consistent and
has a tight PAC-Bayes bound which shrinks as the margin increases. We
apply the hybrid loss to various applications (Shi et al., 2010b) such as Text

chunking. Named Entity Recognition and Joint Image Categorisation.

In Chapter 8. we study the recent advances in PAC-Baves bounds, and

apply them to structured learning. Moreover. we propose a more refined
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Chapter 2

Efficient Hash Kernels

We propose hashing (Shi et al.. 2009a) to facilitate efficient kernels which can deal
with massive multi-class problems. We show a principled way to compute the
kernel matrix for data streams and sparse feature spaces. We further generalise

it via sampling to graphs (Shi et al., 2009b).

2.1 Introduction

In recent years, a number of methods have been proposed to deal with the fact
that kernel methods have slow runtime performance if the number of kernel func-
tions used in the expansion is large. We denote by X the domain of observa-
tions and we assume that H is a Reproducing Kernel Hilbert Space with kernel

k:XxX—R.

2.1.1 Keeping the Kernel Expansion Small

One line of research (Burges and Scholkopf. 1997) aims to reduce the number of
basis functions needed in the overall function expansion. This led to a number
of reduced set Support Vector algorithms which work as follows: a) solve the full
estimation problem resulting in a kernel expansion, b) use a subset of basis func-
tions to approximate the exact solution. c¢) use the latter for estimation. While the
approximation of the full function expansion is typically not very accurate, very
good generalisation performance is reported. The big problem in this approach
is that the optimisation of the reduced set of vectors is rather nontrivial.

Work on estimation “on a budget” (Dekel et al.. 2006) tries to ensure that

this problem does not arise in the first place by ensuring that the number of

11



12 CHAPTER 2. EFFICIENT HASH KERNELS

kernel functions used in the expansion never exceeds a given budget or by using
an (, penalty (Mangasarian, 1998). For some algorithms. for example. binary

classification, guarantees are available in the online setting.

2.1.2 Keeping the Kernel Simple

A second line of research uses variants of sampling to achieve a similar goal. That

is, one uses the feature map representation
k(x,x') = (®(x), D(x')) .

Here @ maps X into some feature space F. This expansion is approximated by a

mapping ® : X — F
k(x.x') = (®(x).D(x')) often D(x) = CP(x),

where ' € R. Here ® has more desirable computational properties than ®. For
instance. ® is finite dimensional (Fine and Scheinberg. 2001: Kontorovich. 2007:

Rahimi and Recht, 2008). or ® is particularly sparse (Li et al.. 2007).

2.1.3 Our Contribution

Firstly, we show that the sampling schemes of Kontorovich (2007) and Rahimi
and Recht (2008) can be applied to a considerably larger class of kernels than
originally suggested —the authors only consider languages and radial basis func-
tions respectively. Secondly, we propose a biased approximation ® of & which
allows efficient computations even on data streams. Our work is inspired by
the count-min sketch of Cormode and Muthukrishnan (2004). which uses hash
functions as a computationally efficient means of randomisation. This affords
storage efficiency (we need not store random vectors) and at the same time they
give performance guarantees comparable to those obtained by means of random
projections.

As an application, we demonstrate computational benefits over suffix array
string kernels in the case of document analysis and we discuss a kernel between
graphs which only becomes computationally feasible by means of a compressed

representation.

2.1.4 Outline

We begin with a description of previous work in Section 2.2 and propose hash

kernels in Section 2.3 which are suitable for data with simple structure such as
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e The marginalised kernels of Tsuda et al. (2002) use a setting identical to
(2.1) as the basis for comparisons between strings and graphs by defining
a random walk as the feature extractor. Instead of exact computation we

could do sampling.

e The Binet-Cauchy kernels of Vishwanathan et al. (2007h) use this approach
to compare trajectories of dynamical systems. Here ¢ is the (discrete or

continuous) time and P(¢) discounts over future events.

e The empirical kernel map of Scholkopf (1997) uses € = X and employs some
kernel function x to define ®.(x) = r(c,x). Moreover, P(¢) = P(x), that

is. placing our sampling points ¢; on training data.

e For RBF kernels, Rahimi and Recht (2008) use the fact that & may be ex-
pressed in the system of eigenfunctions which commute with the translation

operator, that is the Fourier basis
k(% X') = Eyp(w)le e x)], (2.2)

Here P(w) is a nonnegative measure which exists for any RBF kernel by
virtue of Bochner’s theorem. hence (2.2) can be recast as a special case
of (2.1). What sets it apart is the fact that the variance of the features
Py (x) = ™ ig relatively evenly spread. (2.2) extends immediately to

Fourier transformations on other symmetry groups (Berg et al.. 1984).

e The conditional independence kernel of Watkins (2000) is one of the first
instances of (2.1). Here X, € are domains of biological sequences, ®,.(x) =
P(x|c) denotes the probability of observing x given the ancestor ¢. and

P(c) denotes a distribution over ancestors.

While in many cases straightforward sampling may suffice, it can prove disastrous
whenever ®.(x) has only a small number of significant terms. For instance. for
the pair-HMM kernel most strings ¢ are unlikely ancestors of x and x'. hence
P(x

of strings required to obtain a good estimate is prohibitively large—we need to

c) and P(x’ |¢) will be negligible for most ¢. As a consequence the number
reduce ® further.

2.2.2 Locally Sensitive Hashing

The basic idea of randomised projections (Indyk and Motawani. 1998) is that due

to concentration of measures the inner product (®(x), ®(x’)) can be approximated
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Cormode and Muthukrishnan (2004) discuss approximating inner products
and the extension to signed rather than nonnegative counts. However, the bounds
degrade for real-valued entries. Even worse. for the hashing to work. one needs

to take the minimum over a set of inner product candidates.

2.2.5 Random Feature Mixing

Ganchev and Dredze (2008) provide empirical evidence that using hashing can
eliminate alphabet storage and reduce the number of parameters without severely
impacting model performance. In addition. Langford et al. (2007) released the
“Vowpal Wabbit” fast online learning software which uses a hash representation

similar to the one discussed here.

2.2.6 Hash Kernel on Strings

We propose a hash kernel (Shi et al.. 2009a) to deal with the issue of com-
putational efficiency by a very simple algorithm: high-dimensional vectors are
compressed by adding up all coordinates which have the same hash value—one
only needs to perform as many calculations as there are nonzero terms in the vec-
tor. The hash kernel can jointly hash both labels and features. thus the memory

footprint is essentially independent of the number of classes used.

2.3 Hash Kernels

Our goal is to design a possibly biased approximation which a) approximately
preserves the inner product. b) which is generally applicable, ¢) which can work
on data streams, and d) which increases the deunsity of the feature matrices (the

latter matters for fast linear algebra on CPUs and graphics cards).

2.3.1 Kernel Approximation

As before denote by J an index set and let 2 :J — {1...., n} be a hash function
that maps J to {1,..., n} uniformly. Finally, assume that ®(x) is indexed by J
and that we may compute ®;(x) for all nonzero terms efficiently. In this case we

define the hash kernel as follows:

k(x,x') = <$(x).$(x’)> with (ITj(x) = Z D;(x) (2.3)

ied;h(i)=j
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Note that this process spreads out the features available in a document evenly
over the coordinates of ®(x). Moreover, note that a similar procedure can be
used to obtain good estimates for a TF/IDF reweighting (Jones, 1972) of the
counts obtained. thus rendering preprocessing as memory efficient as the actual

computation of the kernel.

2.3.3 Multiclass Classification

Classification can sometimes lead to a very high dimensional feature vector even
if the underlying feature map x — ®(x) may be acceptable. For instance, for a
bag-of-words representation (Lewis, 1998) of documents with 10* unique words
and 10% classes this involves up to 107 coefficients to store the parameter vector
directly when ®(x.y) = e, @ ®(x). where @ is the tensor product and ¢, is a
vector whose y-th entry is 1 and the rest are zero. The dimensionality of e, is
the number of classes.

Note that in the above case ®(x.y) corresponds to a sparse vector which has
nonzero terms only in the part corresponding to e,. That is, by using the joint
index (i.y) with ®(x.y)i,) = Pi(x)d,,, we may simply apply (2.3) to the joint

index to obtain hashed versions of multiclass vectors. We have

Bixy)=. > . &)

i€d:h(iy)=j

In some cases it may be desirable to compute a compressed version of ®(x). that
is. ®(x) first and subsequently expand terms with y. In particular for strings
this can be useful since it means that we need not parse x for every potential
value of y. While this deteriorates the approximation in an additive fashion it
can offer significant computational savings since all we need to do is permute a

given feature vector as opposed to performing any summations.

2.3.4 Streams

Some features of observations arrive as a stream. For instance, when performing
estimation on graphs, we may obtain properties of the graph by using an MCMC
sampler. The advantage is that we need not store the entire data stream but

rather just use summary statistics obtained by hashing.
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For the proof see Appendix A.

To see the implications consider [ = 10° and n = 10%. Without duplication. a
birthday paradox collision is virtually certain. However. if ¢ = 2. the probability
of information loss is bounded by about 0.404. and for ¢ = 3 it drops to about
0.0117.

2.4.2 Rate of Convergence

As a first step note that any convergence bound only depends logarithmically on
the size of the kernel matrix as follows.

Theorem 3 Assume that the probability of deviation between the hash kernel and
its expected value is bounded by an exponential inequality via

1 = :
P HA'I(X. x') —E; [l;’(x. x’)” = (} < cexp(—c'é®n)

for some constants ¢, ¢ depending on the size of the hash and the kernel used. In
this case the error e arising from ensuring the above inequality, with probability

at least 1 — 0, for m observations and M classes for a joint feature map P(x. ).

15 bounded by

€< \/(21()g(/11 + 1)+ 2log(M + 1) —log d + logc — 21og 2) /nc’.

For the proof see Appendix A.

2.5 Graphlet Kernels

Denote by G a graph with vertices V(G) and edges E(G). Several methods have
been proposed to perform classification on such graphs. Most recently, Przulj
(2007) proposed to use the distribution over graphlets, that is. subgraphs. as a
characteristic property of the graph. Unfortunately, brute force evaluation does
not allow calculation of the statistics for graphlets of size more than 5. since the
cost for exact computation scales exponentially in the graphlet size.

In the following we show that sampling and hashing can be used to make the
analysis of larger subgraphs tractable in practice. For this denote by S C G an
induced subgraph of G, obtained by restricting ourselves to only V(S) C V(G)
vertices of G and let #4(G) be the number of times S occurs in . This suggests
that the feature map G — ®(G). where ®4(G) = #5(G) will induce a useful
kernel: adding or removing an edge (i.j) only changes the properties of the

subgraphs using the pair (7. j) as part of their vertices.






)
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This follows since Sy, ; = S; and likewise Sy; j; = 5. That is, adding and removing

the same vertex leaves a graph unchanged. B

In summary, we obtain an algorithm that will readily draw samples S from
P(S|G) to characterise G.

2.5.2 Dependent Random Variables

The problem with sampling from a MCMC procedure is that the random vari-
ables are dependent on each other. This means that we cannot simply appeal
to Chernoff bounds when it comes to averaging. Before discussing hashing we

briefly discuss averages of dependent random variables:

Definition 5 (Bernoulli Mixing) Denote by Z a stochastic process indered by
t € Z with probability measure P and let ¥, be the o-algebra on Z, with t &
7/ I n — 1. Moreover, denote by P_ and P, the probability measures on the
negative and positive indices t respectively. The mizving cocfficient 3 is

B(n.Pyx):= sup |P(A)—P_xP,(A)|.

AeY

Son

If limy o 3(n. P.) = 0 we say that Z is B-mizing.

That is. 3(n.Py) measures how much dependence a sequence has when cutting
out a segment of length n. Nobel and Dembo (1993) show how such mixing

processes can be related to iid observations.

Theorem 6 Assume that P is 3-mixing. Denote by P* the product measure ob-
tained from ... P, x Py ... Moreover. denote by ¥y, the o-algebra on Z,,, Zs,
Then the following holds:

sup |P(A) — P*(A)| <15(n.P).

AeX n

This allows us to obtain bounds for expectations of variables drawn from P rather
than P*.

Theorem 7 Let P be a distribution over a domain X and denote by ® : X — K
a feature map into a Hilbert Space with (®(x), ®(x")) € [0.1]. Moreover, assume
that there is a B-mizing MCMC sampler of P with distribution PMC from which

we draw | observations X, with an interleave of n rather than sampling from P






24 CHAPTER 2. EFFICIENT HASH KERNELS

Data Sets #Train #Test #Labels
RCV1 781.265 23,149 2

DMOZ L2 4.466.703 138,146 575
DMOZ L3 4.460,273 137,924 7.100

Table 2.1: Text data sets. #X denotes the number of observations in X.

2.6 Experiments

To test the efficacy of our approach we applied hashing to the following prob-
lems: first we used it for classification on the Reuters RCV1 data set (Lewis
et al.. 2004) as it has a relatively large feature dimensionality. Secondly, we ap-
plied it to the DMOZ ontology (see Section 2.6.2) of topics of webpages® where
the number of topics is high. The third experiment—Biochemistry and Bioin-
formatics Graph Classification uses our hashing scheme. which makes comparing
all possible subgraph pairs tractable, to compare graphs (Vishwanathan et al..
2007a). On publicly available data sets like MUTAG and PTC as well as on
the biologically inspired data set DD used by Vishwanathan et al. (2007a). our
method achieves the best known accuracy.

In both RCV1 and DMOZ. we use linear kernel SVM with stochastic gra-
dient descent (SGD) as the workhorse. We apply our hash kernels and ran-
dom projection (Achlioptas. 2003) to the SGD linear SVM. We don’t apply the
approach in Rahimi and Recht (2008) since it requires a shift-invariant kernel
k(x,x") = k(x —x'), such as a RBF kernel, which is not applicable in this case.
In the third experiment, existing randomisation approaches are not applicable
since enumerating all possible subgraphs is intractable. Instead we compare hash
kernels with existing graph kernels: random walk kernel, shortest path kernel and

graphlet kernel (see Borgwardt et al. 2007).

2.6.1 Reuters Articles Categorisation

We use the Reuters RCV1 binary classification data set (Lewis et al.. 2004).
781,265 articles are used for training by stochastic gradient descent (SGD) and
23,149 articles are used for testing. Conventionally one would build a bag of
words representation first and caleulate exact term frequency / inverse document

frequency (TF/IDF) counts from the contents of each article as features. The

*DMOZ L2 denotes non-parent topic data in the top 2 levels of the topic tree and DMOZ

L3 denotes non-parent topic data in the top 3 levels of the topic tree.
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Figure 2.1: Test accuracy comparison of KNN and Kmeans on DMOZ with var-
ious sample sizes. Left: results on L2. Right: results on L3. Hash kernel (2%%)

result is used as an upper bound.

20% less than the upper bound accuracy achieved by hash kernel. The trend of
the KNN and Kmeans accuracy curve suggests that the bigger the sample size is.
the less accuracy increment can be achieved by increasing it. A numerical result

with selected sample sizes is reported in Table 2.6.

We also compare hash kernel with RP with various feature dimensionalities
on DMOZ. Here RP generates the random projected feature first and then does
online learning and testing. It uses the same 4-cores implementation as hash
kernel does. The numerical result with selected dimensionalities is in Table 2.7.
It can be seen that hash kernel is not only much faster but also has much smaller
error than RP given the same feature dimension. Note that both hash kernel
and RP reduce the error as they increase the feature dimension. However. RP
can’t achieve a competitive error compared to what hash kernel has in Table 2.5.
simply because with large feature dimension RP is too slowthe estimated run
time for RP with dimension 2'" on DMOZ L3 is 2000 days.

Furthermore we investigate whether such a good misclassification rate is ob-
tained by predicting well only on a few dominant topics. We reorder the topic his-
togram in accordance to ascending error rate. Figure 2.2 shows that hash kernel
does very well on the first one hundred topics. They correspond to easy categories

such as language related sets " World /Italiano™.” World /Japanese™ . World /Deutsch”™.
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Figure 2.2: Left: results on L2. Right: results on L3. Top: frequency counts
for topics as reported on the training set (the test set distribution is virtually
identical). We see an exponential decay in counts. Bottom: log-counts and error
probabilities on the test set. Note that the error is reasonably evenly dist ributed
among the size of the classes (besides a number of near empty classes which are

learned perfectly).

2.6.3 Biochemistry and Bioinformatics Graph Classifica-

tion

For the final experiment we work with graphs. The benchmark data sets we
used here contain three real-world data sets: two molecular compounds data
sets. Debnath et al. (1991) and PTC (Toivonen et al., 2003), and a data set for
protein function prediction task (DD) from Dobson and Doig (2003). In this work
we used the unlabeled version of these graphs, see, for example, Borgwardt et al.
(2007).

All these data sets are made of sparse graphs. To capture the structure of
the graphs. we sampled connected subgraphs with varying number of nodes. from

n=4ton=9 Weused graph isomorphism techniques. implemented in Nauty
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Data Sets | RW  SP GKS GK HK HKF
MUTAG 0.719 0.813 0.819 0.822 0.855 0.865
PTC 0554 0554 0.594 0.597 0.606 0.635
DD | >24h >24h 0745 >24h 0.799 0.841

Table 2.8: Classification accuracy on graph benchmark data sets. RW: random
walk kernel, SP: shortest path kernel. GKS = graphlet kernel sampling 8497
araphlets, GK: graphlet kernel enumerating all graphlets exhaustively, HK: hash
kernel, HKF: hash kernel with feature selection. ">24h’ means computation did

not finish within 24 hours.

Feature All Selection

STATS ACC AUC | ACC AUC
MUTAG || 0.855 0.93 | 0.865 0.912
P 0.606 0.627 | 0.635 0.670
DD 0.799 0.81 | 0.841 0.918

Table 2.9: Non feature selection vs feature selection for hash kernel. All: all

features. Selection: feature selection; ACC: accuracy: AUC: Area under ROC.

(McKay, 1984) to obtain a canonically-labeled isomorph of each sampled sub-
graph. The feature vector of each example (graph) is composed of the number
of times each canonical isomorph was sampled. Each graph was sampled 10000
times for each of n = 4.5...9. Note that the number of connected unlabeled
graphs grows exponentially with the number of nodes, so the sampling is ex-
tremely sparse for large values of n. For this reason we normalised the counts so
that for each data set each feature of ®(x) satisfies 1 > ®(x) > 0.

We compare the proposed hash kernel (with/without feature selection) with
random walk kernel, shortest path kernel and graphlet kernel on the benchmark
data sets. From Table 2.8 we can see that the hash kernel even without fea-
ture selection still significantly outperforms the other three kernels in terms of
classification accuracy over all three benchmark data sets.

The dimensionality of the canonical isomorph representation is quite high
and many features are extremely sparse. a feature selection step was taken that
removed features suspected as non-informative. To this end, each feature was
scored by the absolute vale of its correlation with the target. Only features with
scores above the median were retained. As can be seen in Table 2.9 feature

selection on hash kernel can furthermore improve the test accuracy and area
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power without any noticeable loss of accuracy. The deviation bound and
Rademacher margin bound are independent to the line of compressed sens-
ing. Whereas we show the other side of the coin—hashing can actually
be viewed as a measurement matrix in compressed sensing, which explains
why there is asymptotically no information loss. Also we provide both a
theoretical guarantee and empirical evidence that recovering the original

signal is possible.

e We apply hashing in the context of compressed sensing to rapid face recogni-
tion due to sparse signal recovery. Our experiments show that the proposed
method achieves competitive accuracies compared with (if not better than)
the state-of-the-art in Wright et al. (2008): Yang et al. (2007). Yet the
proposed hashing with orthogonal matching pursuit is much faster (up to
150 times) than Wright et al. (2008); Yang et al. (2007).

o We further present bounds on hashing signal recovery rates and face recog-

nition rates for the proposed algorithms.

We briefly review the related work in Section 3.1. and then introduce two
variants of hashing methods for face recognition in Section 3.2. The theoretical
analysis in Section 3.3 gives justification to our methods. and experimental results

in Section 3.4 demonstrate the excellence of the proposed methods in practice.

3.1 Related work

Given the abundant literature on face recognition. we only review the work closest

to ours.

3.1.1 Facial features

Inspired by the seminal work of Eigenface (Turk and Pentland, 1991) using prin-
cipal component analysis (PCA), learning a meaningful distance metric has been
extensively studied for face recognition. These methods try to answer the ques-
tion that which features of faces are the most informative or discriminative for
identifying a face from another. Eigenface using PCA. Fisherface using linear
discriminant analysis (LDA). Laplacianface using locality preserving projection
(LPP) (He et al., 2005) and nonnegative matrix factorization all belong to this
category. These methods project the high-dimensional image data into a low-

dimensional feature space. The main justification is that typically the face space
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large scale application of mass personalised spam filtering.

3.1.4 Connection between hash kernels and compressed

sensing

Previous works on hash kernels use hashing to perform feature reduction with
a theoretical guarantee that learning in the reduced features space gains much
computational power without any noticeable loss of accuracy. The deviation
bound and the Rademacher bound show that hash kernels have no information
loss asymptotically due to the internal feature redundancy.

Alternatively. we can view hashing as a measurement matrix (see Section 3.3.2)
in compressed sensing. We provide both theoretical guarantees in Section 3.3 and
empirical results in Section 3.4 to show that recovering the original signal is pos-
sible. Thus hash kernels compress the original signal/feature in a recoverable
way. This explains why it works well asymptotically in the context of Shi et al.
(2009a.b); Weinberger et al. (2009).

3.2 Hashing for face recognition

We show in this section that hashing can be applied to face recognition.

3.2.1 Algorithms

Consider face recognition with n frontal training face images collected from K € N

subjects. Let ny denote the number of training images (x;.¢;) with ¢ =k, thus
! L) T K - : !

the total number of training images n = 3~," | ny. Without loss of generality, we

assume that all the data have been sorted according to their labels and then we

collect all the vectors in a single matrix A with m rows and n columns. given by
A=y, o By s sy X ) E R (3.1)

As in Yang et al. (2007): Wright et al. (2008), we assume that any test Image
lies in the subspace spanned by the training images belonging to the same person.
That is for any test image x. without knowing its label information. we assume

that there exists o = (ay, as. ....a,) such that

X — Ny, (3.2)
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Algorithm 1 Hashing-/,

m

Input: a image matrix A for A subjects, a test image x € B™ and an error
tolerance e.
Compute x and &.

Solve the convex optimisation problem
min [|all;, subject to ||x — Pal;, < €. (3.6)

' . - ko y ’ . = ¥
Compute the residuals rip(x) = ||x — ®a”(x)||¢, for k= 1,.... K. where a” is
the subvector consisting of the components of a corresponding to the basis of
class k.

Output: identity ¢* = argming rp(x).

(a) (h)

Figure 3.1: Demonstration of the recognition procedure of Hashface+(,. (a) is
the test face: (b) is the training faces corresponding to the 10 largest weighted

entries in a, the absolute values of their weights are shown on the images in red.

3.2.4 Efficiency of Computation and Memory Usage

For random-{,. the random matrix R needs to be computed beforehand and
stored throughout the entire routine. When the training set is large or the feature
dimensionality is high. computing and storing R are expensive especially for
dense R. We will show now with hashing. H no longer needs to be computed
beforehand explicitly. For example ® and x can be directly computed as follows

without computing H.

by = Z ( Z .-\,.,:g,). (3.8)
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Figure 3.2: Demonstration of a hash matrix. The area with green color means the
entry’s value is 0, brown indicates value —1 while blue indicates 1. Best viewed
in color.

Algorithm 2 Hashing-OMP
Input: a image matrix A for K subjects. a test image x € R"™.

Compute x and ®.
Get a via OMP procedure

a = OMP(x, ®) (3.7)

Compute the residuals ri(x) = ||Xx = ®ak(x)||¢, for k = 1..... K. where o* is

the subvector consisting of the components of a corresponding to the basis of
class k.
Output: identity ¢* = argming ri(x).

where
1, he(t.2)=2

—1. otherwise.

€ =

Vi=1l,....d &= Z( ¥ .u,»&,-)- (3.9)

1<s€S  1<j<mih,(jd)=i

It means for even very large image set. hashing with OMP (hashing-OMP) can
still be implemented on hardware with very limited memory.

3.3 Analysis

In this section. we show that hashing can be used for signal recovery, which is
the principle behind the application to face recognition. We further give a lower
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3.3.3 Recognition rates

A commonly used assumption is that any test face image can be represented as a
weighted sum of face images belonging to the same person, which has been used
in Wright et al. (2008): Yang ct al. (2007). Ideally. once we achieve the exact
weights, the classification should be perfect. However, because the similarity of
human face appearance and noise, it is no longer true. So we propose a weakened

assumption below.

Assumption 13 There exists a high dimensional representation in the training
face images index space. in which the classification can be conducted with recog-

nition rate at least q.

The following theorem provides bounds on the recognition rate for any test

image via hashing.

Theorem 14 (Recognition Rate via Hashing) The recognition rates via Al-
gorithm 1 and 2 are, at least (1 — 9 =2D)q, and (1 — §)q. respectively, under

Assumption 13.

Proof We know that with probability at least 1 — ¢“=%2% the signal can be
recovered via Corollary 11. With Assumption 13, we know that even the ¢@(—229)
portion of not-perfectly-recovered signals are all misclassified, the classification
accuracy is still greater than or equal to (1—e?=*29)q. Similarly for Algorithm 2.
B

Note that the bound in the above theorem is possible to further tighten by
salvaging the portion of not-perfectly-recovered signals for classification. Indeed.

predictions on those signals are usually not completely wrong.

3.4 Experiments

To compare the proposed hashing approaches with random-¢, (Yang et al., 2007:
Wright et al., 2008). we use the same databases, namely, the Extended YaleB and
AR as used in Wright et al. (2008). The Extended YaleB database (Georghiades
et al.. 2001) contains 2. 414 frontal-face images from 38 individuals. The cropped
and normalised 192 x 168 face images were captured under various laboratory-
controlled lighting conditions. Each subject has 62 to 64 images. Thus we ran-

domly select 32, 15. 15 of them (no repetition) as the training, validation and
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Din-50

Din-100

Dinm-200

Din-300

AR

HAsu-OMP
RANDOM-OMP
EIGEN-OMP
HaAsH-(,
RANDOM-/
EIGEN-¢;
EIGEN-KNN
FisHER-KNN
EIGEN-SVM
FisHER-SVM

0.658 £ 0.063
0.689 = 0.077
0.449 £ 0.131
0.727 £ 0.064
0.855 + 0.047
0.705 = 0.094
0.500 = 0.102
0.740 = 0.045
0.903 + 0.048
0.896 + 0.043

0.778 = 0.066
0.784 = 0.060
0.449 +0.112
0.915 £ 0.037
0.915 £ 0.042
0.751 £ 0.061
0.537 = 0.101
0.920 £ 0.026
0.959 + 0.021
0.953 = 0.020

0.937 £ 0.032
0.835 £ 0.036
0.606 £ 0.068
0.961 £ 0.029
0.929 £ 0.028
0.758 £ 0.035
0.555 £ 0.097
0.977 £ 0.011
0.976 = 0.017
0.979 £ 0.013

0.969 £ 0.019
0.908 £+ 0.034
0.671 = 0.040
0.985 = 0.013
0.958 = 0.016
0.806 £ 0.050
0.558 == 0.096
0.981 £ 0.011
0.979 £0.011
0.980 + 0.012

YaleB

Hasu-OMP
RANDOM-OMP
E1GEN-OMP
Hasn-(,
RANDOM-{;
EIGEN-£,
EiGeEN-KNN
FisHER-KNN
EIGEN-SVM
FisHEr-SVM

0.806 = 0.057
0.821 = 0.059
0.289 £+ 0.075
0.899 + 0.030
0.928 + 0.036
0.822 £ 0.072
0.589 £ 0.101
0.891 £ 0.050
0.890 £ 0.063
0.880 =+ 0.068

0.856 = 0.050
0.908 == 0.039
0.669 = 0.078
0.951 £+ 0.021
0.966 + 0.018
0.911 £ 0.049
0.662 £ 0.109
0.920 &= 0.038
0.919 £+ 0.041
0.913 £ 0.040

0.939 + 0.022
0.945 £ 0.033
0.882 £+ 0.053
0.977 £ 0.017
0.980 +0.017
0.936 = 0.037
0.702 £ 0.100
0.948 £ 0.029
0.940 + 0.036
0.939 £ 0.035

0.964 £ 0.016
0.944 £ 0.029
0.911 £ 0.048
0.982 + 0.013
0.979 £+ 0.016
0.945 £ 0.036
0.714 £ 0.096
0.954 £ 0.030
0.953 %= 0.029
0.948 £ 0.031

Table 3.1: Comparison on accuracy for Hashing-OMP, Random-{, and Eigen-(,

(using Eigenface). On both datasets, Hashing-£; achieves the best classification

accuracy for Dim = 300. When the dimensionality is low. sparse representation

based algorithms do not perform as well as SVM.
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DiM-50 Div-100 Din-200 Div-300

Hasu-OMP
RAaNDOM-OMP
E1GEN-OMP

11.55 £ 0.22
12.056 £0.23
12.45 + 0.24

248+0.17
80.25 £+ 0.93
17:25£10.82

78.25 £ 0.41
812.55 £ 0.74

299.55 £+ 1.54 422.1 = 2.03

101.15 +1.34
1323.45 £ 2.00

AR
Hasn-1 (1455 296 1740.5 == 1269 6125.85 &+ 99.22 15718.9 + 290.25
RANDOM-{4 814.35 £ 5.44 2276.95 £ 10.28 11266 £ 73.18 31731 £292.63
EIGEN-/, 751.95 £ 7.10 2637.9 £ 37.68 8758.3 & 132.26 19632.9 £47
Hasn-OMP 10.05+0.02 67.4+0.80 61.45 + 0.34 138.05 £ 0.24
RANDOM-OMP  10.75 £ 0.18 4.3 £ 0.11 944.25 £ 0.53 2944.45 = 2.90
Eicen-OMP 10.3 == 0.19 75 4 0.30 190.65 &+ 0.49 291.35 £ 0.78
YaleB

HAsH-(,
RANDOM-£;
EIGEN-£;

724.45 £ 2.53
823.25 £ 5.6
742.55 £ !

1713.3 £ 14.69
3 2401 £ 19.56
2 2006.6 + 38.53

5191.9 £ 120.27
8655.6 = 71.23
4621.65 £+ 143.30

(452 SIS

9536.8 £ 311.48
21887.8 4+ 164.97
8444.65 4 273.76

Table 3.2: Comparison on the running time(ms) for Hashing-OMP. Random-¢,

and Eigen-f,. Hashing-OMP is faster than other methods.

HaAsH-OMP

10.05 £ 0.020

46.65 £ 2.394

85.4 &+ 3.891

340.95 £ 4.080

RUNTIME(MS) RANDOM-{; N/A 58.35 &+ 1.152 97.15 = 7.926 329.4 & 2.480
Hasu-OMP  0.658 +0.063 0.687 +0.060 0.835+0.037 0.998 & 0.034

ACCURACY Ranpon-£; N/A 00571 == 00100 = 022 =0:047 0.653 £+ 0.068
HAsH-OMP 50 85 180 1000

DIMENSION Ranpom-f; N/A ) 10 25

Table 3.3: Comparison on accuracies given running time constraints for Hashing-
OMP and Random-¢; on AR. “Dimension” shows the dimensionality under which
the two approaches could achieve similar running speed. “Running time” shows
the real running times that should be similar to each other for a certain running

speed. N/A means that it was impossible to achieve that speed.
curve for hashing-OMP is almost flat.

3.4.2 Predicting via o

Algorithm 1 uses the residuals to predict the label. Alternatively we can learn
a classifier on the sparse a directly. To investigate this. we estimated a via
Algorithm 1 (i.e., ¢, minimisation) on the test set and the validation set of the
AR dataset. Then we split the union of the two sets into 10 folds. We ran 10 fold
cross-validation (8 for training. 1 for testing, and 1 for validation) with SVM.

We used both the original a and the normalised one denoted as aj . which
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Figure 3.3: The comparison of the recognition procedure of Hashing -/, and
Random-f, on YaleB. (a) is the test face: (b) and (¢) are the top 10 weighted
training faces for random-f, and hashing-{, respectively. The absolute value of
the weights are shown in red (view in color): (d) and (e) are the bar charts
corresponding to the absolute value of top 100 largest weighted entries in the

weight a for random-f, and hashing-f, respectively.

is normalised to [0.1]. Because a has both positive and negative entries. the
normalisation step introduces many nonzero entries to agpg . As we can see in
Table 3.4 and Table 3.1, when Dim = 50. SVM on a or ay ) gets better results
than hashing-OMP and hashing-£,. When Dim > 100 hashing-OMP and ¢, beat
SVAM. The experiment suggests that when the feature dimensionality is low (e.q.
< 50), predicting via o is a good idea; when the feature dimensionality is high.

predicting via residuals is better.

3.5 Conclusion

We have proposed a new face recognition methodology with hashing, which speeds
up the state-of-the-art in Wright et al. (2008) by up to 150 times. with comparable

recognition rates. Both theoretical analysis and experiments justifv the excellence
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Figure 3.4: The running time curves of Hashing-OMP and Random-£; on AR.
The horizontal axis represents the dimensionality and the vertical axis is the

running time in ms.

Dim 50 Dim 100 Dim 200 Dim 300

Accuracy on a 0.865 £+ 0.006 0.876 £0.010  0.875 = 0.007 0.835 £ 0.009
Aceuracy on ajy | 0.853 £ 0.006  0.877 £ 0,011 0.878+ 0.007  0.849 = 0.010

Table 3.4: Test accuracy via predicting on a on AR dataset with 10 fold cross-

validation.

of the proposed method.
As hashing can deal with data with structures in the input such as graphs
and face images. the next part of the thesis moves on to an even more challenging

task — dealing with data with structures in the output.
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function directly, often requiring only an argmax operation which is commonly
done via dynamic programming. The two types of approach have their own ad-
vantages and disadvantages which we will discuss for each algorithm. It will be
seen that many algorithms from both categories can be viewed in a unified frame-
work, Empirical Risk Minimisation (ERM) (Guyon et al., 1992; Shawe-Taylor

et al.. 1996).

4.2 Empirical Risk Minimisation

Many machine learning algorithms are essentially minimising a regularised em-
pirical risk functional. That is. one would like to solve

min J(w) 1= AQ(W) + Repmp(W),

m

1|

where Ropp(W) = — E l(xi,y;. W)
m
i=1
is the empirical risk and (x;,y,)..... (X ¥m) € X xVY is the training sample

of input-output pairs and w is a parameter vector. The model complexity is
controlled by regulariser AQ(w) (with A > 0). which usually is (piecewise) differ-
entiable and cheap to compute. For instance, let the regulariser Q(w) = 1| w ||,
and the loss ((x;. y;. w) be the binary hinge loss, [1 — y (w.x;)].. we recover the
soft margin linear SVM.

Solving the ERM problem, we learn a discriminant function F € F: X — Y
over input-output pairs from which we can derive a prediction by maximising F
over the response variable y for a given input x. That is.

H(x:w) = argmax F(x.y: w).
Y€Y

Throughout the thesis, we assume the problem we are dealing with has structured

output y € Y, of which the binary class and multiclass are just special cases.

4.3 Probabilistic Approaches

Among probabilistic approaches. two principles are most commonly used — Max-
imum a Posteriori (MAP) principle and Maximum Entropy (ME) principles. As
we shall see, many probabilistic approaches adopt one of the two principles with

some additional assumptions and constraints.
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arrow of an edge points from a parent node to its child node. The joint prob-
ability (or density) of a graph with children nodes r¢ and parent nodes xp is

then decomposed to Py (x| p)Pw(xp). The model is estimated via maximising

the joint likelihood given observations. The advantage of this method is that
the overall probability is always a valid probability since local ones are readily
normalised. Incorporating new nodes or variables into existing models can be
easily done by simply multiplying the probability of the new variables. for the
product of the probabilities is always a valid joint probability as well. Also. for
a learnt model, the probability for any subset of variables is readily computed
which gives nice interpretation on the importance of each variable. However, the
normalised potentials in each node raise a bias problem observed in Lafferty et al.
(2001). Furthermore, the potentials and features (which are crucial in structured

estimation) are not as rich as those in the undirected graphical models.

4.3.3 Conditional Random Fields

Conditional Random Fields (CRFs) (Lafferty et al.. 2001) assume the conditional

distribution over Y

X has a form of exponential families. i.e.,

exp((w. ®(x.y)))

P(y[x:w) = 20w )
where
Z(w|x)= Z exp((w, ®(x.y"))). (4.2)
y'€Y
and
O(x,y) =Y Bi(x.y?) + Y dy(x.y W), (4.3)
iev (ij)ee

via the Hammersley — Clifford theorem if only node and edge features are con-
sidered. More generally speaking, the global feature can be decomposed into
local features on cliques (fully connected subgraphs). Denote (x;.. ... Xom) 88 X,
s TP Y.,) as Y. The classical approach is to maximise the conditional likeli-
hood of Y on X, incorporating a prior on the parameters. This is a Maximum a

Posteriori (MAP) estimator. which consists of maximising

P(w|X.Y) x P(w)P(Y | X;w).
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4.4 Max Margin Approaches

4.4.1 Structured Support Vector Machines

Tsochantaridis et al. (2004, 2005) provide a general framework for structured
output using maximum margin. They look for a hyperplane that separates the
correct labelling y; of each observation x; in the training set from all the incorrect
labellings Y — y, with some margin that depends on the label cost A additively™.
In order to allow some outliers, they use slack variables & and maximise the
minimum margin, F(X;,y;) — maxyey_y F(X;,y). across training instances .

Equivalently.

m

min - lw||” + C'Z{; L (4.4a)
S i=1
Vi, y (w, ®(x;,y;) — D(x:.¥)) > Aly;,y) — &. (4.4b)

To solve this optimisation problem efficiently, one can investigate its dual
given by'

1 : .
min o Z iy @y (P(x;,y), P(x;.¥)) (4.5)

1,0, Y,Y'

= A ¥)ouy
iy

Vi, y Z(uy 2O, ey 2 0,

hd

Here, there exists one parameter a;y for each training instance x; and its possible
labelling y € Y. Solving this optimisation problem presents a formidable chal-
lenge since Y generally scales exponentially with the number of variables within
each variable y. This essentially makes it impossible to find an optimal solu-
tion via enumeration. Instead. one may use a column generation algorithm (see
Tsochantaridis et al., 2005) to find an approximate solution in polynomial time.
The key idea is to find the most violated constraints (4.4b) for the current set of

parameters and satisfy them up to some precision. In order to do this. one needs

*There is an alternative formulation that is multiplicative in A. For details see Tsochan-
taridis et al. (2005).

fNote that one can express the optimisation and estimation problem in terms of kernels
k((x,y), (x',y")) == (®(x,y). P(x",y")). We refer the reader to Tsochantaridis et al. (2005) for
details
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Denote y ~ y'® as the value of the component y (@) is consistent with that in y.

Decomposing global features into local node and edge features as (4.3), we get

EV'wx, (I)(xi' Y)

= Z“/yq)(xl v)
_Z”’YZ(D x;.y'Y) + Z ‘I’z(xi.y“’l”)

asV (ab)e€

—Z Z ()ly (xi-ym))

aeV V‘y'\«y'”)

ET 5 oGl y)

(ab)€€ y:y~ylab)

= Z Z/lx,(y"”)q’x(xi-y“”)

acV yla)

+ Z Z/’x,(y(”m)(I)Q(X,'.y(”['))_

(ab)eé y(""'

where marginals

T T T

y:y.\,y(u)

'“x’(y(nh)): Z ”iy(}’)‘

yiy~y(ab)

Similarly if A(y;.y) = ,ev Ay, y'), then

y~aiy A(y;y) = Z/’x,(y(”)) (Y, y(" ).

asV

E

Thus we only need to know the marginals i, ('), pix, (y'?)) over nodes and
edges to compute the dual in (4.7) instead of the entire joint distribution a;y. To
ensure the marginals resulting from a valid distribution a;y(y). one must ensure

following consistency constraint

Z/’x, mbl) = Jix, (¥ "’)) Y(a,b) ~ &, Vi.

(b)
For graphical models with higher order features, higher order consistency are
required.
The inference can also be done by marginals of Py (y | x) over nodes and edges

(see Sontag et al., 2008). Again consistency constraints are needed. This way
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Figure 5.1: Top: sequence (horizontal line) with segment boundaries (vertical

lines). This corresponds to a model where we estimate each segment bound-
ary independently of all other boundaries. Middle: simple semi-Markov struc-
ture. The position of the segment boundaries only depends on the position of
its neighbours, as denoted by the (red) dash arcs. Bottom: a more sophisti-
cated semi-Markov structure, where each boundary depends on the position of
two of its neighbours. This may occur, e.g.. when the decision of where to place
a boundary depends on the content of two adjacent segments. The longer range

interaction is represented by the additional (blue) arcs.

Moreover, paragraphs should exhibit certain properties such as coherence. which
should be explored within an APS system. One cannot incorporate such proper-
ties/features when APS is treated as a binary classification problem. To overcome
this limitation. we cast APS as a sequence prediction problem. where the perfor-
mance can be significantly improved by optimising the choice of labelling over a
whole sequence of sentences, rather than individual sentences.

Sequence prediction is one of the most prominent examples of structured pre-
diction. This problem is generally formalised such that there exists one variable
for each observation in the sequence and the variables form a Markov chain such
as a Hidden Markov Model (HMM). Segmentation of a sequence has been stud-
ied as a class of sequence prediction problems with common applications such
as protein secondary structure prediction, Named Entity Recognition and seg-
mentation of FAQ'’s. The exceptions to this approach are Sarawagi and Cohen
(2004): Raetsch and Sonnenburg (2006), which show that Semi-Markov models
(SMAMIs) (Janssen and Limnios, 1999). which are a variation of Markov models.

are a natural formulation for sequence segmentation. The advantage of these
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the best score with respect to F.

y'(x) ;= argmax F(x,y). (5.1)
hASH
As in many learning methods. we consider functions that are linear in some

feature representation @.
Flx.y;:w) = (w,®(x,y)). (5.2)

Here, ®(x.y) is a feature map defined over the joint input/output space as de-
1 .

tailed in Section 5.3.

5.1.1 Max-Margin Training

We now present a maximum margin training procedure for predicting structured
output variables, of which sequence segmentation is an instance. One of the
advantages of this method is its ability to incorporate the cost function that the
classifier is evaluated with. Let A(y.y) be the cost of predicting ¥ instead of
y. For instance, A is usually the 0-1 loss for binary and multiclass classification.
However, in segmentation, this may be a more sophisticated function such as
the symmetric difference of y and y as discussed in Section 5.2. Then. one can
argue that optimising a loss function that incorporates this cost can lead to better
generalisation properties®.

We follow the general framework of Tsochantaridis et al. (2004) and look
for a hyperplane that separates the correct labelling y,; of each observation se-
quence X; in our training set from all the incorrect labellings Y —y. with some
margin that depends additively on A as in (4.4)". In order to allow for some
outliers, we use slack variables §; and maximise the minimum margin, F(x;. Y;)—
maXyey -y, F(X;,y), across training instances i. For the dual form see (4.5). In
order to find the most violated constraint in (4.4b). we propose an extension of
the Viterbi algorithm in Section 5.4 for Semi Markov models.

To adapt the Structured SVMs framework to the segmentation setting, we
need to address three issues: a) we need to specify a loss function A for segimen-
tation, b) we need a suitable feature map ® as defined in Section 5.3. and c) we
need to find an algorithm to solve (4.6) efficiently. The max-margin training of

SMMs was also presented in Raetsch and Sonnenburg (2006)

“For a theoretical analysis of this approach see Tsochantaridis et al. (2004).
'There is an alternative formulation that is multiplicative in A. We prefer 4.4 due to

computational issues.
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structure given in Figure 5.1 are given by

-1 l
O(x.y) = (P, Y _ (0. %), > ®(bir, bix))-

i=1 i=1
We let @, = [ — 1. the number of segments. The node features ¢, capture the
dependency of the current segment boundary to the observations, whereas the
edge features @, represent the dependency of the current segment to the observa-
tions. To model the bottom structure in Figure 5.1. one can design features that
represent the dependency of the current segment to its adjacent segments as well
as the observations. ®3(x.b;_».b;_1.b;). The specific choices of the feature map

¢ are presented in Section 5.5.

5.4 Column Generation on SMMs

Tractability of Algorithm 3 depends on the existence of an efficient algorithm
that finds the most violated constraint (4.4b) via (4.6). Both the cost function of
Section 5.2 and the feature representation of Section 5.3 are defined over a short
sequence of segment boundaries. Therefore, using the Markovian property, one
can perform the above maximisation step efficiently via a dynamic programming
algorithm. This is a simple extension of the Viterbi algorithm. The inference
given by (5.1) can be performed using the same algorithm, setting A to a constant
function.

We first state the dynamic programming recursion for F'+ A in its generality.
We then give the pseudocode for &3 = ().

Denote by T'(t_.t.:x) the largest value of A(y.p) + F(x.p) for any partial
segmentation p that starts at position 0 and which ends with the segment Bt ti)
Moreover, let M be a upper bound on the length of a segment. The recursive
step of the dynamic program is given by

S S max T(kt_ix)+g(k,t_.t.)

max (0.t —M)<k<t_
where we defined the increment g(k.1_.1,) as
(Do(x). Pr(x, t4), Palx. ity ), Pa(x, kit ty),w) + 1 —2{(t_.t,) € y}

where by convention T'(i.i') = —oc if i < 0 for all labels. Since T needs to be
computed for all values of . —M < t_ < t,. weneed to compute O(|x | M) values,

each of which requires an optimisation over M possible values. That is. storage
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Length of x(b;).
Relative Position of x(b;).
Final punctuation of x(b;).
Number of capitalised words in x(b;).
Word Overlap of x(b;) with the next one

Wover (x(b;), x(b; + 1)) =
2 | z(b;) Nx(b; +1) |
| x(b;) |+ | x(b;+1) |

First word of x(b;).

Bag Of Words (BOW) features: Let the bag of words of a set of sentences
S be

where N is the size of the dictionary and ¢; is the frequency of word 7 in S.

|

BOW of x(b;). B({x(b;)})
— BOW of x(b;) and the previous sentence B({x(b; — 1).x(b;)})

J

BOW of x(b;) and the succeeding sentence B({x(b;),x(b; +1)})

The inner product of the two items above
Cosine Similarity of x(b;) and the previous sentence

CS(x(b; — 1), x(b;))

_ (Bx(b; — 1)), Bx(by)))
[ B(x(b; — 1)) [ < | B&x({,)) |

Shannon’s Entropy of x(b;) computed by using a language model as de-
scribed in Genzel and Charniak (2003).

Quotes(Q,, Q. Q;). Q, and (). are the number of pairs of quotes in the
previous(Num,,) and current sentence (Num,.), Qp = 0.5 x Num, and
Q=005 3¢ Nuswis
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5.5.1 Edge Features &,

Below is the set of features ®5(b;. b; 11, x) encoding information about the current
segment. These features represent the power of the Semi-Markov models. Note
that @3 features also belong to edge features category. In this chapter. we did

not use ¢y feature due to computational issues.

e Length of The Paragraph: This feature expresses the assumption that one
would want to have a balance across the lengths of the paragraphs assigned

to a text. Very long and very short paragraphs should be uncommon.

e Cosine Similarity of the current paragraph and neighbouring sentences:
Ideally, one would like to measure the similarity of two consecutive para-
graphs and search for a segmentation that assigns low similarity scores (in
order to facilitate changes in the content). This can be encoded using
Dy(x,bj_1,bj,bj11) features. When such features are computationally ex-
pensive, one can measure the similarity of the current paragraph with the

preceding sentence as

C8(P, x(b;—1))
_ (BOW(P), BOW (x(b; — 1)))
| BOW(P) | x | BOW(x(b; — 1))

where P is the set of sentences in the current paragraph, [b;. bj41). A similar
feature is used for C'S(P,x(bj11)).

e Shannon’s Entropy of the Paragraph: The motivation for including features
encoding the entropy of the sentences is the observation that the entropies
of a paragraph’s initial sentences are lower than the others (Genzel and
Charniak, 2003). The motivation for including features encoding the en-
tropy of the paragraphs, on the other hand. is that the entropy rate should
remain more or less constant across paragraphs, especially for long texts
like hooks. We ignore the sentence boundaries and use the same technique

that we use to compute the entropy of a sentence.

5.5.2 Feature Rescaling

Most of the features described above are binary. There are also some features

such as the entropy whose value could be very large. We rescale all the non-binary
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valued features so that they do not override the effect of the binary features. The

scaling is performed as follows:

w — min(u)

T .
g | max(u) — min(wu)

where ., is the new feature and wu is the old feature. min(u) is the minimum
of u, and max(u) is the maximum of u. An exception to this is the rescaling of

BOW features which is given by

B(x(b;))new = B(x(b;))/{B(x(b;)). B(x(b;)))-

5.6 Experiments

We collected four sets of data for our experiments. The first corpus, which we call
SB, consists of manually annotated text from the same book The Adventures of
Bruce-Partington Plans by Arthur Conan-Doyle. The second corpus. which we
call SA, again consists of manually annotated text but from 10 different books by
the same author Conan-Doyle. Our third corpus consists of German (GER) and
English (ENG) texts. The German data consisting of 12 German novels was used
by Sporleder and Lapata (2006). This data uses automatically assigned paragraph
boundaries. with the labelling error expected to be around 10%. The English data
contains 12 well known English books from Project Gutenberg (http://www.
gutenberg.org/wiki/Main_Page). For this dataset the paragraph boundaries
were marked manually.

All corpora were approximately split into training (72%). validation (21%).
and test set (7%) (see Table 5.1). The table also reports the accuracy of the
baseline classifier, denoted as BASE, which either labels all sentences as para-
graph boundaries or non-boundaries, choosing whichever scheme vields a better
accuracy.

We evaluate our system using accuracy, precision, recall. and the F |-score
given by (2x Precision x Recall)/( Precision+ Recall) and compare our results to
Sporleder and Lapata (2006) who used BoosTexter (Schapire and Singer, 2000) as
a learning algorithm. To the best of our knowledge. BoosTexter (henceforth called
BT) is the leading method published for this task so far. In order to evaluate
the importance of the edge features and the resultant large-margin constraint. we
also compare against a standard binary Support Vector Machine (SVM) which

uses node features alone to predict whether each sentence is the beginning of a
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TOTAL TRAIN DEV TEST BASE

SB 59,870 43,678 12,174 3,839 53.70
SA 69.369 50,680 14,204 4,485 58.62
ENna | 123.261 88.808 25864  8.589 63.41
GER | 370,990 340,416 98,610 31,964 62.10

Table 5.1: Number of sentences and % accuracy of the baseline classifier (BASE)

on various datasets used in our experiments.

DATASET | ALGO. Acc. REc, PrREG: F

ENG SMM 75.61 46.67 77.78 58.33
SVM 58.54 26.67 40.00 32.00
BT 65.85 33.33 55.56 41.67
GER SMM  70.56 46.81  65.67 54.66
SVM 39.92 100.00 38.68 55.79
Bl 72.58 54.26 67.11 60.00

Table 5.2: Test results on ENG and GER data after model selection.

paragraph or not. For a fair comparison, all classifiers used the linear kernel and
the same set of node features.

We perform model selection for all three algorithms by choosing the parameter
values that achieve the best Fj-score on the development set. For both the SVM
as well as our algorithm, SMM, we tune the parameter C' (see (4.4a)) which
measures the trade-off between training error and margin. For BT, we tune the
number of Boosting iterations, denoted by V.

In our first experiment. we compare the performance of our algorithm, SMM,
on the English and German corpus to a standard SVM and BoosTexter. As can
he seen in Table 5.2, our algorithm outperforms both SVM and BT on the ENG
corpus and performs very competitively on the GER corpus, achieving accuracies
close to those of BT. The SVM does not take into account edge features and
hence does not perform well on this task.

We observed a large discrepancy between the performance of our algorithm
on the development and the test datasets. The situation is similar for both SVM
and BT. For instance, BT when trained on the ENG corpora, achieves an optimal
Fy-score of 18.67% after N = 100 iterations. For the same N value, the test

performance is 41.67%. We conjecture that this discrepancy is because the books
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that we use for training and test are written by different authors. While there
is some generic information about when to insert a paragraph break. it is often
subjective and part of the authors style. To test this hypothesis. we performed
experiments on the SA and SB corpus. and present results in Table 5.3. Indeed.
the Fi-scores obtained on the development and test corpus closely match for text
drawn from the same book (whilst exhibiting better overall performance). differs
slightly for text drawn from different books by the same author. and has a large

deviation for the GER and ENG corpus.

DATASET AGC: REc. PREC. F|-SCORE
SB (DEV) 92.81 86.44 92.73 89.47
SB (TEST) 96.30 96.00 96.00 96.00
SA (DEV) 82.24 61.11 82.38 70.17
SA (teEsT) | 81.03 79.17 76.00 T7.85
ENG (DEV) | 69.84 18.46 78.63 29.90
ENG (TEST) | 75.61 46.67 77.78 58.33
GER (DEV) | 73.41 41.61 38.46 39.98
GER (TEST) | 70.56 46.81 65.67 54.66

Table 5.3: Comparison on different APS datasets on SNNMI.

In our next experiment. we investigate the effect of the offset (the weight
assigned to the constant feature @) on the performance of our algorithm. We fix
the best value of ' from the development dataset as above. but now we vary the
offset parameter. If we now use the best offset. tuned for accuracy or Fj-score.
as the case may be. the performance on the test set changes. This is shown in

Tables 5.4 and 5.5.

DATASET Acc. REC. PREC. F)|-SCORE
ENG (DEV) | 70.90 26.15 72.10 38.38
ENG (TEST) | 73.17 60.00 64.29 62.07
GER (DEV) | 80.95 19.25 69.71 SO-1T
GER (TEST) || 68.55 24.47 76.67 3710

Table 5.4: Performance on development and test set after tuning the offset for

the best accuracy.
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DATASET Acc. REC. PREC. F|-SCORE
EnG (DEV) | 55.02 98.46 43.31 60.16
ENG (TEST) | 39.02 93.33 36.84 52.28
GER (DEV) | 64.29 63.35 32.70 43.14
GER (TEST) | 75.40 73.40 65.71 69.35

Table 5.5:

best Fi-score.

Performance on development and test set after tuning the offset for

DATASET | ALGO. Acc. REC. PRrEc. F1-SCORE
ENG SMM 77.71+6.18 33.444+13.98 64.33+21.85 40.12+11.22
SVM 66.95£5.28 37.06+9.95 37.78+14.24 34.724+4.86

BT 75.44£7.27 23.43%£12.75 52.03+£28.26 29.47+£12.58

GER SMM 76.68+3.71 50.87+10.80 60.96+10.87 55.15+10.08
SVM 67.22+7.50 19.88+8.60 34.48+10.99 24.70£8.45

BT 77.29+2.40 47.06+£16.71 59.49+12.62 51.85%+14.30

SB SMM 86.46£8.41 73.62+£19.43 86.47+10.22 78.46+£15.11
' SVM  63.73%£10.05 41.474+13.19 50.31+£19.36 43.48£10.61
BT 87.99+6.24 77.51+14.06 87.13+10.38 81.23£9.55

SA SMM 82.96+6.22 65.60+14.06 78.53+11.63 71.13+12.57
SVM 58.26£8.90 49.92+13.15 38.64+15.37 41.05=10.42

BT 78.41+£7.35 57.75+15.39 70.08+£18.90 62.46%x15.23

Table 5.6: Performance of various algorithms on our test corpus.

Thus far. following Sporleder and Lapata (2006) we worked with a single

In our final

random split of the data into training. development. and test set.
experiment we test the statistical significance of our results by performing 10-fold
1/3™ of the data from

The parameters are

cross validation. For this experiment, we randomly pick
each corpus and tune parameters on this development set.
now fixed, and the rest of the data is used to perform 10-fold cross validation.
The results are summarised in Table 5.6. While the performance of our algorithm
is relatively unchanged on the large GER dataset, there are large variations on
the relatively small ENG, SA. and SB datasets. This is to be expected because
10-fold cross-validation on small samples can skew the relative distribution of the

examples used for training and testing.
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5.7 Conclusion

We presented a competitive algorithm for paragraph segmentation which uses
the ideas from large margin classifiers and graphical models to extend the semi-
Markov formalisii to the large margin case. We obtain an efficient dynamic
programming formulation for segmentation which works in linear time in the
length of the sequence. Experimental evaluation shows that our algorithm is

competitive when compared to state-of-the-art methods.



Chapter 6

Action Segmentation and

Recognition

A challenging task in human action understanding is to segment and recognise a
video sequence of continuous elementary actions e.g. running and walking. This
has a wide range of applications in surveillance. video retrieval and intelligent
interfaces. The difficulty comes from high variability of appearances, shapes
and possible occlusions. The task is typically done in two steps: 1) segmenting
and then 2) classifying the segments. Using semi-Markov model (SMM), we can

segment and classify the video simultaneously.

6.1 Max Margin Approach

As commonly used in Schuldt et al. (2004); Dollar et al. (2005): Wong et al.
(2007); Jhuang et al. (2007); Nowozin et al. (2007), we assume only one person
appears in a given video sequence x (and we allow people in different video to
be different) performing actions labeled as y = {(by. l;,.)}],\._:l“ consisting of pairs
(bi. 1) that indicates the beginning position by and its corresponding action [y,
for the kth segment [by, byr ). Denote F(x,y:w) = (w,®(x,y)) the discriminant

function. For an unseen video sequence x, we predict the label via

y* = argmax log p(y | x, w) = argmax F/(x.y: w). (6.1)
y y

Learning the SMM discriminatively from training data is essentially a regularised
empirical risk minimisation problem (Tsochantaridis et al., 2005: Taskar et al..

2004) with respect to w as in (4.4). The minimisation can be done by the cutting

_——
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Algorithm 5 Bundle Method

Input: sequence x; and true label y; for example i, sample size m, precision € > 0

Initialise w = 0
repeat
for i =1 to m do
y; = argmax, A(y;,y) + F(xi, y;w)
Compute the empirical loss Repp(w) (6.2) and the gradient Vo dtemp(W ) 16:3):
w — BMRM(Remp(W), Vi Remp(W))
end for
until Remp(w) <€

plane method as we did for the APS problem in the previous chapter. Alter-
natively we can do it by Bundle Methods for Regularised Risk Minimisation
(BMRM) (Teo et al., 2007; Smola et al., 2007). Similar to the cutting plane
method, we need to compute the most violated label ¥ which can be efficiently
obtained by a viterbi-like dynamic programming. BMRM requires two inputs:

the empirical risk
Il — al i
Banp(W) := — 3 Ay, 77) = (W, 00, y,) = 20, 77)) . (62)

and its gradient
1

Vit tamp (W) = = O(x;,y;) — P(x:, ;). (6.3)

Empirical studies in Section 6.4 show that the bundle method often delivers
superior results to those of the cutting plane method as observed in Teo et al.
(2007): Smola et al. (2007).

6.2 Viterbi-Like Inference
For both learning algorithms (cutting plane and BMRM), we need to infer

y; = argmax A(y,.y) + F(x;,y: w). (6.4)
yeY
This can be done by dynamic programming due to decomposition of the feature
¢ and the cost function A. ®(x.y) can be decomposed into local features as

=1 -1

-1
q)(X.Y) :<Z q)[(X. n;., (‘,‘).Z (I)-_)(X. n;, I),'_H.('I'). Z(D;;(x. Ty Tit-1,5 Ciy Ci1 )) 3

=0 i=0 i=0
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Algorithm 6 Viterbi-Like Inference

Input: sequence x of length [. its true label y. and maximum length of a

segment N
Output: score s. the most violated label ¥
Initialise matrices S e R! x €', J € Z. and L€ Z' to 0.y =)
fori=1to!l do
for ¢ =1 to C' do
(Ji. L;) = argmax S(j, ¢;) + g(j. 4. ¢j. ¢;)

JiCj
S(i.ci) = S(*. ¢5) + g(j*.i. €. )
end for
end for

¢; = argmax S(l. ¢)
a

s=S(l,¢c)
v < {(l.)}
i
repeat

L .],'
until i =0

It is easy to verify that in the end, the sum of two terms in the RHS of (6.4)
amounts to S(I, ¢;). This algorithm can also be used for inference in the prediction

phase by letting
g(x,n_,n,c_,c) = fi(x,n_,c_) + fa(x,n_,n,c_) + fs(x,n_,n,c_,c).

This inference algorithm is very efficient - time complexity O(IMC?). linear
to the sequence length [ and memory complexity O(I(C' + 2)). Our C++ im-
plementation® processes the video sequences at 20 frames per second (FPS) on

average on an desktop with Intel Pentium 4 3.0GHz processor and 512M memory.

6.3 Feature Representation

Neuro-psychological findings such as Phillips et al. (2002) suggest that the visual

and motor cortices of human perception system are more responsible than the

*Source code can be downloaded from lm[):/'/usm's.rsi.\'f\.anll.wln.au/"qslli/('(>(l(‘/s111111_1'«’It‘z\5('.rgz.
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Figure 6.1: Comparing seven methods for action recognition on the synthetic dataset.

#2(X. n;, niyy ) contains three components: the length of this segment. the mean
and the variance of the histogram vector of the segment (e.g. over frames from

n; to njyy — 1).

Edge Features on Neighboring Segments As in practice we have prior
knowledge about the minimum length of an action segment. we define the mini-
mum duration of a segment as d to reduce the complexity of the Viterbi algorithm.
D3 (X, 1 Nig1, Cis Cisr) = @3(X N Nis)) ® ¢ @ ¢4y, and it is a concatenation of
the following components: a) the mean of the histogram vector from frames n;
to niyy — 1. and b) from frames n;4; to ny.; +d. as well as ¢) the variance of the

histogram vector from n; to n;4; — 1. and d) from n,, to Niyy +d.

6.4 Experiments

During the following experiments, the proposed discriminative SMM approach
is compared to three algorithms: KNN (where K=1. 3, 5). SVM multiclass and
SVM-HMM (Tsochantaridis et al.. 2005). In particular, two variants of discrim-
inative SN\ are considered. namely the one with cutting plane method (SVM-
SMMI) and the one with bundle method (BMRM-SMAM).
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handclapping

ha‘n:qlgving

o) T~

Figure 6.2: Sample frames of one person engaging in six tyvpes of actions in the KTH dataset.

[.\lothml | Brief Description Accuracy
Ke et al. (2005) | cascade classifier, spatio-temporal 63.0
Schuldt et al. (2004) SVAL local space time features 7.7
Schindler and van Gool (2008) | SVM. bag of snippets, shape and motion | 92.7
Dollar et al. (2005) SVAML “cuboid” features 81.2
Nowozin et al. (2007) linear SVM. “cuboid” features R7.0

subsequence boosting, “cuboid™ features | 84.7
Wong et al. (2007) WX-SVM, “cuboid” features 91.6
Our SVM baseline SVM, “cuboid” features 85.1
Our BMRM-SVM discriminative SMM, “cuboid” features 95.0

Table 6.1: Action recognition rates on KTH dataset,

displays exemplar frames of one person performing each of the six activities.

To make direct comparisons to existing methods in literature presented in
Table 6.1, in this experiment we adopt the “cuboid™ (Dollar et al.. 2005) feature
(instead of SIFT) that captures the local spatio-temporal characteristics using
Gabor filters. More specifically, this detector is tuned to fire whenever variations
in local image intensities contain distinguishing spatio-temporal characteristics.
At each detected interest point location, a 3D cuboid is then extracted and repre-
sented as a flattened vector that contains the spatio-temporal windowed informa-
tion including normalised pixel values, brightness gradient and windowed optical
How.

We adopt the same train and test sets splits as that of Nowozin et al. (2007).
only here our models are trained on the joined train+validation sets: Each model
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truth vs. predict | boxing | handelapping | handwaving | jogeging | rumming | walking
_ boxing | 0.09 0.00 0.00 0.00 (.00
_ handclapping | 0.00 0.00 [ 000 | 004 | 000
handwaving 0.00 (.00 0.00 | o (00 . 0.00
josoing | (.00 | (.00 0.00 (.00 | N.11
running . 0.00 0.00 0.00 0.08 0.00
walking 0.00 | 0.00 ' 0.00 '_0,12 0.00

Table 6.2: Confusion matrix of BMRM-SMM on the KTH dataset.

Figure 6.3: Sample frames of subjects each performing one of the four actions: slow walk,

fast walk. incline walk and walk with a ball, in an action sequence of the CMU MoBo dataset

tuning parameters 7 of our methods are selected using 5-fold cross-validation
on the joined sets. then a single model is trained on the joined sets. and the
final accuracy is reported on the test set. Table 6.1 shows the results of our
methods: Our SVM baseline (85.1%) is comparable to similar methods (e.g.
SVM of Dollar et al. (2005); Nowozin et al. (2007)) H'])nllwl in literature. while
our BMRM-SMM (95.0%) performs favorably comparing to these state-of-the-
art methods. We attribute this to the contextual information that we are able
to exploit through the use of @, features in our SMM framework. Table 6.2
displays the confusion matrix of the BMRM-SMM method. where the handwaving
action can be perfectly identified from the rest of the actions. On the other hand,
there are a few mistakes among the three easv-to-be-confused categor ies: walking.

jogging. and running.
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[ [ iz~ ] svm | HMM | SVM-HMM | SVM-SMM | BMRM-SMM |

Ace || 0.65 £ 0.02 | 0.67 £ 0.03 | 0.68 = 0.08 | 0.75 = 0.06 0.75 = 0.03 0.78 = 0.0u
F, 0.16 £ 0.05 | 0.15 £ 0.03 | n/a £ n/a | 0.43 £ 0.01 0.59 = 0.03 | 0.59 = 0.03 |

Table 6.3: Accuracies (Ace) and F scores on CNMU MoBo dataset.

[ NN [ 3NN | 5NN [ SVM | SVM-HMM | SVM-SMM | BMRM-SM)

[ 0.82 = 0.02 [ 0.80 = 0.03 [ 0.77 = 0.03 | 0.84 = 0.03 [ 0.87 £ 0.02 | 0.91+ 0.02 | 0.94+ 0.01

L]
|

Table 6.4: Action recognition rates on the WBD dataset.

6.4.3 CMU MoBo dataset

This dataset (R.Gross and Shi. 2001) contains 24 individuals? walking on a tread-
mill. As illustrated in Figure 6.3, each subject performs in a video clip one of
the four different actions: slow walk. fast walk. incline walk and slow walk with
a ball. Each sequence has been pre-processed to contain several cycles of a single
action and we additionally manually label the boundary positions of these cycles.
The task on this dataset is to automatically partition a sequence into atomic
action cycles, as well as predict the action label of this sequence.

Table 6.3 presents the results averaged over 6-fold cross-validation. The re-
sults of 3NN and 5NN are omitted here as they are very similar to INN. We
also experiment with generative HNMM solely on the task of action recognition
(predicting action label for each sequence). where one HMM is trained for each
action tvpe using the BaumWelch algorithm. It performs slightly better than
the baseline methods including KNN (K=1.3.5) and SVM. but is still inferior
to SVM-HMM (Tsochantaridis et al.. 2005), its discriminative counterpart. Note
that both SMM variants (SVM-SMM and BMRM-SMNM) significantly outperform
the other methods including SVNM-HMNM on action label prediction as well as on

segmentation of action cycles.

6.4.4 WBD: A Dataset of Continuous Actions

In addition to the existing datasets (such as the MoBo and the KTH datasets).
where each sequence contains exactly one type of action., we construct a Walk-
Bend-Draw (WBD) dataset of continuous actions. Some exemplar frames are

displayed in Figure 6.4. This is an indoor video dataset containing three subjects,

*The dataset originally consists of 25 subjects. We drop the last person since we experienced

technical problems obtaining the sequences of this individual walking with balls.
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cluster B

@ cluster A

cluster C D cluster D

Figure 6.4: A Walk-Bend-Draw (WBD) dataset. Top shows some sample frames of the
dataset . Bottom displays the assignments of image feature points on four randomly chosen

codebook clusters over time and across person.

each performing six action sequences at 30 FPS at a resolution of 720 x 480, and
each sequence consists of three continuous actions: slow walk, bend body and draw
on board. and on average each action lasts about 2.5 seconds. We subsample each

sequence to obtain 30 key frames, and manually label the ground truth actions.

The comparison results. obtained using 6-fold cross-validation. are summarised
in table 6.4. Both discriminative SMM variants consistently deliver the best re-
sults. while here BMRM-SMM slightly outperforms SVM-SMM. They are then
followed by SVM-HMM. SVM. and the KNN methods. in an order that is consis-
tent with the experimental results for the synthetic dataset. Furthermore, Tables
6.5 and 6.6 display the confusion matrices of the two SMM variants: SVM-SMM
vs. BMRM-SMM. where the two actions — walk and draw - seem to be rarely
confused with each other. nevertheless both sometimes are mis-interpreted as
bend. This is to be expected. as although walk and draw appear to be more
similar to human observer in isolated images. it nevertheless can be learned by
discriminative SNIM methods that walk, bend and draw are nsually conducted in

order.
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[ . [ [ ]
| truth vs. predict ‘} walk | bend | draw }

17 walk 0.07 | 0.00
| bend 0.05 0.02
B draw [l 0.01 0.09 8

Table 6.5: Confusion matrix of SVM-SMM on WBD.

' truth vs. predict H walk

bend | draw
|

walk 0.00 |
bend ‘ 0.03 0.04 ‘
| draw | o.noj 0.04

Table 6.6: Confusion matrix of BMRM-SMM on WBD.

6.5 Conclusion

We present a novel discriminative semi-Markov approach to human action anal-
ysis. where we intend to simultaneously segment and recognise continuous action
sequences. We then devise a Viterbi-like dynamic programming algorithm that
is able to efficiently solve the inference problem, and show the induced learning
problem can be cast as a convex optimisation problem with many constraints.
that can be subsequently solved and we present two such solvers. Empirical sim-
ulations demonstrate that our approach is competitive to and often outperforms
the state-of-the-art methods.

Our approach can be extended in several directions. It is promising to explore
the dual representation in order to incorporate matching cost between point sets.
On future work we also plan to apply this approach to closely related problems.

such as detecting unusual actions from a large video dataset.



Chapter 7

Hybrid Models on NLP and

Image Categorisation

CRFs and SVMs can be seen as being representative of two different approaches to
classification problems. The former is a probabilistic approach — the conditional
probability of classes given each observation is explicitly modelled — while the
latter is a max margin approach — classification is performed without any attempt
to model probabilities.

Both approaches have their strengths and weaknesses. CRFs (Lafferty et al.,
2001: Sha and Pereira, 2003) use a log loss which is known to be consistent. How-
ever, modelling P(y | x) often requires a large number of training examples and
may sacrifice classification accuracy if the underlying distribution is complicated
(Bulatov and Bousquet, 2007). In contrast, Support Vector Machines make more
efficient use of training examples but are known to be inconsistent when there
are more than two classes (Tewari and Bartlett. 2007: Liu, 2007).

Despite their different characteristics, CRFs and SVMs appear very similar
when viewed as optimisation problems. The most salient difference is the loss
used by each: CRFs are trained using a log loss while SVMs typically use a hinge
loss.

In an attempt to capitalise on their relative strengths and avoid their weak-
nesses we propose a hybrid approach that uses a convex “blend” of these two
losses. The new hybrid loss is conditionally consistent and has a generalisation
bound guarantee. We postpone the detailed theoretical analysis to Chapter 8 (see
the consistency of the hybrid loss in Section 8.1.2 and the generalisation bound
of the hybrid loss in Section 8.2.3). We apply it to several natural language pro-

cessing (NLP) applications and image categorisation before concluding with some

39
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possible future refinements (Section 7.4).

7.1 The Hybrid Loss

The scores given to labels by a general model f : X — R* can be transformed
into a conditional probability distribution p(x: f) € [0.1]* by letting
exp(fy (%))

v exp(fy (X))

py(x; f) = 5 (7.1)

y
It is easy to show that under this interpretation the hinge loss for a proba-

bilistic model p = p(-: f) is given by
ly(p.y) = 1—1111)7" (7.2)
maXy2y Py | .
Another well known loss for probabilistic models, such as Conditional Random
Fields, is the log loss
(L(p.y) = —Inpy. (7.3)
This loss penalises models that assign low probability to likely instances labels
and, implicitly, that assign high probability to unlikely labels.
The hybrid loss introduced in this chapter is a loss for probabilistic models

that is a convex combination of the hinge and log losses

la(py) = ali(py)+ (1 —a)ly(p.y) (7.4)
j)

= —alpy)+(1l—-a)|l—In—F——
‘ mMaXy/2y Py | |

(7.5)

where mixture of the two losses is controlled by a parameter a € [0.1]. Setting
a =1 or a = 0 recovers the log loss or hinge loss. respectively. The intention is
that choosing a close to 0 will emphasise having the maximum label probability
as large as possible while an a close to 1 will force models to prefer accurate

probability assessments over strong classification.

7.2 Consistency and Generalisation bound

We will show in Section 8.1.2 that the hybrid loss can be conditionally consis-
tent when the traditional hinge loss is not (see Theorem 16 in Section 8.1.3).
Specifically, the hybrid loss can yield consistent predictions for instances with
non-dominant labels provided the label probabilities are not too close. Also. we
will show that the hybrid loss has a tighter generalisation bound than CRFs (see
Theorem 19 in Section 8.2.3).
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Figure 7.1: Training error curve with various number of classes. a = 0.5 for the

hybrid loss.

Mix of Non-dominant and Dominant Distributions

Minimising a cousistent loss will always outperform an inconsistent one when
non-dominant distributions are present if the entire data distribution is available.
However. in practice, we often only have access to a small sample of the entire data
distribution. Our second simulation is to study how the three losses perform given
various training set sizes (denoted by m) and various proportions of instances
with non-dominant distributions (denoted by p). We generate a 5 class data
set with 100 feature dimensions as follows. In the non-dominant class case. the
observation x is fixed and its conditional distribution is set to be Dy.(x) = 0.4 and
Dy(x) = 0.15for y # y*. In the dominant case. each dimension of the observation
x is drawn from a one dimensional normal distribution N(y = 1+ j.0 = 0.6) for
theclass j=1,..., 5. The proportion p ranges over the values 0.1.0.2.0.3.....1
and for each p, we generate the test set and the validation set with the same
size 1000. Training set sizes of m = 30. 60. 100. 300. 600, 1000 are used. Given a
mixing ratio p. we train models using the three losses on the training data with
size m. and then apply the models to the test and validation data.

The results are summarised in Figure 7.2, from which we can see a clear trend

when the non-dominant class portion p is small (e.g.. when p = 0.1) and m is
small (30.60). the hinge loss ontperforms the log and hybrid losses. For larger m.

the hybrid loss ontperforms the log and hinge losses more often than not.
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Figure 7.2: Accuracy first vs. accuracy second. The colored dot indicates accu-
racy first > accuracy second. The size of the dot is proportional to the difference

of two accuracies. Different color means the size is significantly different.

7.3.2 Text Chunking

Unlike the general multiclass case. structured estimation problems have a higher
chance of non-dominant distributions because of the very large number of labels
as well as ties or ambiguity regarding those labels. For example, in video segmen-
tation. predicting a boundary with 1 or 2 frames offset from the human manually
marked boundary is considered as “correct”™. Likewise in text chunking. tagging
only one phrase differently while the rest are unchanged should not give totally
different probability predictions - especially when there are ambiguities. Likewise
in image denoising. changing a pixel’s predicted graylevel (1 to 255) by 1, should
not radically change the probability of the predicted whole image. Thus, because
of the prevalence of non-dominant distributions, we expect that trained models
using a hinge loss to perform poorly on these problems relative to training with

hybrid or log losses.

CONLL2000 Text Chunking

Our first structured estimation experiment is carried out on the CONLL2000
text chunking task®. The data set has 8936 training sentences and 2012 testing
sentences with 106978 and 23852 phrases (a.k.a.. chunks) respectively. The task is
to divide a text into syntactically correlated parts of words such as noun phrases,
verb phrases. and so on. For a sentence with L chunks. its label consists of the
tagging sequence of all chunks, i.c. y = (y'.¥*% ....¥"), where y' is the chunking
tag for chunk 7. As is commonly used in this task. the label y is modelled as a 1D
Markov chain. considering the dependency of adjacent chunking tags (y?.y}" h

*download from http://www.cnts.na.ac.be/conll2000 /chunking /
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Algorithm | Accuracy | Precision | Recall | F1 Score
SVM 94.61 91.23 91.37 91.30
CRF 95.10 92.32 91.97 92.15

Hybrid 95.11 92.35 | 92.00 | 92.17

Table 7.1: Accuracy. precision, recall and F1 Score on the CONLL2000 text

chunking task. Winners are in boldface.

Algorithm | Accuracy | Precision | Recall | F1 Score
SVM 94.64 87.58 88.30 87.94
CRF 95.21 90.07 ‘ 88.89 89.48
Hybrid 95.24 90.12 | 88.98  89.55

Table 7.2: Accuracy, precision, recall and F1 Score on the baseNP chunking task.

Winners are in boldface.

given observation x;. Clearly. the model has exponentially many possible labels.

which suggest that there might be many non-dominant classes.

Since the true underlying distribution is unknown, we train a CRF (using
the feature template from the CRF++ toolkit’ and the CRF code! from Leon
Bottou) on the training set and then apply the trained model to both the testing
and training datasets to get an estimate of the conditional distributions for each
instance. We sort the sentences x; from highest to lowest estimated probability
on the true chunking label y,; given x;. The result is plotted in Figure 7.3, from
which we observe the existence of many non-dominant distributions — about 1/3

of the testing sentences and about 1/4 of the training sentences.

We split the data into 3 parts: training (20%). testing (40%) and validation
(40%). The regularisation parameter A\ and the weight a are determined via
parameter selection using the validation set. The accuracy. precision, recall and
F1 Score on test set are reported in Table 7.2 for various used proportion of the
training set used. As expected, when there is not an abundant amount of data.
the hybrid loss outperforms both the SVM and CRF.

fdownload from http://crfpp.sourceforge.net /
tdownload from http://leon.bottou.org/projects/sgd
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Figure 7.3: Estimated probabilities of the true label Dy (x;) and most likely label
Dy-(x;). Sentences are sorted according to Dy (x;) and Dy (x;) respectively in
ascending order. D = 1/2 is shown as the straight black dot line. About 700
sentences out of 2012 in the testing set and 2000 sentences out of 8936 in the

training set have no dominant class.

baseNP Chunking

This dataset is provided in CRF++ toolkit that is mentioned before. It has 900
sentences in total. The task is to automatically classify a chunking phrase is as
baseNP or not. We split the data and select A and o in the same way as the
above CONLL2000 data. We report the test accuracy. precision, recall and F1
Score in Table 7.2. The hybrid loss/model outperforms SVM and CRF on all

measures.

7.3.3 Joint Image Categorisation

Our final experiment is joint image categorisation. The task is to categorise
pre-segmented image areas by considering their dependency across the image
segments. We use the well-known Corel dataset (Ren and Malik. 2003), which
has 100 images and 7 classes: hippo. polar bear. water. snow. vegetation. ground,
and sky. This is a very challenging task since there are 7" many possible labels
for an image with n segments.

The ground truth segmentations provided from the dataset are used as pre-
segmented object regions. Therefore each image contains one or multiple ob-
jects/regions. We use 56 images for training, and 20 images for testing. The rest

of the images are excluded either because they are too small or because they con-



96CHAPTER 7. HYBRID MODELS ON NLP AND IMAGE CATEGORISATION

Dataset | |Y| | SVM-linear | SVM-RBF | SVM-Struct ' CRF | Hybrid
Corel " 58.62 65.52 ‘ 89.66 86.21 | 89.66

Table 7.3: Tmage object categorisation on the Corel dataset. SVM-Linear: i.i.d. SVM
using Linear kernel. SVM-RBF: i.i.d. SVM using RBF kernel. SVM-Struct: structured
SVM using Linear kernel; CRF: CRF on sparse graph using MAP estimator with LBP

inference. Hybrid: our hybrid model on a sparse graph. Winners are in boldface.

tain too many objects. The graphical model of an image is shown in Figure 7.4,

where each segment is a node and edges capture the adjacency dependence.

Features

Any image with n segments and labels is represented as (x.y) = {(x".y')},.

where the x' and y' are the i-th segment and corresponding label. We assume
that global feature ®(x.y) is decomposed over singleton terms ®;(x’, y'). Vi.1 <
i < n., as well as over pairwise terms ®;;(x’, y'), V(i.j) € A,. where A, is the set

of adjacent segments in x

o ¥ e W
Bl Nrli= g ®;(x",y') + E O (x" ¥y y!). (7.6)
i (i.j)eA
We assume @; is a tensor product of instance and label feature functions, given
by ®;(x.y) = ¢i(x) @ y; where ¢; is the raw node feature depending only on the
observed segmented image. Similarly ®;;(x.y) = ¢4(x) ¢ Yi;» where @;; is the
raw edge feature depending only on the observation. and y" := [y’ y’]. »; and

pi; are assembled from

1 We extract a well known texton feature vector Shotton et al. (2006) from
each patch. hence every pixel is represented by a texton vector. The node
feature for an object is the empirical mean of the texton vector of pixels.

The raw node feature is given by p;(x) = [1 ¢;(x')].

p2 We use the mean of the boosted texton probability density of all interior and
boundary pixels of the objects as their edge feature. The raw edge feature

is given by p;;(x) = [1 wa(x') pa(x7))].

As shown in Figure 7.4, the graphical model is very general. Exactly com-

puting CRF gradients involves computing an expectation that is NP hard. The
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Figure 7.4: An illustration of the image objects. graph and features. (a) The raw
hippo image. (b) The segmentation result. (¢) The objects. (d) Node and edge
features: node feature encodes the object characteristics. while the edge feature

encodes the interaction between nl)jv('ls.

common way is to run approximation such as Loopy Belief Propagation (LBP)
or sampling. We use LBP for CRF here. All structured algorithms use the same
node and edge features. Non-structured algorithms use the node feature only. As
shown in Table 7.4, structured algorithms outperform the non-structured ones as
expected. And it is interesting to see that structured SVM outperforms CRF.
We conjecture that this is because the CRF decision hyperplane becomes less
accurate due to the approximated gradient 2.e.. the expectation of the feature.
Whereas structured SVM needs only an argmax operation which is more efficient

and perhaps more reliable.

7.4 Conclusion

We have provided theoretical and empirical motivation for the use of a novel
hybrid loss for multiclass and structured prediction problems which can be used
in place of the more common log loss or multiclass hinge loss. This new loss

attempts to blend the strength of purely discriminative approaches to classifica-
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tion, such as Support Vector machines. with probabilistic approaches, such as
Conditional Random Fields. Theoretically, the hybrid loss enjovs better consis-
tency guarantees than the hinge loss while experimentally we have seen that the
addition of a purely discriminative component can improve accuracy when data

is less prevalent.
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Chapter 8
Structured Learning Theory

Unlike the well developed statistical learning theory in non-structured cases (es-
pecially binary classification), the learning theory with structured data is still
immature. There is no commonly agreed method of capacity control to explain
or guarantee the performance of these algorithms. The generalisation bounds—
even the recent structured PAC-Bayes bounds——are not yet tight for exponentially
many possible labels. The original Fisher consistency is too coarse a notion to
characterise structured surrogate losses.

In this chapter, we will extend the Fisher consistency to the structured case,
and propose a refined notion to characterise the structured surrogate losses. We
will review the recent development of PAC-Bayes bounds and give a bound on
the generalisation error of a single structured classifier. We will also introduce
Probabilistic margins (P-margins) which take the label distribution into account.
It turns out that many existing algorithms can be viewed as special cases of P-
margins. Hopefully the new alternative concept of margins can help understand

existing algorithms as well as design new algorithms.

8.1 Fisher Consistency

Fisher consistency for classification (FCC) is an important property for algo-
rithms. for it tells whether the algorithms yield the best optimal decision bound-
ary given the entire data population. However. the existing FCC is too coarse

it requires that consistency holds for all data distributions. We will propose a
more refined notion of Fisher consistency, namely Conditional Fisher Consistency
for Classification (CFCC), that takes into account the true distribution of class

labels. We will show how to examine CFCC and how to compute PAC-Bayes
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bounds with an example of a hybrid loss which is CFCC and has a PAC-Bayes

bound.

8.1.1 Losses for Structured Prediction

In classification problems observations x € X are paired with labels y € Y via
some joint distribution D over X x Y. We will write D(x,y) for the joint proba-
bility and D(y | x) for the conditional probability of y given x. Since the labels
y are finite and discrete we will also use the notation Dy (x) for the conditional
probability to emphasise that distributions over Y can be thought of as vectors
in R¥ for k = |Y].

When the number of possible labels & = |Y| > 2 we call the classification
problem a multiclass classification problem. A special case of this type of problem
is structured prediction where the set of labels Y has some combinatorial structure
that typically means & is very large (Bakir et al.. 2007). As seen in Section 7
a variety of problems. such as text tagging and image categorisation. can be

construed as structured prediction problems.

m
=1

Given m training samples S = {(x;.y,)}", drawn i.i.d. from D, the aim of
the learner is to produce a predictor 4 : X — Y that minimises the misclassi-
fication error Rp(h) = Prp[h(x) # y]. Since the true distribution is unknown.
an approximate solution to this problem is typically found by minimising a regu-
larised empirical estimate of the risk for a surrogate loss (. Examples of surrogate
losses will be discussed below.

Once a loss is specified. a solution is found by solving

m

I Z/(f(x,-).yi) +Q(f) (8.1)
=1

;om
where each model f : X — RF assigns a vector of scores f(x) to each observation
and regulariser € f) penalises overly complex functions. A model f found in this
way can be transformed into a predictor by defining h(x) = argmaxy.cy fy(x).
In structured prediction, the models are usually specified in terms of a param-
eter vector w € R" and a feature map ¢ : X x Y — R" by defining f, (x;w) =

\ W.H2 for some choice of

(W, ¢(x.y)) and in this case, the regulariser is Q(f) = 3
A € R. However much of the analysis does not assume any particular parametric
model.

A common surrogate loss for multiclass problems is a generalisation of the

binary class hinge loss used for Support Vector Machines (Crammer and Singer,
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Theorem 17 (PAC-Bayesian bound(McAllester, 2001; Germain et al., 2008))
For any data distribution D, for any prior P and posterior () over w. for any
0 € (0,1], for any loss (. With probability at least 1 — & over random sample S

from D with m instances. we have

KL(Q||P) + n(} Equpi Eqop e2n(RQO-Rs(Q0)?)

2m

R(Q,?) < Rs(Q,¢) + \/

where KL(Q||P) := Ew~o hl(;‘:fz:) is the Kullback-Leibler divergence between ()

and P, and

R(Q.() = Eqpll(x.y:w)], (8.11)
4 b 29
Rs(Q.0) = B 2= (0¥ W) (8.12)

m

5 5 Bt O . : -
(Egepm Egop e2MBQO=Rs(QO)7) is yysually upper bounded by a function indepen-
dent to the data distribution D. For example, for the zero-one loss. it is upper

bounded by m + 1 (see Germain et al., 2008).

8.2.2 PAC-Bayes bounds on Average Classifiers

Langford et al. (2001) give a margin bound on average classifier for binary clas-
sification as follows:

Theorem 18 (Bound on Average Classifier for Binary Classification) For
Y = {—1.1}. for any data distribution D, for any prior P over w. for any w, any

d € (0,1] and for any v > 0. with probability at least 1 — & over random samples

S from D with m instances. we have

Pr <.1/E/,\q[/z(><)] < 0) = Pr (.1/ Epwg[h(x)] < 7)

(x.y)~D(x,y) (x,y)~S

A2 m 4+ lnm + In !
+0 | -

m

Zhu and Xing (2009) later extend it to structured output case for MEDN (see

Section 4.4.3 for its definition), which is still an average classifier.

8.2.3 PAC-Bayes Margin bounds

Here we extend existing PAC-Bayes bounds on Averaging classifiers to a single
classifier such as SVMs or CRFs in the structured output case. Define M(w'.y) =

miny ., (W, ®(x.y) — ¢(x.y’)). then the following theorem holds.
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tured label case (Taskar et al.. 2004: Tsochantaridis et al., 2004). It is known
that the margin has a geometrical interpretation the hyperplane (i.e. the
discriminant function F') separates the correctly and incorrectly labeled data in
the feature space by a large margin. Hence we call it geometrical margin. For

exatple, the hard margin SVMIs is defined as

max vy s.t. (8.13a)
[wl] =1 (8.13h)
Vi,y (w, ®(x;,y;) — D(xi,y)) = 7. (8.13¢)

where 4 > 0. enforces the separability of input-output pairs. To allow outliers,

the soft margin constraint is defined as

max 7y — (‘Z{,- SHi (8.14a)
|wl =1 (8.14b)
Vi,y (W, @(x;,y;) — ®(x;,y)) = v - &- (8.14c)

8.3.2 Probabilistic Margins

As we shall see, these margin constraints haven’'t made use of any information
about how the data is distributed. It is natural to think what we will gain by
making use of the (approximated) distribution of the data Py (y |x). We call any
margins represented in terms of P (y |x) Probabilistic Margins. For simplicity,

we use p(y) to express Py (y | x) when the context of x is clear.

Definition 20 (Feasible sets and P-mapping) The smallest feasible set for
any 'y € Y s {p: ply) = L.p € A(Y)}. ie. the corresponding corner of the
simplex. We denote it as Mx(y). A conver set M, (y) is a feasible set if and
only if there exists [ : A(Y) x Y — M, (y) Vv € R, satisfies:

(Monotonic decrease) M., (y) D M., (y) if and only if v < 7o (8.15)

(Convexity) M, (y) is still conver. (8.16)

Such a H is called P-mapping. We also define

M, =M, (y) (8.17)

yeY



8.3. PROBABILISTIC' MARGINS 109
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Ply=1]x) Ply=1]x) Ply=1}x)

Ply=2[x)
(a) SVMs (b) CRFs (¢) evcle

Ply=2|x) Ply=2[x)

Figure 8.1: Contours of P-margins feasible sets. The green lines are the boundary
of M., on the simplex on selected ~ values. The region with red dots is M, (y = 3)
with the largest 4 value. 3 classes are used for demonstration purposes, although
nothing prevents us from using the structured case. (a) SVMs margin. That
is m2YL ~ ~  ~ = (0.5.1.1.5. (b) Lower bounded CRFs margin. That is

ply*)
Inply) > 7.~ = In(0.6).In(0.7). In(0.8). (¢) Cycle constraint margin. That is
(p(y) = 1)* + X, (P(¥')?) < (1 =7)%.4 = 0.5,0.65.0.8. Red dots are p points
sampled in the feasible set. Due to svmmetry. we only sample from the right half

region of M., and then display sample points symmetrically on both sides.

Intuitively, P-margins can be viewed as getting different contours of the feasible
set via choosing different M.. Thus increasing 5. the feasible set shrinks differ-
ently given different []. On the other hand, one can come up with any contour
of the feasible set, as long as the Monotonic decrease and Convexity hold, it is a
valid P-margin. This is very convenient.

Some P-margins are shown in Fig. 8.1. For example Fig. 8.1a shows that the
contours of SVMs margin feasible sets are parallel to blue bisector lines. Whereas
for Lower Bounded CRFs (LCRFs), the contours are straight lines (see Fig. 8.1b).
What if we want the contours to be evcles centred at each corner as Fig. 8.lc
shows? It turns out that following constraint (p(y)—1 )2+zy,,,y(p(y')2) < (1-9)2

gives exactly what we want.

Definition 21 (Realizable P-margins) A functional p @ A(Y) < Y — B is

called a realizable P-margin if and only if j satisfies:

Vv eR. {p:pe€AMY).ulp.y) >} =Mly)
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Realizable margins have a more intuitive interpretation — p(p,y) is greater than
a certain threshold. It is easy to show that margins for SVMs and LCRFS are

realisable. And the cycle constraint can be rewritten as

i
L= \/(1)()') =12+ > () > %

YEY
thus it is realisable as well.

We now examine two interpretations of the probabilistic margins. The first
relates the p-margin to losses for probability estimation while the second gives
a geometrical interpretation in terms of restrictions of models on probability
simplexes. This second interpretation provides an intuition as to how the margins
act as a capacity control, in a similar way to the way the original, geometric
margin does for classification.

8.3.3 Losses imply P-Margins
Many existing algorithm can then be cast as
TERE e S0 (8.18a)
P
vi,p € M,(y;)- (8.18h)
To allow outliers. a soft margin version is obtained by a relaxed constraint
max~y — C' E £ sait (8.19a)
)
! i
Vi,p € My_e,(y,).& > 0. (8.19D)
For realizable margins. the constraints become
maxy — C E Eio vsd, (8.20a)
)
i i
Vi, p(p,y;) 2 v—§&,& > 0. (8.20b)

Alternatively. it can be written as

m

mpin J(p) == XQp) + ;Ei. S0 (8.21a)
Vi, u(p,y;) = v —&.& >0, (8.21b)

where v is a fixed constant.
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Chapter 9
Summary and Future Directions

In this chapter, we will summarise our contributions and discuss future directions.

9.1 Contribution Summary

In this thesis. we made several contributions some are complete, and some
are at the exploratory stage. We propose hash kernels (in Chapter 2) to facili-
tate efficient kernels (Shi et al., 2009a,b) which can deal with massive multi-class
problems with even more than 7000 classes. We exploit the connection between
hash kernels and compressed sensing, and apply hashing to face recognition which
significantly speeds up the state-of-the-art (Shi et al., 2010a) (in Chapter 3). We
propose a novel approach for automatic paragraph segmentation (Shi et al., 2007)
(in Chapter 5). namely training Semi-Markov models discriminatively using a
Max-Margin method. This method allows us to model the sequential nature of
the problem and to incorporate features of a whole paragraph. We jointly seg-
ment and recognise actions in video sequences with a discriminative semi-Markov
model framework (Shi et al.. 2008, 2009d) (in Chapter 6). A Viterbi-like algo-
rithm is devised to help efficiently solve the induced optimisation problem. We
propose a novel hybrid loss (Shi et al., 2009¢. 2010b) (in Chapter 7) which has the
advantages of both CRFs and SVMs - it is consistent and has a tight PAC-Bayes
bound. We apply it to various applications such as Text chunking, Named En-
tity Recognition and Joint Image Categorisation. We study the recent advances
in PAC-Bayes bounds, and apply them to structured learning (Shi et al., 2009¢,
2010b) (in Chapter 8). Moreover, we propose a more refined notion of Fisher con-
sistency, namely Conditional Fisher Consistency for Classification (CFCC)(Shi

et al.. 2010b), that conditions on the knowledge of the true distribution of class
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o I—1)e—1
next collision is at most %

fixed. Similarly. for the ith duplicate. the probability is

., where 1 is subtracted because the first location is
(I=De—(i=1) t7a o -
T We can upper
bound each term as % implying the probability of all ¢/ duplicates colliding with
other features is at most (le/n)°. The probability that ¢ = ¢ is the probability

. . - . . . . LT ! / ‘ B
that none of the duplicates of f collide, which is ;'—”'—'“T), > ((n—¢)/n). It

~

we pessimistically assume that ¢ < ¢ implies that every duplicate collides with
another feature, then
P{eoll) < Pfeollld’ = ) Ple' =¢) + P(c £ e)
< (le/n)"+1—((I—c)/l).
Simplification gives (le/n) +1—(1—c¢/n)° as claimed. Taking a union bound over

all  features, we find that the probability any feature has all duplicates collide is
bounded by {[L — (1 — ¢/n) + (l¢/n)“]. [ |

Theorem 3 Assume that the probability of deviation between the hash kernel
and its expected value is bounded by an exponential inequality via
=

P HA (x,x) — Ep F/I(X-X/)]

> e} < cexp(—ce’n)

for some constants ¢, ¢ depending on the size of the hash and the kernel used. In
this case the error e arising from ensuring the above inequality, with probability
at least 1 — 0, for m observations and A classes for a joint feature map ®(x.y).

is bounded by

€ < \/(2109,’(/1) +1)+2log(M +1) —logd + loge — 2log 2) /nc'. (A.1)

Proof Apply the union bound to the kernel matrix of size (mM)?, that is, to
all T := m(m + 1)M (M + 1)/4 unique elements. Solving

Tcexp(—ce*n) =6,

we get the bound

< \/l()g (T'e) — l()gfi.

(i)

Bounding log (1¢) from above
log (T'c) =log T +log c < 2log(m + 1) 4+ 2log(M + 1) + log c — 2log 2,

and substituting it into (A.1) yields the result. (]
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since (,(p.1) = £,(q.2) and (,(p.2) = (,(g.1) and the other terms cancel by
construction. As Dy — Dy > 0 by assumption. all that is required now is to show
that €,(q.2) — l,(¢.1) = aln :ﬁ—; +(1—a)(ly(q.2) —y(q. 1)) is strictly positive.

Since ¢, > ¢y for y # 1 we have 111% = fpta2) = ['I _III%L = 1.

and (g(q.1) = [1 —In (‘;—;}T < 1, and so {y(q.2) — €h(g,1) > 1 —1 = 0. Thus,
la(q.2) — {,(g. 1) > 0 as required.

Now suppose that ps = p; is a maximum. In this case we show a slight
perturbation ¢ = (py+€, po—e, ps, .. .. i) vields a lower for € > 0. Fory # 1.2 we
have (1 (p,y)—{(q.y) = 0 and since p, > py and ¢, > ¢y thus (y(p.y)—(u(q.y) =
1—1In ’I')—y +1—In :]/_yl =1n 5 >1-24 = —-=since —Inz > 1 —ur for r € (0,1) and
q¢1 = p1 + € = ps + €. Therefore

(1—a) ;
(u([)~y) i /o(q~)’) B D (BZ)
I
Wheny =1, (,(p.1)—(; (q 1)=—-In f{'—l‘ > ‘“l}% = pL] and (y(p. 1)—{Ly(q. 1) =
(1 —1115:—])) - (1 In Z‘)) = 111 — 111“’:( since p; = po. Thus £y (p. 1) —Lly(q. 1) >
_ pi—€ __ g
e m+< And so
a 21—« _
[(1(])-Y)_((1((1-Y) = € I:—+*J (B})
Pi pPite
Finally, when y = 2 we have {;(p,2) — (1(¢.2) = —In ”-’*’ "’p)"’ = ;—‘ and
Cu(p,2) = lu(q,2) =(1-In2) — (1 - In¥) =1In g ’— = ,;i‘( Thus.
2(1 —
0,(p,2) — a(g,2) > —¢ {i + g} . (B.4)
Pi Py k€

Putting the inequalities (B.2), (B.3) and (B.4) together vields
Lo(p,D) — L,(gq, D)

lim
e—0 €
Q 2(1 — @) . 1 —a
> im0y = Do — o
‘3(1)( 1 2) L)l p1+€ } ; P
D, — D, 1—D; — D,
— ;(2—(1)—;(]—(1)
D1 P1
1

= p—I(D[—D3+(l—(l)(2D|—1))

Observing that since D; > D,, when D, > % the final term is positive without
any constraint on a and when D; < 1 the difference in risks is positive whenever
Dy - D,

a>1— 1_—2[); (B;)



completes the proof. [

Theorem 19 [Generalisation Margin Bound] For any data distribution D. for
any prior P over w. for anv w. any 4 € (0. 1] and for any ~ > 0. with probability
at least 1 — 0 over random samples S from D with m instances, we have

ep < Pr (Eo(M(w',y)) <7)

(x.y)~S

~—2lw]]?

= : 2

In(m|Y|)+Inm+Ind!

m

Proof By choosing the weight prior P(w) = %(*Xp(—%) and the posterior
Q(wW') = %(\xp(—w). one can show e¢p = Prp(Eg M(w',y) < 0) by sym-
metry argument proposed in Langford et al. (2001); McAllester (2007). Applying
the PAC-Bayes margin bound Langford et al. (2001): Zhu and Xing (2009) and

using the fact that KL(Q||P) = lwlP vields the theorem. [ |

)
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