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Abstract 

Vast aiiioiuits of data being generated, liow to proeess massive data remains a 
challenge for machine learning algorithms. We propose hash kernels to facilitate 
efficient kernels which can deal with massive multi-class problems. We show a 
principled way to comi)ute the kernel matrix for data streams and sparse feature 
spaces, ^^e further generalise it via sampling to graphs. Later we exploit the 
connection between hash kernels with compressed sensing, and apply hashing 
to face recognition which significantly speeds up over the state-of-the-art with 
competitive accuracy. And we give a recovery rate on the sparse rei)resentation 
and a bounded recognition rate. 

As hash kernels can deal with data with structures in the input such as graphs 
and face images, the second part of the thesis moves on to an even more chal-
lenging task dealing with data with structures in the output. 

Recent advances in machine learning exploit the dependency among data out-
put, hence dealing with complex, structured data becomes possible. \Ye study the 
most popular structured learning algorithms and categorise them into two c:at-
egories probabilistic approaches and Max Margin approaches. We show the 
connections of different algorithms, reformulate them in the eni])irical risk minimi-
sation framework, and compare their advantages and disadvantages, which help 
choose suitable algorithms according to the characteristics of the application. 

We have made practical and theoretical ccMitributions in this thesis. 

We show some real-world applications using structured learning as follows: 
a) ^^e propose a novel aj^proach for automatic paragraph segmentation, namely 
training Semi-Markov models discriniinatively using a Max-Margin method. This 
method allows us to model the secjuential nature of the problem and to incorpo-
rate features of a whole paragraph, such as paragra])li coherence which cannot 
be used in previous models. 1)) We jointly segment and recognise ac^tions in 
video se(iuen(;es with a discriminative semi-Markov model framework, which in-
corporates features that capture the characteristics on boundary frames, action 



segments and neighbouring action segments. A Viterbi-like algorithm is devised 
to help efficiently solve the induced optimisation i)robleni. c) We jjropose a novel 
hybrid loss of Conditional Random Fields (CRFs) and Supi)ort Vector Machines 
(SVMs). We api)ly the hybrid loss to various ai)i)hcations such as Text chunking. 
Named Entity lU'cognitiim and .Joint Image Categorisation. 

We have made the following theoretical contri])utions: a) We stud\^ the re-
cent advance in PAC-Bayes bounds, and apply it to structured learning, b) We 
propose a more refined notion of Fisher consistency, namely Conditional Fisher 
Consistency for Classification (CFCC), that conditions on the knowledge of the 
true distribution of class labels, c) We show that the hybrid loss has the ad-
vantages of both CRFs and SVMs - it is consistent and has a tight PAC-Bayes 
bound which shrinks as the margin increases, d) We also introduce Probabilistic 
margins which take the label distribution into account. And we show that many 
existing algorithms can be viewed as special cases of the new margin concept 
which may help understand existing algorithms as well as design new algorithms. 

At last, we discuss some future directions such as tightening PAC-Bayes 
bounds, adaptive hybrid losses and graphical model inference via Compressed 
Sensing. 
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Chapter 1 

Introduction 

Machine learning seeks a function that gives a good output from y G y when given 
an input x G X. And the input-output pairs (x, y) are assumed 1.1.D.(independent 
and identically distributed) drawn from a unknown but fixed miderlying data 
distri])ution Pr(x,y). 

1.1 Massive Multi-class 

The output (̂ an be a scalar y representing a class I.D. for a given input x. The 
problem conies when there is a massive number of classes. For exam])le, there 
are 71,000 classes for a website topic categorisation problem shown in Chapter 2. 
Traditional methods fail for the huge demand of conii)utation and memory usage 

for exami)le, multi-class SVMs for the ahove problem need 96.95G memory 
just to store the motlel parameters. 

1.2 Structured Label 

111 many cases, (x. y) are no longer l.I.D. So one often models those correlated ys 
as a structured output y with the assumption that (x. y) are I.I.D. drawn from 
P ( x . y ) . Here the output y can be any object associated with x. For exani])le, 
for an automated paragraph breaking problem, the iiii)ut x is a (k)cunient, and 
the out])ut y is a secjuence whose entries denote the beginning positions of the 
l>aragrai)hs. For image segmentation, the iiijjut x is an n by n) image, and the 
outi)ut y is a 2-D lattice {y''-'} i<i<„;i<j<„,, where y''-̂  denotes class kl of the pixel 
x'--'. The learning is called "structured learning"' when SOUK; interdependency 
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stnicture between (liffcreiit parts of the output is exploited. In this case, the 
output y is no longer a scalar. 

1.2.1 I m p o r t a n c e of s t r u c t u r e d learning 

Structured Learning has gained great success in many fields: bioinforniatics. doc-
ument analysis, computer vision, machine learning, sensor network such as Ac-
tivities Daily living (ADLs) (Park and Kautz. 2008) monitoring and so on. The 
reason that structured learning outperforms the I.I.D learning, is that the former 
is capable of modelling complex dei)endencies of the entries of the output and the 
de])endency does exist in real world applications per^'asively. For example in im-
age segmentation, we know that neighbouring pixels are most likely to belong to 
the same class. Also in human action recognition, we want to predict the current 
action (walking, running, jum])ing, . . . ) at every second. Apparently the current 
action heavily dei)ends on the i)redicted action at the previous second. l)ecause 
the actions at two consecutive seconds are likely to be the same; also there are 
some physical constraints on hmnan nrovement nreaning that it is impossible for 
a human to innnediately switch from a certain action to others. Thus predicting 
the actions jointly for a given time period is better than predicting the action at 
eacdi second separately. 

1.2.2 Difficult ies and Chal lenges 

While structured learning brings superior jjerformance than that of I.I.D. learn-
ing, it brings more difhculties and challenges as well. 

1. Inference is slow: the inference for structured learning is nmch more ex-
pensive than that for I.I.D. learning. For example, for an action seciuence 
with 1000 seconds/frames and 5 actions, there are S''̂ ™ possible label val-
ues. It makes it impossible to enumerate all ])ossible outputs y. whereas in 
I.I.D. learning, regardless of how many seconds the action lasts, there are 
only 5 possible values of y. For a subset of structured learning problems, 
when the output structure is a chain or a tree, dynamic progranrming or 
belief propagation (BP) can exactly infer the ])est possil)le label efficiently 
(linearly in the numl)er of nodes in the structure). For more general struc-
tures like nets, there isn't a known exact polynonrial algorithnr for inference. 
For example, the complexity of the junction tree algorithm is exponential 
in the tree-width. Alternatively, many approximate inference algorithms 
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have been developed, such as loopy belief propagation (LBP) and varia-

tional methods. For some very large graphical models, even a])proxiniation 

methods are too slow. See Lauritzen (1996); .Jordan (2008); Wahiwrigiit 

and .lordan (2003): Bishop (2006) for details. 

2. Ti-aiiiing is slow and often approximation is needed: during train-

ing. some gradient calculation often recjuires inference: in max margin ap-

proaches. finding the most violated example is an inference i^roblem (see 

Section 4.4): In maximmn likelihood a])proaches (see Section 4.3) such as 

conditional random fields. coni])uting the pointwise and pairwise distril)u-

tion is also an inference problem. Ap])roximate inference in loopy graphs 

results in an ai)proximate gradient, which harms the training (see Lauritzen 

(1996); Jordan (2008); Wainwright and .Jordan (2003); Bishop (2006)). 

3. Existing generalisation bounds are loose: despite good experimental 

results of structured learning reported in the literatm-e. there is little known 

about the generalisation bound. This is because the output space is so huge 

that traditional techniques (such as VC dimension, Rademacher bound, 

margin bound, PAC-Bayes bound) yield useless bounds (see Section 8.2): 

for example, the bounds are easily bigger than or nearly 1. 

4. Fisher Consistency might be too coarse to explain real perfor-

mance of the algorithms: many algorithms that are Fisher consistent in 

the I.I.D. binary case are no longer Fisher consistent in the structured out-

put case. Enrpirical studies on those algorithms are controversial - they 

work well in some applications and fail in others. Yet there is little known 

about why they behave this way. We argTie that this is related to their 

Fisher (in)consistency (see Section 8.1). The existhig Fisher consistency 

for classification (FCC) definition is too restrictive - an algorithm is only 

FCC when it is consistent for all data distributions, which is not able to 

provide useful insights. 

1.3 Contribution 

We try to tackle some of the challenges (but not all) as follow^s: 

• hi Chapter 2, we proi)ose hash kernels (Shi et al., 2009a,b) to facihtate 

efficient kernels which can deal with massive multi-class problems with even 
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more than T.OOO classes, due to its ineiuory footprint independence in the 

number of classes. We show a i)rincipled way to compute the kernel matrix 

for data streams and sparse feature spaces. We further generalise it via 

sami)Ung to graphs. 

• In Chapter 3. we exploit the connection between hash kernels and com-

pressed sensing, and apply hashing to face recognition (Shi et al.. 2()l()a) 

which significantly speeds up the state-of-the-art with competitive accin-acy. 

And we give a recovery rate on the sparse representation and a l)ounded 

recognition rate. 

• In Chapter 4. we categorise the most popular structured learning algorithms 

into two categories prol)abilistic approaches and Max Margin approaches. 

And in fact many structured learning algorithms from both categories can 

be viewed in a unified framework. Empirical Risk Minimisation. 

• In Chapter 5. we propose a novel api)roach for automatic paragraph seg-

mentation (Shi et al.. 2007) . namely training Semi-Markov models discrini-

inatively using a Max-Margin method. This method allows us to model the 

secpiential nature of the pro!)lem and to incorporate features of a whole 

paragraph, such as i)aragrai)h coherence which cannot be used in previous 

models. 

• In Chapter 6, we jointly segment and recognise actions in video sequences 

with a discriminative semi-Markov model framework (Shi et a l , 2008. 2()09d). 

which incori)orates features that capture the characteristics on boundary 

frames, action segments and neighboming action segments. A \'iterbi-hke 

algorithm is devised to help efficiently solve the induced optimisation prob-

lem. 

• In Chapter 7. we propose a novel hybrid loss (Shi et al.. 2()09c) of Condi-

tional Random Fields (CRFs) and Support Vector Machines (SVMs). The 

hybrid loss has advantages of both CRFs and S\'Ms it is consistent and 

has a tight PAC-Bayes bound which shrinks as the margin increases. We 

apply the hybrid loss to various ap])lications (Shi et al.. 2010b) such as Text 

chunking. Named Entity Recognition and .loint Image Categorisation. 

• In Chapter 8. we study the recent advances in PAC-Bayes bounds, and 

apply them to structured learning. Moreover, we propose a more refined 
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notion of Fisher consistoncy. namely Conditional Fisher Consistency for 
Classification (CFCC) (Shi et al., 2()10b), that eonchtions on the knowledge 
of trne distribution of class labels. We also introchice Probal)ihstie margins 
which take the label distribution into account. show that many existing 
algcjritlnns can be viewcnl as si^ecial cases of the ntnv margin concc-î t which 
may help miderstand existing algorithms as well as design new algorithms. 



CHAPTER 1. INTRODUCTION 



Part I I 

Hash Kernels 





Chapter 2 

Efficient Hash Kernels 

We propose hashing (Shi et al.. 2()()9a) to facihtate efficdeiit kernels which can deal 
with massive nmlti-class problems, ^^e show a principled way to compute the 
kernel matrix for data streams and sparse feature spaces. We further generalise 
it via sampling to grai)hs (Shi et al., 20091)). 

2.1 Introduction 

In recent years, a number of methods have been i)roposed to deal with the fact 
that kernel methods have slow runtime performance if the number of kernel func-
tions used in the expansion is large. We denote by X the domain of observa-
tions and we assume that CK is a Reproducing Kernel Hilbert Space with kernel 
A' : X X X ^ R. 

2.1.1 Keeping the Kernel Expansion Small 

One line of research (Burges and Scholkopf, 1997) aims to reduce the number of 
l)asis functions needed in the overall function expansion. This led to a number 
of reduced set Support Vector algorithms which work as follows: a) solve the full 
estimation problem resulting in a kernel expansion, b) use a subset of basis func-
tions to approximate the exact solution, c:) use the latter for estimation. While the 
approximation of the full function ex])ansion is typically not very accurate, very 
good generalisation performance is reported. The big problem in this ai)proach 
is that the o])tiniisation of the reduced set of vec^tors is rather nontrivial. 

Work on estimation "on a budget" (Dekel et a l , 200G) tries to ensure that 
this i)roblem does not arise in the first place by ensuring that the number of 
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keni(>l functions used in the expansion never exceeds a given budget or by using 
an ii penalty (Mangasarian. 1998). For some algorithms, for example, binary 
classification, guarantees are available in the online setting. 

2.1.2 Keeping the Kernel Simple 
A second line of research uses variants of sampling to achieve a similar goal. That 
is. one uses the feature map representation 

A'(x.x') = ($(x),<I>(x')). 

Here $ maps X into some feature space 3". This expansion is approximated by a 
mapping $ : X ^ 

I^(x.x') = ( $ ( x ) . $ ( x ' ) ) often $ ( x ) = C $ ( x ) . 

where C G R. Here $ has nrore desirable computational properties than For 
instance. $ is finite dimensional (Fine and Schein])erg. 2001: Kontorovich, 2007; 
Rahimi and Recht. 2008), or $ is particularly sparse (Li et al.. 2007). 

2.1.3 Our Contribution 
Firstly, we show that the sampling schemes of Kontcjrovich (2007) and Rahimi 
and Recdit (2008) can be applied to a considerably larger class of kernels than 
originally suggested - the authors only consider languages and radial basis func-
tions respectively. Secondly, we propose a biased approximation $ of <I> which 
allows efficient computations even on data streams. Our work is inspired by 
the count-min sketch of Cormode and Muthukrishnan (2004), which uses hash 
functions as a computationally efhcient means of randomisation. This affords 
storage efhciency (we need not store random vectors) and at the same time they 
give performance guarantees comparal^le to those obtained ])y means of random 
projections. 

As an application, we demonstrate com])utational benefits over suffix array 
string kernels in the case of document analysis and we discuss a kernel between 
gi-aphs which only becomes computationally feasible by means of a compressed 
representation. 

2.1.4 Outline 
We begin with a description of i)revious work in Section 2.2 and propose hash 
kernels in Section 2.3 which are suitable for data with simple structure such as 
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strings. Analysis follows in Section 2.4. We propose a grai)lilet kernel which 

generalises hash kernels to data with general strnc-tnre—graphs and discuss a 

MCMC sampler in Secti(jn 2.5. Finally we conclude with experiments in Sec-

tion 2.G. 

2.2 Previous Work and Applications 

Recently much attention has been given to efficient algorithms with randomisa-

tion or hashing in the machine learning connnunity. 

2.2.1 Generic Randomisation 

Kontorovich (2007) and Raliimi and R(x:lit (2008) independently propose the 

following: denote ])y c € C a random variable with measure P. Moreover, let 

: ^^ ® l̂ e functions indexed by c G 6. For kernels of type 

A:(x,x') = E,.P,.)[cI>,(x)$,(x')] (2.1) 

an approximation can be obtained by sampUng C = {ci , . . . ,cn} P and ex-

panding 

In other words, we approximate the feature map <:I>(x) by 

$(x) = (cl>e,(x),....$c„(x)) 

in the sense that their resulting kernel is similar. Assuming that <l>c(x)$c(x') 

has bounded range, that is, $c(x)(D'c(x') € [a, a + /?] for all c, x and x' one may 

use Chernoff bounds to give guarantees for large deviations between A'(x, x') and 

A:(x, x'). For matrices of size rn x rri one obtains boinids of type log in) 

by combining Hoeffding's theorem with a imion l)ound argument over the O(m^) 

different elements of the kernel matrix. The strategy has widesi)read applications 

beyond those of Kontorovich (2007) and Raliimi and R(>clit (2008): 

• Kontorovich (2007) uses it to design kernels on regular languages by sam-

pling from the class of languages. 
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• The iiiargiiialised kernels of Tsuda et al. (2002) use a setting identical to 

(2.1) as the basis for coni])arisons between strings and graphs by defining 

a random walk as the feature extractor. Instead of exact computation we 

could do sam])hng. 

• The Binet-Cauchy kernels of Yishwanathan et al. (2007b) use this approach 

to compare trajectories of dynamical systems. Here c is the (discrete or 

continuous) time and P(c) discounts over future events. 

• The empirical kernel niaj) of Scholkopf (1997) uses G = X and employs some 

kernel function K to dehne <I>C(x) = K(C,x). Moreover. P(c) = P(x), that 

is. placing om' sampling points c,- on training data. 

• For RBF kernels. Rahimi and Recht (2008) use the fact that k may be ex-

pressed in the system of eigenfunctions which comnmte with the translation 

operator, that is the Fourier basis 

A-(x.x') = (2.2) 

Here P(»') is a nonnegative measure which exists for any RBF kernel by 

virtue of Bochner's theorem, hence (2.2) can ])e recast as a special case 

of (2.1). \Miat sets it apart is the fact that the variance of the featm-es 

'I'w(x) = is relatively evenly spread. (2.2) extends immediately to 

Fourier transformations on other synnnetry groujjs (Berg et al.. 1984). 

• The conditional independence kernel of W'atkins (2000) is one of the first 

instances of (2.1). Here X. C are domains of Ijiological soKjuences. 4>c(x) = 

P(x|c) denotes the probability of observing x given the ancestor c. and 

P(c) denotes a distril^ution over ancestors. 

While in many cases straightforward sampling may suffice, it can prove disastrous 

whenever <I)c(x) has only a small number of significant terms. For instance, for 

the pair-HM.M kernel most strings c are unlikely ancestors of x and x'. hence 

P(x |c) and P(x' |c) will be negligible for most c. As a consequence the number 

of strings required to obtain a good estinrate is prohibitively large—we need to 

reduce $ further. 

2.2.2 Locally Sensitive Hashing 

The basic idea of randomised projections (Indyk and Motawani. 1998) is that due 

to concentration of measures the inner product (<I>(x). $(x')) can be approximated 



2.2. P R E V I O U S W O B K A N D A P r U C A T I O N S 15 

by Xl-Li (^^"IHx)) efficiently, provided that the (listril)uti()ii generat-

ing the vectors satishes Ijasic regularity conchtions. For exanii)le. Vj ~ I ) 

is sufficient, where I is an identity matrix. This allows one to obtain Chernotf 

l)oiuids and log rn) rates of ap])roximation. where m is the number of in-

stances. Tile main cost is to store Cj and i)erforni the ()(nni) nniltii)ly-a(ids. thus 

rendering this approach too expensive as a preprocessing stej) in many a])plica-

tions. 

Achlioi)tas (2003) ])roposes a random projection ai)proach that uses synmietric 

random variables to project the original feature onto a lower dimension feature 

space. This oi)eration is simple and fast and the author shows it does not sacrifice 

the cjuality of the eml)edding. Moreover, it can be directly applied to online 

learning tasks. Unfortunately, the projection remains dense resulting in relatively 

poor computational and space performance in om' experiments. 

2.2.3 Sparsification 

Li et al. (2007) propose to sparsify $(x) by randomisation while retaining the 

inner products. One problem with this approach is that when performing optimi-

sation for linear fun(;tion classes, the weight vector w which linearly parameterises 

<I)(x/) remains large and dense, thus ol^literating a significant part of the compu-

tational savings gained in sparsifying 

2.2.4 Count-Min Sketch 

Cormode and Muthukrishnan (2004) propose an ingenious method for represent-

ing data streams. Denote by 3 an index set. Moreover, let /; : 3 {1, . . . , / ;} be 

a hash function and assume that there exists a distribution over h such that they 

are pairwise independent. That is, any pair of Ii and Ii' are indei)endent to each 

other. 

Assume that we draw d hash functions //,• at random and let S G R"^'' be a 

sketch matrix. For a stream of symbols s update Sh (̂s)4 + ^ ^̂ ^ 1 ^ 

i < d . To retrieve the (approximate) counts for symbol s' conii)ute niin,-5/1.(8'),i. 

(Hence the name c:ount-niin sketch). The idea is that by storing counts of s 

according to several hash functions we can reduce the i)ro1)abihty of collision 

with another particularly large symbol. Cormode and Muthukrishnan (2004) 

show that only logl/()") storage is recjuired for an e-good approxinration, 

where 1 — d is the conhdence. 
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Connode and Mutliukrisliiiaii (2004) discuss approximating inner prcxhicts 
and the extension to signed rather than nonnegative counts. However, the ])ounds 
degrade for real-vahied entries. Even worse, for the hashing to work, one neerls 
to take the niininmni over a set of inner product canchdates. 

2.2.5 R a n d o m F e a t u r e Mix ing 

Ganchev and Dredze (2008) provide empirical evidence that using hashing can 
eliminate alphabet storage and reduce the number of parameters without severely 
impacting model performance. In addition. Langford et al. (2007) released the 
'"Vowpal Wabbit" fast online learning software which uses a hash rej^resentation 
similar to the one discussed here. 

2.2.6 H a s h Kerne l on St r ings 

We propose a hash kernel (Shi et al.. 20()9a) to deal with the issue of com-
putational efficiency by a very simple algorithm: high-dimensional vectors are 
compressed by adding up all coordinates which have the same hash value—one 
only needs to perfornr as many calculations as there are nonzero terms in the vec-
tor. The hash kernel can jointly hash both labels and features, thus the memory 
footprint is essentially independent of the numl^er of classes used. 

2.3 Hash Kernels 

Our goal is to design a possibly biased approximation which a) ap])roximately 
preserves the inner product, b) which is generally api^licable. c) which can work 
on data streams, and d) which increases the density of the feature matrices (the 
latter matters for fast linear algebra on CPUs and graphics cards). 

2.3.1 Kerne l A p p r o x i m a t i o n 

As before denote by 3 an index .set and let /? : 5 ^ {1 , n} l̂ e a hash function 
that maps d to {1 n} uniformly. Finally, assume that <I>(x) is indexed by 0 
and that we may compute for all nonzero terms efficiently. In this case we 
define the hash kernel as follows: 

I ( x . x ' ) = ($ (x ) .$ (x ' )> with $ ; (x ) = ^ cl),(x) (2.3) 

ie'}Mi)=j 
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We arc accuinulating all coordinates i of (I>(x) for which //(/) generates the same 
valne j into coordinate $ j ( x ) . Our claim is that hashing preserves information as 
well as randomised projections with significantly less coni])utation. Before pro-
viding an analysis let us discuss two key ai)plications: efficient hashing of kernels 
on strings and cases where the number of classes is very high, such as categori-
sation in an ontology. In (2.3) it seems that <I'(x) needs to be pre-computed as 
some feature vector such as term frec^ueucy (Jones, 1972). However, in pra('tic:e 
we no longer need to build up vocal)ulary nor to compute ex])licitly as it 
will be clear in Section 2.6.1. The implementation of hash we used is Murmur 
Hash (Appleby, 2008). However, as long as the hash is good in the sense that 
the hash maps uniformly, it does not matter which one you use. It is just like in 
sampling teclmiciue. it does not matter what random number generator you use. 

2.3.2 Strings 

Denote by X = 3 the domain of strings on some alphabet. Moreover, assume 
that <I)j(x) := A,#j(x) denotes the nunil)er of times the sul)string ? occurs in x, 
weighted by some coefficient A, > 0. This allows us to compute a large fanrily of 
kernels via 

A-(x,X') = ^ A 2 # , ( X ) # , ( X ' ) . (2.4) 
i& 

Teo and Vishwanatlian (2006) propose a storage efficient 0 ( | x | + | x ' | ) time 
algorithm for computing k for a given pair of strings x .x ' . Here | x | denotes 
the length of the string. Moreover, a weighted conil)ination aiA'(x,,x) can be 
computed in 0 ( | x |) time after 0 ( J 2 i ! x, |) preprocessing. 

The l:>ig drawback with string kernels using suffix arrays/trees is that they 
require large amounts of working memory. Ai)proxiniately a factor of 50 addi-
tional storage is required for processing and analysis. Moreover, updates to a 
weighted combination are costly. This makes it virtually impossible to apply 
(2.4) to millions of documents. Even for modest (k)cument lengths this would 
recjuire Terabytes of RAM. 

Hashing allows us to reduce the dimensionality. Since for every document 
X only a relatively small number of terms # i ( x ) will have nonzero values -at 
most 0 ( | x l'-̂ ) but in practice we will restrict ourselves to sul)strings of a bounded 
length / leading to a cost of 0 ( | x | •/) -this can l)e (knie efficiently in a single pass 
over X. Moreover, we can compute <i>(x) as a pre-processing step and discard x 
altogether. 
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N()t(- that this process s])rea(ls out the features aA-ailal)le in a (locuiiient evenly 

over the coorchiiates of $ (x ) . Moreover, note that a similar proeechire can be 

used to obtain good esthnates for a TF/IDF reweighting (Jones. 1972) of the 

counts obtained, thus rendering preprocessing as memory efhcient as the actual 

computation t)f th(> kernel. 

2.3.3 Multiclass Classification 

Classification can sometimes lead to a very high dimensional feature ^^ector even 

if the underlying featTU'e map x ^ <i)(x) may be acce])table. For instance, for a 

bag-of-words representation (Lewis, 1998) of documents with lO' unique words 

and classes this involves up to 10̂  coefficients to store the parameter vector 

directly when i>{x.y) = Cy <S> •I'(x), where 0 is the tensor product and Cy is a 

vector whose y-th entry is 1 and the rest are zero. The dimensionality of By is 

the nTunljer of classes. 

Note that in the above case cl>(x. y) corresponds to a sparse vector which has 

nonzero terms only in the part corresponding to Cy. That is. by using the joint 

hidex (/,y) with $(x.y)(,^y/) = <I>j(x)(5y,y' we may simply apjjly (2.3) to the joint 

index to obtain hashed versitms of multiclass vectors. We have 

^ ( x , y ) = ^ $, (x) . 
ieJ-.b{i,y)=j 

In some cases it may be desirable to coni})ute a compressed version of <I>(x). that 

is, $ ( x ) first and subsequently expand terms with y. In particular for strings 

this can be useful since it means that we need not parse x for every i)otential 

value of y. While this deteriorates the api)roxiniation in an ad(liti^'e fashion it 

can offer significant computational savings since all we need to do is permut(> a 

given feature vector as opposed to performing any sunnnations. 

2.3.4 Streams 

Some features of observations arrive as a stream. For instance, when performing 

estimation on graphs, we may obtain properties of the graph by using an MCMC 

sampler. The advantage is that we need not store the entire data stream but 

rather just use sunnnary statistics obtained l)y hashing. 



2.4. ANALYSIS 19 

2.4 Analysis 

W'e show that the peiiahy we incur from using hashing to compress the number 
of coor(hnates only grows logaritkmiailly with the number of observations in and 
witli th(> number of classes M. which will be shown in Theorem o. While we are 
iniable to obtain the excellent rates offered by the comit-min sketch, our 
approach retains the inner product property thus making hashing accessible to 
linear estimation. 

2.4.1 Information Loss 

One of the key fears of using hashing in machine learning is that hash collisions 
harm performance. When a collision occurs, information is lost, which may reduce 
the achievable performance for a predictor. 

Definit ion 1 (Information Loss) A hash function h causes informatton loss on a 
distribution D with a loss function L if the expected minimum loss before hashing 
is less than the expected minimum loss after hashing: 

f 9 

Redundancy in features is very helpful in avoiding information loss. The 
redundancy can be explicit or systemic such as might be exi)ected with a bag-
of-words or substring representation. In the following we analyse explicit redun-
darrcy where a featme is mapped to two or more values in the space of size n. 
This can be implemented with a hash function by (for example) appending the 
string i G { 1 , . . . , c} to feature / and then computing the hash of / o ? for the 
/-th duphcate. 

The essential observation is that the information in a feature is only lost if all 
duplicates of the feature collide with other featiu'es. Given this observation, it's 
unsurprising that increasing the size of n by a constant nmltiple c and duplicating 
features c times makes c:olhsious with all featru'es unlikely. It 's perhaps more 
surprising that when keeping the size of n constant and duplicating features, the 
proba])ility of information loss can go down. 

Theorem 2 For a random, function mapping I features duplicated c times into 
a space of size n, for all loss functions L and distributions D on n features, the 
probability (over the random, function) of no information loss is at least: 

1 - /[I - {1 - c/ny + [Ic/n] 
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For the ])r(>()f see Api^eiidix A. 
To see the iinplieatioiis eoiisider I = 10'̂  and n = 10®. Without (hiplic:atioii. a 

birthday paradox cohisioii is virtually certain. However, if c = 2. the ])robability 
of information loss is l)()unded by about 0.404. and for c = 3 it droi)s to about 
0.0117. 

2.4.2 Rate of Convergence 
As a first step note that any convergence l)ound only depends logarithmically on 
the size of the kernel matrix as follows. 

T h e o r e m 3 Assume that the probability of deviation between the hash kernel and 
its expected value is bounded by an exponential inequality via 

> e < cexp(—c e n 

for some constants c, c' depending on the size of the hash and the kernel used. In 
this case the error e arising from ensuring the above inequality, with probability 
at least 1 - for m observations and M classes for a joint feature map <[>(x. y), 
is bounded by 

e < \/(2 log(n; + 1) + 2 log(.'\/ + 1) - log ^ + log c - 2 log 2)/nc'. 

For the ])roof see Ap])endix A. 

2.5 Graphlet Kernels 
Denote by G a graph with vertices V{G) and edges E{G). Several methods have 
been proposed to perform classification on such graphs. Most recently. Przulj 
(2007) proposed to use tlie distribution over graphlets. that is. subgra])hs. as a 
characteristic' property of the graph. Unfortunately, brute force evaluation does 
not allow calculation of the statistics for graphlets of size more than .5. since the 
•ost for exact computation scales exponentially in the graphlet size. 

In the following we show that sani])hng and hashing can l)e used to make the 
analysis of larger subgraphs tractaWe in practice. For this denote by 5 C G an 
induced subgraph of G. obtained by restricting ourselves to only V{S) C V{G) 
vertices of G and let #siG) be the ntunl)er of times 5 occurs in G. This suggests 
that the feature map G ^ where <I>s(G) = # s ( G ) will induce a useful 
kernel: adding or removing an edge { i . j ) only changes the properties of the 
subgraphs using the pair {i. j) as part of their vertices. 

c 
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2.5.1 Counting and Sampling 

Dei)eii{ling on the application, the (listril)ntion over the eonnts of snbgraphs may 
l)e signihcantly skewed. For instance, in sparse graphs we expect the fnlly discon-
nected snl)grai)hs to Ix- considc-rably ov(M-n î)res(>nt(Hl. Lik(nvis(\ whentwer w<̂  are 
dealing with almost complete grai)hs. the distribution may be skewe<l towards the 
other end {i.e., most sul)graphs will l)e complete). To deal with this, we impose 
weights /5{k) on subgraphs containing k edges [^^(S)!. 

To deal with the computational complexity issue together with the issue of 
reweighting the graphs S we simply replace explicit counting with sampling fronr 
the distribution 

P(S\G) = c{Gm\E{S)\) (2-5) 

where c{G) is a normalisation constant. Samjjles from P(5'|G') can be obtained 
by a Markov-Chain Monte Carlo approach. 

L e m m a 4 The follovjing MCMC sampling procedure has the stationary distribu-
tion (2.5). 

1. Choose a random vertex, say i G V{S) uniformly. 

2. Add a vertex j from, G\Si to S^ with probability c{Si,G)p{\E{Sij)\). 

Here Si denotes the subgraph obtained by removing vertex i from, S, and Sij is the 

result of adding vertex j to Si. 

Note that sampling over j is easy: all vertices of G which do not share an edge 
with Si occur with the same probability. All others depend only on the number 
of joining edges. This allows for easy conrputation of the normalisation constant 
c{S,,G). 
P r o o f We may encode the sampling rule via 

T{S,,\S.G) ^ jc{S„G)/3{\E{S.j)\) 

where c{Si, G) is a suitable normalisation constant. Next we show that T satisfies 
the detailed balance eciuations (Gilks et al., 1995) and therefore can be used as a 
proposal distribution with acceptance; prol)abihty 1. 

T{S,,\S,G)P{S) _ k-^c{S„G)P{\E{Si,)\)c{Gm\E{S) 
= 1. 
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This follows since Sijj = S,- and likewise Sijj^ = S. That is. adding and removing 
the same vertex leaves a graph nnchangcd. ® 

In snmmar>-, we obtain an algorithm that will readily draw samples 5 from 
P(,9|r7) to chararterise G. 

2.5.2 Dependent Random Variables 

The problem with sampling from a MCMC procedure is that the random vari-
ables are dependent on each other. This means that we cannot simply appeal 
to Chernoff bomids when it conies to averaging. Before discnssing hashing we 
briefly discnss averages of dependent random variables: 

Definition 5 (Bernoulli Mixing) Denote by Z a stochastic process indexed by 
t G Z with probability m.easure P and let E„ be the a-algebra on Zf with t € 
Z\1 r? - I. Moreover, denote by P_ and P+ the probability measures on the 
negative am.d positive indices t respectively. The mixing coefficient 13 is 

l3{n.Px) snp 
A€T.n 

P ( . 4 ) - P _ x P + { . 4 ) 

If linin-^ocPin.Pz) = 0 we say that Z is 13-rnixing. 

That is. (3{n,Px) measures how much dependence a secjuence has when cutting 
out a segment of length n. Nobel and Dembo (1993) show how such nhxing 
processes can be related to iid observations. 

Theorem 6 Assume that P is ^-mixing. Denote by P* the product measure ob-
tained from . . . P( X P,+i . . . Moreover, denote by the a-algebra on Z„. Z2n, 
Then the following holds: 

sup \P{A)-P*{A)\<W{t).P). 

This allows us to obtain bounds for exi^ectations of variables drawn from P rather 
than P*. 

Theorem 7 Let P be a distribution over a domain X and denote <I> : X 
a feature map into a Hilbert Space with ($(x),$(x')) e [0.1]. Moreover, assume 
that there is a l3-mixing MCMC sampler ofP with distribution P-'^'"^ from which 
we draw I observations x,>, with an interleave of n rather than sampling from P 
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(liTectly. Averages with, respect to P^"- satisfy the followiny with prohabiHty at 
least 1 — 

x~P(x ) 
< ) + 

] ' 2 + • /l'^"- -
E [ < i ) ( x ) ] - - y ci)(x,„ 

I ^—' 2=1 Vl 

P r o o f Theorem 6, the homul on ||<I)(x)||, and the triangle meqnahty imply that 
the expectations with respect to P^'"' and P* only differ by //3. This establishes 
the first term of the bound. The second term is given by a uniform convergence 
result in Hilbert Spaces from Altim and Sniola (2006). • 

Hence, sami)hng from a MCMC samjiler for the purpose of approximating inner 
products is sound, provided that we only take sufficiently independent samples 
{i.e., a large enough n) into account. The translation of Theorem 7 into bomids 
on inner products is straightforward, since 

I (x. y) - (x', y') I < ||x - x'll ||y|| + \\y - y'\\ |lx|| + ||x - x'|| \\y -y'\\. 

2.5.3 Hashing and Subgraph Isomorphism 

Sampling from the distribution over subgraphs S e G has two serious problems 
in practice which we will address in the following: firstly, there are several graphs 
whicdi are isomori)hic: to each other. This needs to be addressed with a graph 
isomorphism tester, such as Nauty (McKay. 1984). For graphs up to size 12 this 
is a very effective method. Nauty works by constructing a lookup tal)le to match 
isoniori)liic objects. 

However, even after the graph isomorphism mapping we are still left with a 
sizeable nmnber of distinct objects. This is where a hash map on data streams 
comes in handy. It obviates the need to store any intermediate results, such as 
the gra])hs S or their unique rejiresentations obtained from Nauty. Finally, we 
combine the convergence bounds from Theorem 7 with the guarantees available 
for hash kernels to obtain the approximate graph kernel. 

Note that the two randomisations have very different i)ur])oses: the sampling 
over graphlets is done as a way to approximate the extraction of features whereas 
the c:ompression via hashing is carried out to ensure that the representation is 
computationally efficient. 
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Data Sets #Ti'ain #Test #Labels 

RCV l 781.265 23,149 2 

DMOZ L2 4.466.703 138,146 575 

DMOZ L3 4.460.273 137.924 7.100 

Table 2.1: Text data set.s. # X denotes the mmil)er of observations in X. 

2.6 Experiments 

To test the efficacy of onr a]:)]:)roach we ap])lied hashing to the following prob-

lems: first we nsed it for classification on the Renters RCV l data set (Lewis 

et al., 2004) as it has a relatively large featin'e dimensionality. Secondly, we ap-

plied it to the DMOZ ontology (see Section 2.6.2) of topics of webpages* where 

the nnniber of topics is high. The third experiment Biochemistry and Bioin-

formatics Graph Classification nses onr hashing scheme, which makes comparing 

all possible subgraph pairs tractaljle. to compare graphs (Vishwanathan et al., 

20()7a). On publicly available data sets lil^e MUTAG and PTC as well as on 

the biologically inspired data set DD used Vishwanathan et al. (2007a). our 

method achieves the best known accuracy. 

In both RCVl and DMOZ. we use linear kernel SVM with stochastic gra-

dient descent (SOD) as the workhorse. We apply our hash kernels and ran-

dom projection (Aclilioptas. 2003) to the SGD linear SVM. We don't a])ply tlie 

approach in Raliimi and Recht (2008) since it requires a shift-invariant kernel 

A:(x.x') = A-(x-x'), such as a RBF kernel which is not apphcable in this ca.se. 

In the third experiment, existing randomisation a])proaches are not apphcable 

since enumerating all possible subgraphs is intractable. Instead we compare hash 

kernels with existing graph kernels: random walk kernel, shortest path kernel and 

graphlet kernel (see Borgwarch et al. 2007). 

2.6.1 Reuters Articles Categorisation 

We use the Reuters RCV l binary classificati(m data set (Lewis et al.. 2004). 

781,265 articles are used for training by stochastic gradient descent (SGD) and 

23,149 articles are used for testing. Conventionally one would build a bag of 

words representation first and calculate exact term frecjuency / inverse document 

freciiiency (TF/IDF) counts from the contents of each article as features. The 

*D.M()Z L2 denotes noii-pareiit topic data in the top 2 levels of the topic tree and D.MOZ 

denotes non-parent tojnc data in the top 3 levels of the tojjic tree. 
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Algorithm Pre TrainTest Error % 

BSGD 303.60s 10.38s 6.02 
V W 303.60s 87.03s 5.39 
V W C 303.60s 5.15s 5.39 
HK Os 25.16s 5.60 

Tal)le 2.2: Runtime and error on RCVl . BSGD: Bottou's SGD. VW: Vowpal 
\\al)bit without cache. VWC: Vowpal Wabbit using cache file. HK: hash kernel 
with feature dimension Pre: preprocessing time. TrainTest: time to load 
data, train and test the model. Error: misclassification rate. Apart from the 
efficacy of the hashing operation itself, the gain in speed is also due to a multi-
core implementation hash kernel uses 4-cores to access the disc for online hash 
feature generation. For learning and testing evaluation, all algorithms use single-
core. 

problem is that the TF calculation needs to maintain a very large dictionary 
throughout the whole process. Moreover, it is ini])ossible to extract features on-
line since the entire vocabulary dictionary is usually unobserved during training. 
Another disadvantage is that calculating exact IDF requires us to preprocess all 
articles in a first pass. This is not possible as articles such as news may vary 
daily. 

However, it suffices to compute TF and IDF approximately as follows: using 
hash features, we no longer recjuire building the l)ag of words. Every word pro-
duces a hash key which is the new dimension index of the word. The frecjuency 
is recorded in the dimension index of its hash key. Therefore, every article has 
a frequency count vector as TF. This TF is a muc;h denser vector which requires 
no knowledge of the vocaljulary. IDF can be approximated by scanning a smaller 
part of the training set. 

We compare the hash kernel with Leon Bottou's Stochastic Gradient Descent 
SVMt (BSGD), Vowpal Wabbit (Larigford et al., 2007) (VW) and Random Pro-
jections (RP) (Achlioptas, 2003). Our hash scheme is generating features (mline. 
BSGD is generating featm-es offline and learning them online. V W uses BSGD's 
preprocessed features and creates further features online. Caching speeds up V W 
considerably. However, it reciuires one run of the original V W code for this pur-
I)ose. RP uses BSGD's prej^rocessed features and then creates the new projected 

tCode can be foiuul at http://leon.bottou.org/projects/sgd. 
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Alg. Dim Pre Ti-aiiiTest orgTrainSize newTrainSize Error % 
28 748.:i0s 210.23s 423.29M1) 1393.65M1) 29,:35% 

RP 2« 1079.30s 393.46s 423.29Mh 2862.90Mb 25.08% 
910 1717.;30s 860.9F)s 423.29M1) 5858.48Mb 19.86% 
98 Os 22.82s N/A N./A 17.00% 

HK •2" Os 24.19s .X/A .X/A 12..32% 
210 Os 24.41s N'/A N/A 9.93% 

Tahle 2.3: Hash kernel vs. randoin projections with vario\is feature (hmensional-
ities on R C V l . RP: random projections in Achhoptas (2003). HK: hash kernel. 
Dim: (hmension of the new features. Pre: preprocessing time. TrainTest: thne to 
load data, train and test the model. orgTrainSize: compressed original training 
feature file size. newTrainSize: compressed new training feature file size. Error: 
misclassification rate. ^7A : not applicable. In hash kernel there is no prepro-
cessing step, so there are no original/new feature files. Features for hash kernel 
are built up online via accessing the string on disc. The disc access time is taken 
into account in TrainTest. Note that the TrainTest for random projection time 
increases as the new feature dimension increases, whereas for hash kernel the 
TrainTest is almost independent of the feature dimensionality. 

lower dimension features. Then it uses BSGD for learning and testing. We com-
pare these algorithms on RCVf in Table 2.2. RP is not inchuled in this table 
because it would be intracta])lc to run it with the same feature dimensionality as 
HK for a fair comparison. As can be seen, the preprocessing tinre of BSGD and 
V W is considerably longer compared to the time for training and testing, due to 
the TF-IDF calculation which is carried out offline. For a fair comparison, we 
measure the time for featiu'e loading, training and testing together. It can also 
l)e seen that the speed of online feature generation is considerable compared to 
disk access. Table 2.2 shows that the test errors for hash kernel. BSGD and V W 
are competitive. 

In table 2.3 we compare hash kernels to RP with different feature dimensions. 
As we can see. the error reduces as the new feature dimension increases. However, 
the error of hash kernel is always much smaller (by about fO%) than RP given 
the same new dimension. An interesting thing is that the new feature file created 
after applying RP is much bigger than the original one. This is ])ecause the 
projection maps the original sparse feature to a dense feature. For example, when 
the featm-e dimensionality is 2'". the compressed new feature file size is already 
5.8G. Hash kernels are nnich more efhcient than RP in terms of speed, since to 
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Dim #Uiiique Collision % Error % 
2-24 285014 0.82 5.586 

278238 3.38 5.655 
920 251910 12.52 5.594 
21.S 17477G 3U.31 5.655 
2i() 64758 77.51 5.763 
214 1G383 94.31 6.096 

Tal)le 2.4: Infiuciice of now cliiiieiisioii on Reuters (RCVl) on collision rates 
(reported for both training and test set coniljined) and error rates. Note that 
there is no noticeable performance degradation even for a 40% collision rate. 

compute a hash feature one recjuires only hashing operations, where rf,,, 

is the number of non-zero entries. To compute a RP feature one recjuires (){dn) 
o])erations. where d is the original feature dimension and and n is the new feature 
dimension. With RP the new feature is always dense even when v is big. which 
further increases the learning and testing runtime. When dnz < d such as in text 
processing, the difference is significant. This is verified in our experiment (see 
Ta))le 2.3). For example, a hash kernel (including P r e and Trai i iTest ) with 2^° 
feature size is over 100 times faster than RP. 

Furthermore, we investigate the influence of the new feature dimension on the 

misclassification rate. As can be seen in Table 2.4, when the feature dimension 

decreases, the collision and the error rate increase. In particular, a dimen-

sion causes almost no collisions. Nonetheless, a 2'® dimension which has almost 

40% collisions performs eciually well on the same problem. This leads to rather 

memory-efficient implementations. 

2.6.2 DMOZ Websites Multiclass Classification 

In a second experiment we perform topic categorisation using the DMOZ topic, 

ontology. The task is to recognise the topic of websites given the short descriptions 

provided on the wel^pages. To simplify things we categorise only the leaf nodes 

(Top two levels: L2 or Top three levels: L3) as a fiat classifier (the hierarchy 

could easily be taken into account by adding hashed features for each part of the 

path in the tree). This leaves us with 575 leaf topics on L2 and with 7100 leaf 

topic;s on L3. 

Conventionally, assuming M classes and / features, training M ditterent pa-
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HLF (228) HLF (22^) HF no hash U base P base 
error nieni error nieni error uieni nieni error error 

L2 30.12 2G 30.71 0.12.5G 31.28 2.25G (213) 7.85G 99.83 85.05 
L3 52.10 2G 53.36 0.125G 51.47 1.73G (2'5) 96.95G 99.99 86.83 

Tal )k 2.5: Misclassificatioii and iiionnory footprint of hashing and basehne meth-

ods on D M O Z . HLF: joint hashing of labels and featnres. HF: hash features only, 

no hash: direet model (not implemented as it is too large, hence onh ' memory 

estimates - we have 1.832.704 uni(iue words). U base: baseline of uniform classi-

her. P base: baseline of majority vote, mem: memory used for the model . Xote : 

the memory footprint in HLF is essentially independent of the nunrber of classes 

used. 

HLF KNN Kmeans 
928 924 S - 3% 6 % 9% S = 3% 6% 9 % 

L2 69.88 69.29 50.23 52.59 53.81 42.29 42.96 42.76 
L3 47.90 46.64 30.93 32.67 33.71 31.63 31.56 31.53 

Table 2.6: Accuracy comparison of hashing. K X X and Kmeans. HLF: joint 

hashing of labels and features. K X X : apply K Xearest Xeighbor on sanipl<>d 

training set as search set. Kmeans: apply Kmeans on sampled training set to do 

clustering and then take its majority class as predicted class. S is the sample size 

which is the percentage of the entire training set. 

rameter vectors w requires 0{MI) storage. This is infeasible for massively niul-
ticlass applications. However, by hashing data and labels jointly we are able to 
obtain an efficient joint representation which makes the inii)lementati(ni compu-
tationally ])ossible. 

As can be seen in Table 2.5 joint hashing of features and labels is very at-

tractive in items of memory usage and in many cases is necessar>- to make large 

multiclass c;ategorisation computationally feasible at all (naive online S V M ran 

out of memory) . In particular, hashing features only produces worse results than 

joint hashing of labels and features. This is likely due to the increased collision 

rate: we need to use a smaller feature dimension to store the class dependent 

weight vectors exi)hcitly. 

Xext we compare hash kernel with K Xearest Xeighljour ( K X X ) and Kmeans. 

Running the naive K X X on the entire training set is verv slow^. Hence we in-

tln fact the complexity of KNX is 0{N x T). where N and T are the size of the training set 
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Data Algorithm D im Pre Ti-aiiiTest Error % 

RP 2'̂  779.98s 1258.12s 82.06% 

RP 2^ 1496.22s 3121.66s 72.66% 

L2 
RP 2-' 2914.85s 8734.25s 62.75% 

L2 
HK 2" Os 165.13s 62.28% 

HK Os 165.63s 55.96% 

HK 29 Os 174.83s 50.98% 

RP 794.23s 18054.93s 89.46% 

RP 2« 1483.71s 38613.51s 84.06% 

L3 
RP 

HK 

2" 

2^ 

2887.55s 

Os 

163734.13s 

1573.46s 

77.25% 

76.31% 

HK 2« Os 1726.67s 71.93% 

HK 2" Os 1812.98s 67.18% 

Table 2.7: Hash kernel vs. random j)rojections with varions feature dimensional-

ities on DMOZ. RP: random projections in Achhoptas (2003). HK: hash kernel. 

Dim: dimension of the new features. Pre: preprocessing time—generation of 

the random projected features. TrainTest: time to load data, train and test the 

model. Error: misclassihcation rate. Note that the TrainTest time for random 

projections increases as the new feature dimension increases, whereas for hash 

kernel the TrainTest is almost independent of the feature dimensionality. Mov-

ing the dimension from 2® to 2® the increase in processing time of RP is not 

hnear--we suspect this is because with 2® the RP model has 256 x 7100 x 8 bytes 

« 14MB. which is small enough to fit in the CPU cache (we are using a 4-cores 

cpu with a total cache size of 16MB), while with 2^ the model has nearly 28MB, 

no longer fitting in the cache. 

troduce sampling to KNN. W-'e first sample a subset from the entire training set 

as search set and then KNN classific:ation. To match the scheme of KNN. we 

use sampling in Knieans too. Again we sample from the entire training set to 

do clustering. The number of clusters is the nnnimal number of classes which 

have at least 90% of the documents. Each test example is assigned to one of th(> 

clusters, and we take the majority cdass of the c:luster as the predicted label of 

the test example. The accuracy plot in Figure 2.1 shows that in both DMOZ L2 

and L3, KNN and Knieans with various sample sizes get test accuracies of 30% to 

and the testing set. We estimate the rnnning time for the original KNN. in a l)atch processing 

manner ignoring the data loading time, is ronghly 44 days on a PC witli a '.i.2Gllz C|)u. 
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Figure 2.1: Test accuracy comparison of KNX and Kmeans on DMOZ with var-

ious sample sizes. Left: results on L2. Right: resuhs on L3. Hash kernel (2^®) 

resuh is used as an upper bomid. 

20% less than the upper bound accuracy achieved l)v hash l^ernel. The trend of 

the KNN and Kmeans accm-acy curve suggests that the bigger the sample size is. 

the less accuracy increment can be achieved by increasing it. A numerical result 

with selected sample sizes is reported in Table 2.6. 

also compare hash kernel with R P with various feature dimensionalities 

on D\K)Z. Here R P generates the random projected feature first and then does 

online learning and testing. It uses the same 4-cores implementation as hash 

kernel does. The numerical result with selected dimensionalities is in Ta])le 2.7. 

It can be seen that hash kernel is not only much faster but also has nnich smaller 

error than R P given the same feature dimension. Note that both hash kernel 

and R P reduce the error as they increase the feature dimension. However. R P 

can't ac:hieve a competitive error compared to what hash kernel has in Table 2.5. 

simply because with large feature dimension R P is too slow the estimated run 

time for R P with dimension 2'^ on DMOZ L3 is 2000 davs. 

Furthermore we investigate whether such a good niisclassification rate is olv 

tained by predicting well only on a few dominant topics. reorder the topic his-

togram in accordance to ascending error rate. Figure 2.2 shows that hash kernel 

does very well on the first one hundred topics. They c:orrespond to easy categories 

such as language related sets ••Workl/Itahano"';'\\brkl/Japanese'',"'W()rl(l/Deuts('lf' 
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Figure 2.2: Left: results on L2. Right: results on L3. Top: frequency coiuits 
for topics as reported on the training set (the test set distribution is virtually 
identical). We see an exponential dec:ay in counts. Bottom: log-covnits and error 
probabilities on the test set. Note that the error is reasonal)ly evenly distril)uted 
among the size of the classes (besides a numl>er of near empty classes which are 
learned perfectly). 

2.6.3 Biochemistry and Bioinformatics Graph Classifica-

tion 

For the final experiment we work with graphs. The benchmark data sets we 
used here contain three real-world data sets: two niolec:ular compounds data 
sets, Del)nath et al. (1991) and PTC (Toivonen et al., 2003), and a data set for 
protein function prediction task (DD) from Dobson and Doig (2003). In this work 
we used the milabeled version of these graphs, see, for example. Borgwardt et al. 
(2007). 

All these data sets arc made of sparse graphs. To capture the struc:ture of 
the graphs, we sampled connected subgrai)hs with varying number of nodes, from 
n = 4 to n = 9. Wc used graph isomorphism techniciues. implemented in Nauty 
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D a t a Sets RW SP GKS GK HK HKF 

MUTAG 0.719 0.813 0.819 0.822 0.855 0.8G5 

PTC 0.554 0.554 0.594 0.597 0.G06 0.635 

DD >24h >24h 0.745 >24h 0.799 0.841 

Table 2.8: Classification accuracy on graph benchmark data sets. RW: random 

walk kernel. SP: shortest path kernel, GKS = graphlet kernel sampling 8497 

graphlets. GK: graphlet kernel enumerating all graphlets exhaustively. HK: hash 

kernel. HKF: hash kernel with feature selection. '>24h' means c:omputation did 

not finish within 24 hours. 

Feature Ah Selection 

STATS ACC AUG ACC AUG 

MUTAG 0.855 0.93 0.865 0.912 

PTG 0.606 0.627 0.635 0.670 

DD 0.799 0.81 0.841 0.918 

Tal)le 2.9: Non feature selec;tion vs feature selection for hash kernel. All: all 

features. Selection: feature selection; ACC: accuracy: AUG: Area under ROG. 

(McKay, 1984) to obtain a canonically-labeled isoniorph of each sanrpled su1)-

graph. The feature vector of each example (graph) is composed of the number 

of times each canonical isoniorph was sampled. Each graph was sampled 10000 

times for each of r? = 4. 5 . . . 9. Note that the number of connected unlabeled 

graphs grows exponentially with the number of nodes, so the sampling is ex-

tremely sparse for large values of n. For this reason we normalised the c:ounts so 

that for each data set each feature of <I>(x) satisfies 1 > <I)(x) > 0. 

compare the proposed hash kernel (with/without feature selection) with 

random walk kernel, shortest i)ath kernel and graphlet kernel on the benchmark 

data sets. From Table 2.8 we can see that the hash kernel even without fea-

ture selection still significantly outperforms the other three kernels in terms of 

classification accuracy over all three benchmark data sets. 

The dimensionality of the canonical isoniorph representation is (juite high 

and many features are extremely sparse, a featm'e selection step was taken that 

removed features suspected as non-informative. To this end. each feature was 

scored by the absolute vale of its correlation with the target. Only features with 

scores above the median were retained. As can be seen in Table 2.9 feature 

selection on hash kernel can furthermore improve the test accm'acy and area 
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umler R O C . 

2.7 Conclusion 

111 this cliaptor we showcxl that hashing is a coiiiputatioiiahy attractive teeh-

iiiciue which ahows one to approximate kernels for very high chnieiisioiial settings 

efhciently by iiieans of a sparse projection into a lower diinensional space, hi 

particular for inulticlass categorisation this makes all the difference in terms of 

being able to implement problems with thonsaiKls of classes in practice on large 

amounts of data and features. 
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Chapter 3 

Efficient Face Recognition via 
Hashing 

Face recognition often suffers from high diniensionahty of tlie images as well as 
the large amonnt of training data. Typically, face images/features are mapped to 
a much lower dimensional space {e.g., via down-sampling, or linear projection), 
in which the important information is hopefully preserved. Classification models 
are then trained on those low-dimensional features. Recently, Wright et al. (2008) 
propose a random ii minimisation approach on sparse representations, which ex-
ploits the fact that the sparse representation of the training image index spac'e 
helps classification and is robust to noise and occlusions. However, the i i min-
imisation in Wright et al. (2008) has computational complexity where 
d is the number of measurements and n is the size of the training image set. 
This makes computation expensive for large-scale datasets. Moreover, a large 
dense random matrix with size of d l)y n has to be generated beforehand and 
stored during the entire processing ])eriod. propose hashing to facilitate face 
recognition, which has complexity of only (){d:ii). Evaluated on the YaleB dataset 
(Georghiades et a l , 2001). the proposed method is n\) to 150 times faster than 
the method in Wright et al. (2008). We further show an efficient way to compute 
the hashing matrix implicitly, so that the procedure is potentially applicable to 
online computing, parallel computing and emlxxlded hardware. 

In sunnnary, our main contributions include: 

• We discover the connection between hashing kernels and comjjressed sens-
ing. Existing works on hash kernels (Shi et al., 20()ya.l): Weinberger et a l , 
2009) use hashing to perform feature reducition with theoretical guaran-
tees that l(>arning in the reduccxl feature spac(> gains nnich computational 
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l)ower without any noticeable loss of accnn'acy. The deviation hound and 

Radeniacher margin bound are independent to the line of conijiressed sens-

ing. Whereas we show the other side of the coin hashing can actually 

be viewed as a measurement matrix in compressed sensing, which exi)lains 

why there is asymi)totically no information loss. Also we provide both a 

theoretical guarantee and empirical evidence that recovering the original 

signal is possible. 

• We apply hashing in the context of coni])ressed sensing to rapid face recogni-

tion due to sparse signal recovery. Our experiments show that the proiK)sed 

method achieves competitive ac:curacies compared with (if not better than) 

the state-of-the-art in Wright et al. (2008): Yang et al. (2007). Yet the 

proposed hashing with orthogonal matching pursuit is much faster (up to 

150 times) than Wright et al. (2008); Yang et al. (2007). 

• We further present bounds on hashing signal recovery rates and face recog-

nition rates for the proposed algorithms. 

We Iniefly review the related work in Section 3.1, and then introduce two 

variants of hashing methods for face recognition in Section 3.2. The theoretical 

analysis in Section 3.3 gives justification to our methods, and experimental results 

in Section 3.4 demonstrate the excellence of the proposed methods in practice. 

3.1 Related work 

Given the abundant literature on face recognition, we only re^'iew the work closest 

to ours. 

3.1.1 Facial features 

Inspired by the seminal work of Eigenface (Turk and Pent land, 1991) using prin-

cipal component analysis (PGA), learning a meaningful distance metric has been 

extensively studied for face recognition. These methods try to answer the ques-

tion that which features of faces are the most informative or discriminative for 

identifying a face from another. Eigenface using PGA. Fisherface using linear 

discriminant analysis (LDA). Laplacianface using locality i^reserving projection 

(LPP) (He et al., 2005) and nonnegative matrix factorization all belong to this 

category. These methods project the high-dimeiisional image data into a low-

dinrensional feature space. The main justihcation is that typically the face spac:e 
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has a inucli lower (liinoiisioii than the image space (represented by the number of 
pixels in an image). The task of recognizing faces can be performed in the lower-
dimensional face spac-e. These methods are eciuivalent to learn a Mahalanobis 
distance as discussed in Weinberger and Saul (2009). Therefore algorithms such 
as large-margin nearest neighbor (LMXX) (Weinberger and Saul. 2009) can also 
be aj^plied. Kernelised subspace methods such as kernel PCA and kernel LDA 
have also been aj^plied for l)etter performances. 

3.1.2 Compressed sensing 

Compressive sensing (CS) (Donoho, 2006; Candes et a l . 2006) addresses that if a 
signal can be compressible in the sense that it has a sparse representation in some 
basis, then the signal can be reconstructed from a limited number of measure-
ments. Several reconstruction approaches have been successfully presented. The 
typical algorithm in Candes et al. (2006) is to use the so-cahed minimisation 
for an approximation to the ideal non-convex io minimisation. Yang et al. (2007); 
Wright et al. (2008) apply CS to face recognition, that is, randomly mapping the 
down-sampled training face images to a low dimensional space and then using 
minimisation to reconstruct the sparse representation. The person identity can 
then be predicted via the minimal residual among aU candidates. Unfortunately, 
ii minimisation for large matrices is expensive, which restricts the size of the 
dataset and the dimensionality of the features. 

3.1.3 Hash kernels 

Ganchev and Dredze (2008) provide empirical evidence that using hashing can 
eliminate alphabet storage and reduce the number of parameters without severely 
deteriorating the performance. In addition. Langford et al. (2007) release the 
Vowpal Wabbit fast online learning software which uses a hash representation 
similar to the one discussed here. We propose a hash kernel (Shi et al., 2()()9a) to 
deal with the issue of computational efficiency by a very simple algorithm: high-
dinrensional vectors are compressed by adding up all (coordinates which have the 
same hash value - one only needs to ])erforni as many cakuilations as there are 
nonzero ternrs in the vector. The hash kernel can jointly hash both label and 
features, thus the memory foot])rint is essentially independent of the number of 
classes used. Shi et al. (2009b) further extend this approach to structured data. 
Weinberger et al. (2009) propose an unbiased hash kernel which is applied to a 
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large scale application of mass personalised spam filtering. 

3.1.4 Connection between hash kernels and compressed 
sensing 

Previous works on hash kernels use hashing to perform feature reduction with 

a theoretical guarantee that learning in the reduced featru'es space gains much 

computational power without any noticeable loss of accuracy. The de\-iation 

bound and the Radeniacher bound show that hash kernels have no information 

loss asymptotically due to the internal feature redundancy. 

Alternatively, we can view hashing as a nreasurement matrix (see Section 3.3.2) 

in compressed sensing. \\e provide both theoretical guarantees in Section 3.3 and 

empirical results in Section 3.4 to show that recovering the original signal is pos-

sible. Thus hash kernels compress the original signal/feature in a recoverable 

way. This explains why it works well asynrptotically in the context of Shi et al. 

(2()09a.b); \\einberger et al. (2009). 

3.2 Hashing for face recognition 

We show in this section that hashing can be applied to face recognition. 

3.2.1 Algorithms 

Consider face recognition with n frontal training face images collected fronr K G N 

subjects. Let n/,. denote the munber of training images (x i . c , ) with Ci = k. thus 

the total number of training images ri = n^. \\'ithout loss of generality, we 

assmne that all the data have lieen sorted according to their labels and then we 

collect all the vectors in a single matrix A with rn rows and n colunms. given by 

A = X i . . . . . x „ , , . . . , x „ ] e (3.1) 

As in Yang et al. (2007); Wright et al. (2008). we assume that any test image 

lies in the subs])ace spanned by the training images belonging to the same person. 

That is for any test image x . without knowing its label information, we assume 

that there exists a = (q'i.Q2. such that 

X = A a . (3.2) 
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It is easy to sec that if each subject has the same number of images in the dataset, 
then the a for each sul)ject has maximahy 1 /K portion of nonzero entries, hi 
practice, a is more sparse since often only a small subset of images from the same 
subjects have nonzero coefficients. 

Yang et al. (2007) and \\Tight et al. (2008) use a ramkmi matrix R € 1''-'" to 
map Act. where d rn. and seek a by following (li minimisation: 

n i m J I X - + (3.3) 

where A := RA. x := Rx and A is the regulariser controlling the sparsity of a . 
However, they did not provide a theoretical result on the reconstruction rate and 
the face recognition rate. We show both of oiu' algoritlnns in Section 3.3. 

3.2.2 Hashing with 

Computing R directly can be inefficient, therefore we propose hashing to fa-
cilitate face recognition (see Figure 3.1). Denote by lis{j,d) a hash function 
lis : N —> { 1 , . . . , (i} vmifornrly, where s € { 1 , . . . , 5 } is the seed. Different seeds 
give different hash functions. 

Given Ihijid), the hash matrix H = (Hij) is defined as 

^ 2 / / , ( J , 2 ) - 3 . hs{j,d) = zyse{h...,S} 
1 0, otherwise. 

Apparently. Hjj G {(), ± 1 } . Eciually likely ±1 result in an unbiased estimator (see 
Weinberger et al. (2009)). Let $ := H A = (<1)̂ ) G M'̂ -". We look for a by 

min||a|| ĵ subject to ||x - < f, (3.5) 

where x = Hx. Hashing with ii is illustrated in Algorithm 1. 

3.2.3 Hashing with Orthogonal Matching Pursuit 

Tropp and Gilbert (2007) propose Orthogonal Matching Pursuit (OMP) which 
is faster than minimisation but recjuires more nreasurenients than does Ci for 
achieving the sanre precision. Eciuipped with hashing. OMP (see Algorithm 2) 
is nmch faster than random-^). randoni-OMP. and hashing-f] without significant 
loss of accuracy. It is known that OMP has complexity (){dn). Hashing-OMP is 
faster than random-OMP due to the sparsity of the hash matrix H (see a sparse 
H in Figm-e 3.2). 
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Algori thm 1 Hasliiiig-£'] 
Input: a image matrix A for K subjects, a test image x G M"' and an error 
tolerance e. 
Com])ute X and 
Solve the ccmvex oi)tiniisation problem 

nun a subject to ||x - < (3.6) 

Compute the residuals '/^(x) = ||x - for k = 1 K. where a''' is 
the subvector consisting of the components of q corresponding to the basis of 
class k. 
Output: identity c* = argmin^, r/,.(x). 

(a) (b) 

Figure 3.1: Demonstration of the recognition procedure of Hashface+^i. (a) is 
the test face; (b) is the training faces corresponding to the 10 largest weighted 
entries in a . the absolute values of their weights are shown on the inrages in red. 

3.2,4 Efficiency of C o m p u t a t i o n and M e m o r y Usage 

For randoni-^i. the random nratrix R needs to be computed beforehand and 
stored throughout the entire routine. When the training set is large or the feature 
dimensionality is high, computing and storing R are exi^ensive especially for 
dense R. We will show now with hashing. H no longer needs to be computed 
beforehand explicitly. For example $ and x can be directly computed as follows 
without computing H. 

E ( E M s t 
l<s<S \<t<m:h,(t.d)=i 

(3.8) 
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Figure 3.2: Deinoiistration of a hash matrix. The area with green color ineaiis the 

entry's vahie is 0, brown indicates vahie —1 while blue indicates 1. Best viewed 

in color. 

A l g o r i t h m 2 Hashing-OMP 

I n p u t : a image matrix A for A' subjects, a test image x G M"'. 

Compute X and 

Get OL via OMP procedure 

a = ( ) M P ( x . $ ) (3.7) 

Compute the residuals ^ . ( x ) = ||x - for A' = 1 , . . . , K. where a^ is 

the subvector consisting of the components of a- corresponding to the basis of 

class k. 

O u t p u t : identity c* = argmin^, rt.(x). 

where 
^ f i, K{t,2) = 2 

— 1. otherwise. 

l<s<S l<j<m:hs{j,d)=i 

(3.9) 

It means for even very large image set, hashing with OMP (hashing-OMP) can 

still be implemented on hardware with very limited memory. 

3.3 Analysis 

In this section, we show that hashing can be used for signal recovery, which is 

the principle behind the application to face recognition. We further give a lower 
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bound on its face recognition rate under some mild assumptions. 

3.3.1 Restricted isometry property and signal recovery 

A //-dimensional real Milued signal is called //-sparse if it has at most // many 
nonzero components. The fohowing Restricted Isometry Property (RIP) (Candes 
and Tao, 2005; Candes, 2008) provides a guarantee for embedding a high dimen-
sional signal into a lower dimensional space without suffering a great distortion. 

Definition 8 (Restricted Isometry Property) LctA^ he an rri x n matrix and 
let T] < n he an integer. Suppose that there exists a constant /3 such that, for every 
rn X rj suhrnatrix <I>r, of $ and for every vector x, 

+ (3.10) 

Then, the matrix $ is said to satisfy the q-restricted isometry property with re-

stricted isometry constant e. 

Baraniuk et al. (2007) i)roves that the RIP holds with high probability for some 
random matrices by the well-known Jolmson-Lindenstrauss Lemma (see Bara-
niuk et al. (2007) for detail). The main difference is that Jolmson-Lindenstrauss 
Lemma concerns finite many points whereas RIP concerns all (infinite many) 
points. With RIP. it is i)ossible to reconstruct the original si)arse signal by ran-
domly conrbining the entries by the following theorem (Tropp and Gilbert. 2007; 
Candes aird Tao. 2005; Rudelson and Veshynin, 2005). 

Theorem 9 (Recovery via Random Map) For any ri-sparse signal a G K" 
and two constants Z1.Z2 > 0, let m > 2:i//log(r(///), and draw rn row vectors 

r], r„i independently from the standard Gaussian distribution on R". Denote 

the stacked vectors { r J ™ j as the matrix R e M'" - " and take m measurements 
Xi = (r^, q ) , i = 1 . . . . , ??7 , i.e., x = R q . Then with probahility at least l — 
the signal a can be recovered via 

a* = argniin ||x - R q ; | | 1 -F A||q||£,. (3.11) 
o G M " 

The condition on m in the theorem above conies from the RIP condition. This 

immediately leads to following corollary when recovery is on a specihc: basis A. 
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Corollary 10 (Recovery on a Specific Basis) For any ij-sparse signal a E 
R" and two constants Z^,Z2 > 0, let d > zir}\og{u/t]), and draw d row vectors 
rj, r^ independently from the standard Gaussian distribution on M'". Denote 

the stacked vectors {rjj '^, as the m.atrix R e R''^"'. For any matrix A G R™'" 
with unit l( v.gth columns, with prohabihttj at least 1 - r" --"', the signal o can k 
recovered via 

= argmiii||Rx- (RA)a||| + (3.12) 
aeR" 

For the proof see Appendix A. 

3.3,2 Recovery with hashing 

Can one reconstruct the signal via hasliing ratlier than Gaussian random map-
ping? The answer is affirmative. Achlioptas (2003) constructs an embedding 
with the property that all elements of the i)rojection matrix U belong in { ± 1 , 0 } 
and shows that suc-h an embedding has a .Johnson-Lindenstrauss Lennna type 
of (hstance preservation property. Due to uniformity, a hashing matrix H with 
S = d IS such a projection matrix U ignoring scaling. Since the distance preser-
vation property implies RIP (Baraniuk et al.. 2007), signal recovery still holds i)y 
replacing the gaussian matrix with U, and it leads to the corollary below. 

Corollary 11 (Hashing ii Recovery) For any rj-sparse signal a e M" and 
two constants Zi,Z2 > 0 depending on e, given hash matrixYi, let d > 2]r/log(r;/r/), 
for any matrix A G R"''", with probability at least 1 — /̂̂ g signal a can 
be recovered via 

a* = argmin ||Hx - (H A)cx\\% + (3.13) 

Here the big O notation is to take scaling into account. 
Tropp and Gilbert (2007) show that the OMP recovery theorem holds for 

all admissible measurement matrices suc:h as Gaussian random matrices and 
Bernoulli random matrices. Applying OMP to the hashing matrix H. we get 
the following theorem: 

Theorem 12 (Hashing O M P Recovery) For any ij-sparse signal a G R" 
and confidence d > 0, given hash matrix H, let d > IC//̂  log(n/f)), for any ma-
trix A G R™'", take the measurements such that Hx = (HA)q. Then with 
probability at least 1 - d, the signal « can be recovered via Algorithm 2. 

For the proof see Appendix A. 
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3.3.3 Recognition rates 
A cominoiily used assumption is that any test face image can be represented as a 
weighted sum of face images belonging to the same person, which has been used 
in Wright ct al. (2008): Yang et al. (2007). Ideallv. (mce we achiev(> th(- exact 
weights, the classification should be perfect. However, because the similarity of 
human face appearance and noise, it is no longer true. So we propose a weakencxl 
assumption below. 

Assumption 13 There exists a high dimensional representation in the training 
face images index space, in v^hich the classification can he conducted with recog-
nition rate at least q. 

The following theorem provides bounds on the recognition rate for any test 
image via hashing. 

Theorem 14 (Recognition Rate via Hashing) The recognition rates via Al-
gorithm 1 and 2 are, at least (1 - and (1 - 5)q, respectively, under 
Assumption 13. 

Proof We know that with probability at least 1 - signal can be 
recovered via Corollary 11. With Assumption 13, we know that even the 
portion of not-perfectly-recovered signals are all niisclassified, the classification 
accuracy is still greater than or equal to ( 1 S i m i l a r l y for Algorithm 2. 

Note that the bound in the above the x)rem is possible to further tighten by 
salvaging the portion of not-perfectly-recovered signals for classification. Indeed, 
predictions on those signals are usually not conii)letely wrong. 

3.4 Experiments 
To com])are the pro])osed hashing approaches with random-fj (Yang et al.. 2007: 
Wright et a l , 2008). we use the same datal)ases. namely, the Extended YaleB and 
AR as used in Wright et al. (2008). The Extended YaleB database (Georghiades 
et al.. 2001) contains 2.414 frcmtal-face images from 38 individuals. The cropped 
and normalised 192 x 1G8 fac;e images were captured under various labcjratory-
controhed lighting conditions. Each subject has 62 to 64 images. Thus we ran-
domly select 32. 1.5, 15 of them (no repetition) as the training, validation and 
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testing sets. The AR database consists of over 4, ()()() front images for 126 individ-
uals. Eac:h individual has 26 images. The pictures of each individual were taken 
in two different days (Martinez and Benavente. 1998). Unlike Extended YaleB. 
the faces in AR contain more variations such as illumination change, expressions 
and facial disguises. 100 subjects (50 male and 50 female) arc selected randonih'. 
And for each individual, 13, 7 and 6 images (sinc:e there are 26 images in total for 
each individual) are chosen as training, validation and testing set respectively. 

3.4,1 Comparisons on accuracy and efficiency 

We run the experiment 10 times on each method and report the average accuracy 
with the standard deviations (STD) as well as the running time. In each round we 
run the experiment, the databases are split according to above scheme and differ-
ent algorithms are performed on the sanre training, validation and test data set. 
The number of hash functions L is tuned via model selection assessed on the val-
idation set. Given a feature dimension Dim in the reduced feature space. L is the 
rounded up hiteger of ux Dim. For hashing-^i u G {0.02,0.04,0.06, ...0.38.0.40} 
and for hashing-OMP u G {0.05,0.10,0.15, ...0.95.1.00}. The error tolerance £ 
for random-£i is fixed to 0.05 which is identical to the value adopted in Yang 
et al. (2007). 

We evaluate our methods and the state-of-the-arts on the YaleB and AR 
databases shown in Table 3.1. The best accuracies are highlighted in bold. As we 
can see, when Dim = 300, hashing-£i gets the best accuracies on both datasets. 
An example is given in Figure 3.3. Figure 3.3 (d) (e) show that the hashing-^j 
weight vector is more si)arse than random-^]. We conjecture that the sparsity is 
a distinct pattern for classification, which may help to improve the performance 
as observed in Shi et al. (2()09b). Overall, hashing has competitive accm'acy with 
random-^i. 

Hashing-OMP is significantly faster than randoni-£'i (from 30 to 150 times 
shown in Table 3.2). This is further verified in Figure 3.4, which shews that as 
the feature dimensionality increases, the nuniing time of hashing-OMP is almost 
constant whereas that of randonr-^i increases dramatically. In real world appli-
cations. the speed of the algorithms is a big issue. Hence we further conii)are 
hashing-OMP with randoni-£i by restricting their running time t(j the same level. 
This way, hashing-OMP gets nnich better accuracies than random-/'i shown in 
Table 3.3. In fact, one may further improve the hashing-OMP accuracy l)y in-
creasing the feature diniensi<jnahty. for Figure 3.4 suggests that the running time 
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DIM-50 DI.M-100 DIM-200 DI.M-300 

H A S I I - O M P 0.G58 ± 0.063 0.778 ± 0.066 0.937 ± 0.032 0.969 ± 0 . 0 1 9 

R A N D O M - O M P 0.689 ± 0.077 0.784 ± 0 . 0 6 0 0.835 ± 0.036 0.908 ± 0.034 

E I G E N - O M P 0.449 ± 0 . 1 3 1 0.449 ± 0 . 1 1 2 0.606 ± 0.068 0.671 ± 0.040 

HASII-^I 0.727 ± 0 . 0 6 4 0.915 ± 0.037 0.961 ± 0.029 0.985 ±0.013 

AR 
RANDOM-^] 0.8.55 ± 0.047 0.915 ± 0 . 0 4 2 0.929 ± 0.028 0.958 ± 0.016 

AR 
EIGEN-^1 0.705 ± 0.094 0.751 ± 0.061 0.758 ± 0.035 0.806 ± 0.050 

E I G E \ - K X X 0.500 ± 0 . 1 0 2 0.537 ± 0 . 1 0 1 0.555 ± 0.097 0.558 ± 0.096 

FISHER-KNN 0.740 ± 0.045 0.920 ± 0.026 0.977 ± 0 . 0 1 1 0.981 ± 0 . 0 1 1 

E I G E N - S V M 0.903 ±0.048 0.959 ±0.021 0.976 ± 0 . 0 1 7 0.979 ± 0 . 0 1 1 

FISHER-SVM 0.896 ± 0.043 0.953 ± 0.020 0.979 ±0.013 0.980 ± 0 . 0 1 2 
H A S I I - O M P 0.806 ± 0.057 0.856 ± 0.050 0.939 ± 0.022 0.964 ± 0.016 

R A N D O M - O M P 0.821 ± 0.059 0.908 ± 0.039 0.945 ± 0.033 0.944 ± 0 . 0 2 9 
E I G E N - O M P 0.289 ± 0.075 0.669 ± 0.078 0.882 ± 0.053 0.911 ± 0 . 0 4 8 

HASH-^1 0.899 ± 0.030 0.951 ± 0.021 0.977 ± 0 . 0 1 7 0.982 ±0.013 

YaleB 
RANDOM-/:'] 0.928 ±0.036 0.966 ±0.018 0.980 ±0.017 0.979 ± 0 . 0 1 6 YaleB 

EIGEN-^I 0.822 ± 0.072 0.911 ± 0 . 0 4 9 0.936 ± 0.037 0.945 ± 0.036 
E I G E N - K N X 0..589 ± 0.101 0.662 ± 0 . 1 0 9 0.702 ± 0 . 1 0 0 0.714 ± 0 . 0 9 6 
FISHER-KNN 0.891 ± 0.050 0.920 ± 0.038 0.948 ± 0.029 0.954 ± 0.030 
E I G E N - S V M 0.890 ± 0.063 0.919 ± 0.041 0.940 ± 0.036 0.953 ± 0.029 
FISHER-SVM 0.880 ± 0.068 0.913 ± 0 . 0 4 0 0.939 ± 0.035 0.948 ± 0.031 

Table 3.1: Comparison on accuracy for Hashiiig-OMP. Raii(loni-£j and Eigen-f'i 
(using Eigenface). On both datasets. Hasliing-^j acliicvcs the best classification 
accuracy for Dim = 300. When the dimensionality is low. sparse re])]'esentation 
])ased algorithms do not perform as well as SVM. 
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Dim-50 Dim-100 DIM-200 Dim-300 

AR 

Hash-OMP 
Random-OMP 

Eigen-OMP 
Hasu-^'I 

Rani)OM-£i 
Eigen-^1 

11.55 ± 0 . 2 2 
12.05 ± 0.2a 
12.45 ± 0.24 
714.55 ±2.0fi 
814.;55 ± 5.44 
751.95 ± 7.10 

24.8 ± 0 . 1 7 
80.25 ± 0.93 
77.25 ± 0.32 
1740.5 ± 12.00 
2270.95 ± 10.28 
2G37.9 ± 37.68 

78.25 ± 0 . 4 1 
812.55 ±0 .74 
299..55 ± 1.54 
6125.85 ± 99.22 
11266 ± 73.18 
8758.3 ± 132.26 

101.15 ± 1 . 3 4 
1323.45 ± 2.00 
422.1 ±2 .03 
15718.!) ±290.25 
31731 ± 292.63 
196:^2.9 ± 477.55 

YaleB 

Hash-OMP 
Random-OMP 

Eigen-OMP 
Hasii-^i 

Random-^! 
Eigen-£i 

10.05 ± 0 . 0 2 
10.75 ±0 .18 
10.8 ± 0 . 1 9 
724.45 ± 2.53 
823.25 ± 5.63 
742.55 ± 5.42 

67.4 ± 0 . 8 0 
74.3 ±0 .11 
75 ± 0.30 
1713.3 ± 14.69 
2401 ± 19.56 
2006.6 ± 38.53 

61.45 ± 0 . 3 4 
944.25 ± 0.53 
190.65 ± 0.49 
5191.9 ± 120.27 
8655.6 ± 71.23 
4621.65 ±143.30 

138.05 ± 0 . 2 4 
2944.45 ± 2.90 
291.35 ±0 .78 
9.536.8 ±311.48 
21887.8 ± 164.97 
8444.65 ± 273.76 

Table 3.2: Comparison on the nnining tinie(nis) for Hashing-OMP. Randoni-^i 
and Eigen-£i. Hasliing-OMP is faster than other methods. 

Hash-OMP 10.05 ± 0.020 46.65 ± 2.394 85.4 ±3.891 340.95 ± 4.080 
Runtime(ms) Random-^i N / A 58.35 ±1.152 97.15 ±7.926 329.4 ± 2.480 

Hash-OMP 0.658 ± 0.063 0.687 ± 0 . 0 6 0 0.835 ± 0 . 0 3 7 0.998 ± 0 . 0 3 4 

Accuracy Random-^1 N / A 0.0571 ±0.010 0.2 ± 0.047 0.653 ± 0.068 
Hash-OMP 50 85 180 1000 

Dimension Random-^i N / A 5 10 25 

Table 3.3: Comparison on accuracies given running time constraints for Hashing-
O M P and Randoni-£i on AR. "Dimension" shows the dimensionality under which 
the two approaches could achieve similar running speed. '"Running time" shows 
the real running times that should be similar to each other for a certain running 
speed. N / A means that it was impossible to achieve that speed. 

curve for hashing-0\IP is almost flat. 

3.4.2 Predicting via a 

Algorithm 1 uses the residuals to predict the label. Alternatively we can learn 
a classifier on the sparse q- directly. To investigate this, we estimated a- via 
Algorithm 1 {i.e., minimisation) on the test set and the validation set of the 
AR dataset. Then we split the union of the two sets into 10 folds. We ran 10 fold 
cross-validation (8 for training, 1 for testing, and 1 for validation) with SVM. 
We used both the original q- and the normalised one denoted as nqo.i], which 
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(<1) (e ) 

Figure 3.3: The eoinparison of the recognition procedure of Hashing -i^ and 
Random-^] on YaleB. (a) is the test face; (1)) and (c) are the top 10 weighted 
training faces for random-^] and hashing-^] resi)ectively. The absohite vahie of 
the weights are shown in red (view in color): (d) and (e) are the bar charts 
corresponchng to the absohite vahie of top 100 largest weighted entries in the 
weight a for randoni-^'i and hashing-^] res])ectively. 

is normalised to [0,1], Because a has both positive and negative entries, the 
normalisation step introduces many nonzero entries to ojq j j . As we can see in 
Table 3.4 and Table 3.1, when Dim = 50. SVM on a or Q [ o , i j gets better results 
than hashing-OMP and hashing-('i. When Dim > 100 hashing-OMP and beat 
SVM. The experiment suggests that when the feature dimensionality is low {e.g. 
< 50), predicting via a is a good idea; when the feature dimensionality is high, 
predicting via residuals is better. 

3.5 Conclusion 

We have proposed a new fac-e recognition methodology with hashing, which speeds 
up the state-of-the-art in Wright et al. (2008) by up to 150 times, with comparable 
recognition rates. Both theoretical analysis and experiments justify the excellence 
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X 10 

100 200 300 400 500 600 700 800 900 1000 

Figure 3.4: The running time ciu'ves of Hasliing-OMP and Random-^i on AR. 

The horizontal axis represents the diniensionahty and the vertical axis is the 

running time in nis. 

Dim 50 Dim 100 Dim 200 Dim 300 

Ac:curacy on a 

Accuracy on qjo. i] 

0.865 ± 0.006 

0.853 ± 0.006 

0.876 ±0.010 

0.877 ± 0,011 

0.875 ± 0.007 

0.878± 0.007 

0.835 ± 0.009 

0.849 ± 0.010 

Table 3.4: Test accurac:y via predicting on a on AR dataset with 10 fold cross-

validation. 

of the i^roposed method. 

As hashing can deal with data with structm'es in the in])ut such as grajjhs 

and face images, the next part of the thesis moves on to an even more challenging 

task dealing with data with structures in the output. 
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Part I I I 

Structured Learning in Practice 





Chapter 4 

Structured Learning Background 

In this chapter, we will explain the backgronnd of strnctnred learning inchuling 
some basic notions and some popnlar existing methods. And the methods here 
are not onr contribntions. 

4.1 Structured Label 
Previons chapters assnme that (x. -̂ ) are I.I.D. However, in many cases, (x, y) 
are no longer I.I.D. Strnctured labels are used to deal with these cases. One 
often models those correlated ys in a structured output y with the assuni})tion 
that (x, y) are I.I.D. drawn from P(x. y). Here the output y can be any object 
associated with x. For example, for automated paragraph breaking ])robleni, the 
input X is a docmnent. and the output y is a secjuence whose the entries denote 
the beginning positions of the paragraphs. For image segmentation, the input x 
is an n by m image, and the output y is a 2-D lattice {y''"'}i<i<n;i<j<7/M where 
y''-'' denotes class id of the pixel x'^. The learning is called "structured learning" 
when some interdependency structure between different parts of the output is 
exploited. In this case, the output y is no longer a scalar. 

The dependencies within y are often modelled as directed grai)hs. undirected 
graphs and factor graphs. In this thesis, we mainly focus on midirected graphi-
cal models for their rich representations of potentials and features potentials 
do not need to be normalised locally. And we categorise the most popular struc-
tured learning algorithms into two categories probabilistic approaches and Max 
Margin ai)proaches. The pro])abilisti(: approaches estimate the underlying data 
distribution, hence recjuire an expensive normalisation step or computing an ex-
pectation of features. And the Max Margin api)roaches estimate a discriminative 
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function directly, often recjuiring only an argniax operation which is connnonly 
done via dynamic progrannning. The two types of approach have their own ad-
^-antages and disadvantages which we will discuss for each algorithm. It will be 
seen that many algorithms from both categories can be viewed in a unified frame-
work. Empirical Risk Mhhniisation (ERM) (Guyon et a l . 1992: Sliawe-Taylor 
et al.. 1996). 

4.2 Empir ical Risk Minimisat ion 

Many machine learning algorithms are essentially minimising a regularised em-
pirical risk functional. That is. one would like to solve 

min J ( w ) := AO(w) + Re,np{w). 
w 

1 
where /?e„,p(w) •= — ^ '(x;, y,-. w) 

is the empirical risk and ( x i , y j ,(x„,.y,„) G X x y is the training sample 
t)f input-out]nit pairs and w is a parameter vector. The model complexity is 
controlled by regulariser A12(w) (with A > 0). which usually is (])iecewise) dift'er-
entiable and cheap to compute. For instance, let the regulariser = ^H w 
and the loss £(x,. y,-, w) be the binary hinge loss, [1 - y (w.x,)]+. we recover the 
soft margin linear SVM. 

Solving the ERM problem, we learn a disc:riniiuant function F G : X — y 
over input-output pairs from which we can derive a prediction by maximising F 
over the response variable y for a given ini)ut x. That is. 

H (x; w) = argniax F(x . y: w). 
y€y 

Throughout the thesis, we assume the i)robleni we are dealing with has structured 
output y e y, of which the binary class and niulticlass are just special cases. 

4.3 Probabi l is t ic Approaches 

Among probabilistic approaches, two princi])les are nrost connnonly used - Max-
innnn a Posteriori (MAP) principle and Maximum Entropy (ME) principles. As 
we shall see, many probabilistic ap])roaches adoj^t one of the two princii)les with 
s(mie additional assumptions and constraints. 
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4.3.1 Maximum a Posteriori and Maximum Entropy Prin-
ciples 

M a x i m u m a Poster ior i A likelihood function £ ( w ) is the modelled prol)al)il-
ity or density for the occurrence of a sample conhj^uration (X j . y , ) (x ,„ .y ,„ ) 
given the probabilit,y density Pw paranieterised l)y w. That is. 

Maxinnun a Posteriori (MAP) estinrates w by maximising C{w) tinres a prior 
P{w). That is, 

w* = argniax£(w)P(w) . (4.1) 
w 

Assuming {(x,-, yj)}i<i<„j are I.I.D. samples from Pw(x. y) , (4.1) becomes 

w* = argniax 
w 

= argmin ^ - l n P w ( x , - , y J - InP(w) . 

P w ( x , . y J P ( w ) 
<i<m. 

w , , • , 

Maximum Likelihood (ML) is a special case of MAP when P ( w ) is uniform. Al-
ternatively, one can replace the joint distribution P w ( x , y ) by the conditional 
distribution Pw(y I x) that gives a discrinrinative model called Conditional Ran-
dom Fields (CRFs) whic:h will be introduced in Section 4.3.3. 

M a x i m u m Entropy ME estimates w by maximising the entropy. That is, 

w* = argmax ^ - Pw(x. y) hi Pw(x, y) . 

It is well-known that the dual of maximum likelihood is maximum entro])y (Altun 
and Smola. 2000), subject to moment nratching constraints on the expec'tations of 
features taken with respect to the distribution. An example is Maxinnun Entropy 
Discrimination Markov Networks (Zhu and Xing. 2{)()9). which belongs to both 
categories. We will introduce it in Section 4.4.3 after introducing the margin 
concept. 

4.3.2 Generative Markov Models 
Generative niarkov models are usually modelled as directed graphs, thought they 
can also be modelled as undirect(xl graphs such as Markov Random Fields. Th(^ 
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arrow of an edge points from a parent node to its child node. The joint prob-

abihty (or density) of a graph with children nofles xc and parent nodes xp is 

then deconi])osed to P^{xc\xp)Pw{xp). The model is estimated via maximising 

the joint likelihood given observations. The ad\-antage of this method is that 

the overah probal)ihty is always a valid ])robability since local ernes are readily 

normalised. Incorix)rating new nodes or variables into existing models can be 

easily done l)y simply nniltiplying the prol)ability of the new ^-ariables. for the 

prodnc't of the probabilities is always a valid joint probability' as well. Also, for 

a learnt model, the proba-bility for any subset of variables is readily computed 

which gives nice interpretation on the importance of each variable. However, the 

normalised potentials in each node raise a bias problem observed in Laffert>' et al. 

(2001). Fmthermore. the potentials and features (which are crucial in structured 

estimation) are not as rich as those in the undirected graphical models. 

4.3.3 Conditional Random Fields 

Conditional Random Fields (CRFs) (Lafferty et al.. 2001) assume the conditional 

distribution over V | X has a form of exi)onential families, i.e., 

where 

Z (w|x ) 

Z (w|x ) = ^exp((w.(I>(x.y'))). (4.2) 

y'ey 

and 

$ ( x . y ) = ^ <I)2(x.y^'J)). (4.3) 

iev {ij)eE 

via the Hannnersley Cliflbrd theorem if only node and edge features are con-

sidered. More generally speaking, the global feature can be decomposed into 

local features on cliques (fully connected subgraphs). Denote (xj x,„) as X . 

(YI, • • • .Ym) as Y . The classical approach is to maximise the c(mditional likeli-

hood of Y on X , incori)orating a prior on the parameters. This is a Maximum a 

Posteriori (MAP) estimator, which consists of maximising 

P ( w | X . Y ) a P ( w ) P ( Y j X ; w ) . 
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From tlK-> i.i.d. assuiii])ti()ii we have 

P ( Y | X ; w ) = 

and iiii])()S(̂  a Gaussian ])vior on w 

P(w) oc exp 

P(y , |x,-;w), 
i=\ 

— II W I |2\ 

Risk Maximising the posterior distribntion can also be seen as minimising the 
negative log-posterior, wliicli becomes onr risk function £{w \ X. Y) 

f'(w I X, Y) = - l n ( r (w) P ( Y I X; w)) + c 

w 
2^2 ^((<I>(x,. y j , w)) - ln(Z(w I X,-))+C, 

i=l 
— 

where c is a constant and denotes the negative log-likelihood. Now learning is 
equivalent to 

w* = argmin£'(w | X, Y). 

G r a d i e n t Above is a convex oi^timisation problem on w since l n Z ( w | x ) is 
a convex function of v̂^ (Wainwright and Jordan. 2003). The solution can 1)e 
obtained by gradient descent sinc:e In Z ( w | x) is also differentiable. We have 

m 

V w ^ , ( w | X . Y ) = - - Vwhi (Z(w |x , ) ) . 
2=1 

It follows from direct computation that 

V w hi Z (w I x) = i x ; w ) y)], 
Since our sufficient statistics <I>(x, y) are decomposed over nodes and edges (eci. 4.3), 
it is straightforward to show that the expectation also decomposes into expecta-
tions on nodes V and edges £ 

E. 'y~P(y I x;w) (I)(x,y) 
(u)-

- ^ ^ E y ( i j ) ^ p ( y ( j j ) |X:W) 

iev (u)€£ 

where the node and edge exi)ectations can be computed either exactly by varial)le 
elimination or api)roximately using for exami)le k)opy belief i)ropagation. This 
is the main computational problem with MAP estimation, which in Gall(>guillos 
et al. (2008) is circumvented through sampling. 
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4.4 Max Margin Approaches 

4.4.1 Structured Support Vector Machines 

Tsochantaiidis ct m1. (2004. 2005) provide a ii,vuvvi\\ framework for sinurured 

output usiug luaxiniuni uiargiu. They look for a liyperplaiie that separates the 

eorrect labehing y, of each observatiou x, in the training set from all the inc-orrect 

lalxdlings y - y, with sonre margin that depends on the lal^el c'ost A additively*. 

In order to allow some outliers, they use slack variables ^ and maximise the 

nihiinmm margin, F(x,-,yj) — maxygy _y. F(x,-.y), across trainhig instances i. 

Equivalently, 

m 

+ s.t. (4.4a) mm - w 
2 

8 = 1 

Vz, y (w. <I>(x,:. y, ) - $(x,-. y ) ) > A(y, , y ) - (4.41)) 

To solve this optimisation problem efficiently, one can investigate its dual 

given by^ 

mm ^ QiyOjy, (c l ) (x, .y) ,$(xj .y ' ) ) (4.5) 
'j-y-y' 

i-y 

Vt.y < C . > 0. 

y 

Here, there exists one parameter Ojy for each training instance x, and its possible 

labelling y G y. Solving this optinrisation problem presents a formidable chal-

lenge since ^ generally scales exponentially with the number of variables within 

each varial)le y. This essentially makes it impossible to find an optinral solu-

tion via enumeration. Instead, one may use a colunm generation algorithm (see 

Tsochantaridis et al.. 2005) to find an approximate solution in polynonnal time. 

The key idea is to find the most violated constraints (4.4b) for the current set of 

parameters and satisfy them uj:) to some i)recision. In order to do this, one needs 

"There is an alternative formulation that is multiplicative in A , For details see Tsochan-

taridis et al. (20().5). 

tNote that one can express the optimisation and estimation problem in terms of kernels 

A - ( ( x . y ) , ( x ' . y ' ) ) : = (<I'(x. y ) , <I>(x'. y ' ) ) . We refer the reader to Tsochantaridis et al. (2005) for 

details 
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Algorithm 3 Max-AIargiii Training Algoiitluu 

Input: (lata Xj. labels y^. sample size ni. tolerance e 

Initialise 5; 0 for all i. and w = 0. 

repeat 
for / = 1 to III do 

y = argmaxygy (w. y ) ) + A ( y j . y ) 

^ = [maxygsi (w, <I>(x„ y ) ) ]+ + A(y, , y ) ) 

if (w.<I>(x,-,y)) + A ( y „ y ) > ^ + 6 then 
Increase c:onstraint set 5, ^ 5, U y 

Optimise (4.5) wrt a iy ,Vy G 5,-. 

end if 
end for 

vintil S has not changed in this iteration 

to find 

y- = argmax A(y^, y ) + (w. $ ( x „ y ) ) , (4.6) 
yel̂  

which can nsnally l)e done via dynamic programming dne to the decomposition 

of A and <I> such as in (4.3). For the training procedure see Algorithm 3. 

4.4.2 Max Margin Markov Network 

Max Margin Markov Network (M3N) (Taskar et al., 2004) essentially shares the 

same primal (4.4) and dual (4.5) with structured SVMs except using Linear Pro-

grannning (LP ) for inference to find the most-violated Ti i " (4-t))- The dual 

formula in (4.5) can be transformed into (see Taskar. 2004, Chapter 5) 

max 
2 I T 

v?;,y Q.y >0. 
y 

Taskar et al. (2004) discover that the dual variable ^ can be viewed as a distri-

bution over y given x. Thus the dual object becomes 

max - 1̂1 J ] y j - $(x,. y)]]!'^ + J ] A ( y , y ) (4.7) 
^ i i 

V'-y = 
y 



GO CHAPTER 4. STRUCTURED LEARMXG DACKGROUXD 

Denote y ~ as the value of the coinpoiient y'" ' is consistent with that in y. 

Decomposing global features into local node and edge features as (4.3). we get 

y 

y a€V {ab)€t 

aeV y:y~y(o) 

+ E E 
(o6)e£ yiy^y*"'' 

a€V y(a) 

(o())Gf-y<°'') 

where marginals 

y:y^y(a) 

y:y~y iab) 

Similarly if A(y; .y) = E„ev^(y/-y^" ' ) - tli™ 

oev 

Thus we only need to know the marginals over nodes and 
(>dges to compute the dual in (4.7) instead of the entire joint chstribution a,y. To 
ensure the marginals resulting from a valid distribution Oiy(y). one must ensiu'e 
following consistency constraint 

y(.b) 

For graphical models with higher order featiu'es, higher order consistency are 
recjuired. 

The inference can also be done ])y marginals of Pw(y | x) over nodes and edges 
(see Sontag et al., 2008). Again consistency constraints are nee(l(>d. This wav 
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of inargiiializatioii was originally proposed for CRFs; however, it is applicable tx) 

M3N as well. The objeetives in ])oth CRFs and AI3N become a LP problem. 

The major drawback for M3N or more generally any LP based approach, 

is that existing LP solvers (even connnercial ones) can not handle millions of 

variables. 

4.4.3 Max imum Entropy Discrimination Markov Networks 

Jaakkola et al. (20()()) propose a Maximum Entroi)y Discrimination (MED) scheme 

that maximises the entropy or minimises the KL divergence KL(Q(w)||P(w)) = 

/ between the posterior Q and the prior P with a constraint that 

the expected margin with respect to the i)osterior Q(w) over model parameter 

w is not less than certain threshold (that is a weighted max margin constraint 

or weighted hinge loss via the posterior) for binary classification. Zhn and Xing 

(2009) later extend it to the structiu'ed case, called Maximum Entropy Discrim-

ination Markov Networks (MEDN) as follows: 

m 

niin KL(Q(w)||P(w)) + C y s.t. 

y i ,y I [(w,<l)(x„yj - $ ( x n y ) ) - A(y,,y)]dQ(w) > -^i. 

Again y can be replaced by the most-violated y^. Apparently letting y be scalar 

y, MEDN recovers MED. Zhu and Xing (2009) show that letting P(w) be a zero 

mean, identity variance gaussian over w. MEDN recovers M3N. 

4.5 Conclusion 

Here we have categorised the most popular structured learning algorithms into 

probabilistic approaches and Max Margin approaches. Two types of ap])roaches 

have their own advantages and disadvantages as we discnissed. In fact, many 

algorithms from both categories can be viewed in a unihed framework. Empirical 

Risk Minimisation. 
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Chapter 5 

Automatic Paragraph 

Segmentation 

Automatic paragraph segmentation (APS) is closely related to some well known 

problems such as text segmentation, discourse parsing, topic shift detection and 

is relevant for various important applications in speech-to-text and text-to-text 

tasks. 

In speech-to-text applications, the output of a speech recognition system, 

such as the output of systems creating memos and docvmients for the Parliament 

House, is usually raw text without any punctuation or ])aragrai)h breaks. Clearly, 

such text requires paragraph segmentations. In text-to-text processing, such as 

sumnrarisation, the output text does not necessarily retain the correct paragraph 

structure and may require post-processing. There is psycholinguistic evidence as 

cited by Sporleder and Lapata (2006) showing that insertion of i)aragraph ])reaks 

improves readability. Moreover, it has been shown that different languages may 

have cross-linguistic, variations in paragraph boundary placement (Zhu. 1999), 

which indicates that machine translation can also beneht from APS. APS can 

also rec:over the paragraph breaks that are often lost in OCR applications. 

There has been growing interest within the NLP connnunity for APS in re-

cent years. Previous methods such as Sporleder and Lapata (2()()G): Genzel (2005) 

treat the pro))leni as a binary classification task, where each sentence is labeled 

as the beginning of a paragraph or not. They focus on the use of featiu'es of the 

sentence itself, such as surface features, language modelling features and syntactic 

features. The effectiveness of features is investigated across languages and/or do-

mains. However, these approaches ignore the inherent secjuential nature of APS. 

Clearly, consecutive sentences within the same ])aragrai)h (lei)end on each other. 
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r T T T ' — 4 — 1 
I J . U . J 

Figure 5.1: Top: sequence (horizontal line) with segment boundaries (vertical 
lines). This corresponds to a model where we estimate each segment })ound-
ary independently of all other boundaries. Middle: simple semi-Markov struc-
ture. The position of the segment boundaries only depends on the position of 
its neighbours, as denoted by the (red) dash arcs. Bottom: a more soi)histi-
cated semi-Markov structure, where each boundary depends on the position of 
two of its neighbours. This may occur, e.g., when the decision of where to place 
a boundary depends on the content of two adjacent segnrents. The longer range 
interaction is represented by the additional (blue) arcs. 

Moreover, paragraphs should exhibit certain properties such as coherence, which 
should be explored within an APS system. One cannot incorporate such proper-
ties/features when APS is treated as a binary classification problem. To overcome 
this limitation, we cast APS as a sequence prediction j^roblem. where the jierfor-
niauce can be significantly improved by optimising the choice of labelling over a 
whole sequence of sentences, rather than individual sentences. 

Secjuence prediction is one of the most prominent examples of structured i)re-
dict 

ion. This problem is generallv formalised such that there exists one variable 
for each observation in the sequence and the variables form a Markov chain such 
as a Hidden Markov Model (HMM). Segmentation of a sequence has been stud-
ied as a class of sequence prediction problems with common applications such 
as protein secondary structure prediction, Named Entity Recognition and seg-
mentation of FAQ's. The exceptions to this approach are Sarawagi and Cohen 
(2004); Raetsch and Sonnenburg (2006), which show that Semi-Markov models 
(SMMs) (Janssen and Linmios. 1999). which are a variation of Markov models, 
are a natural formulation for seciuence segmentation. The advantage of these 
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models, dcpictcxl in Figure 5.1, is their ability to encode features that captiu'e 
properties of a segment as a whole, which is not possible in an HMM model. In 
l)articular. these features can encode similarities between two secpience segments 
of arl)itrary lengths, which can be very useful in tasks such as APS. 

In this chaptin-. we pr(!sent a Semi-Markov model for APS and i)ropos(> a 
max-margin training i)rocedure on these methods. This training method is a 
generalisation of the Max-Margin methods for Hidden Markov Models (HMMs) 
(Altun et al., 2003) to SMMs. It follows the recent literature on discriminative 
learning of structured prediction (Lafferty et al., 2001; Collins. 2002: Taskar et al., 
2004). Om' method inherits the advantages of discriminative teclmicjues, namely 
the ability to enccxle arbitrary (overlapping) features and not making implausible 
conditional independence assumptions. It also has advantages of SMM models, 
namely the ability to encode features at segment level. We present a linear time 
inference algorithm for SMMs and outline the learning method. Exi)eriinental 
evaluation on datasets used previously on this task (Sporleder and Lapata. 2006) 
shows improvement over the state-of-the art methods on APS. 

5.1 Modelling Sequence Segmentation 

In seciuence segmentation, our goal is to solve the estimation problem of finding 
a segmentation y G y, given an observation sequence x G X. For example, 
in APS X can be a book whic:h is a sequence of sentences. In a Semi-Markov 
model, there exists one variable for each sulisecjuence of observations (i. e. nrultiple 
observations) and those variables form a Markov chain. This is opposed to an 
HMM where there exists one varial)le for each observation. More formally, in 
SMMs, y e y is a sequence of segment labellings Si = (6,-,/;) where bi is a non-
negative integer denoting the beginning of the i"" segment which ends at position 

- 1 and whose label is given by h (Sarawagi and Cohen, 2004). Since in APS 
the label of the segments is irrelevant, we represent each segnrent simply by the 
l)eginning position y := {fti}-^/ with the convention that k) = 0 and hi = N 
where N is the number of observations in x. Here, L denotes the number of 
segments in y. So the first segment is [0.6)). and the last segment is 
where [«. h) denotes all the sentences from a to h including a l)ut extduding h. 

We cast this estimation problem as finding a discriminant fmiction F ( x , y ) 
such that for an observation seciuence x we assign the segmentation that receives 
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the best score with respect to F. 

y*(x) := argmaxF(x ,y ) . (5.1) 
yeV 

As ill main' leariiiii,!; iiietliods. we coiisidcn' fiuictioiis tliat ar(> hii(>ar in some 
feature representation <I>. 

F ( x , y : w ) = ( w , $ ( x . y ) ) . (5.2) 

Here, <I>(x. y ) is a feature nia]) defined over the joint ini)ut/output space as de-
tailed in Section 5.3. 

5.1.1 Max-Margin Training 

We now present a inaxiniuin margin training procedure for prechcting structured 
output variables, of which seciuence segmentation is an instance. One of the 
advantages of this method is its al^ility to incorporate tlie cost function that the 
classifier is evahiated with. Let A ( y . y ) be the cost of predicting y instead of 
y. For instance. A is usually the 0-1 loss for binary and niulticlass classification. 
However, in segmentation, this may be a more sophisticated function sucdi as 
the symmetric difference of y and y as discussed in Section 5.2. Then, one can 
argue that optimising a loss function that incorporates this cost can lead to better 
generalisation properties*. 

follow the general framework of Tsocliantaridis et al. (2004) and look 
for a hyperplane that separates the correct labelling y^ of each observation se-
quence X,- in our training set from all the incorrect labellings y - y^ with some 
margin that de]jends additively on A as in (4.4)^. In order to allow for some 
outliers, we use slack variables ^̂  and maximise the minimum margin. F(x , - .yJ -
maxyey„y^ F{x,.y), across training instances i. For the dual form see (4.5). In 
order to find the most vi(jlated constraint in (4.4b). we ])ropose an extension of 
the Viterbi algorithm in Section 5.4 for Semi Markov models. 

To adapt the Structured SVMs framework to the segmentation setting, we 
need to address three issues: a) we need to specify a loss function A for segmen-
tation. b) we need a suitable feature map $ as defined in Section 5.3, and c) we 
need to find an algorithm to solve (4.6) efficiently The max-margin training of 
SALMs was also presented in Raetsch and Sonnenburg (2006) 

*For a theoretical analysis of this approach see Tsocliantaridis et al. (2004). 
tThere is an alternative forninlatioii that is multi]jlicative in A . We prefer 4.4 clue to 

computational issues. 
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5.2 Cost Function 

To measure the (liscrepaiicy l)etwocii y and some alternative seciuence segmen-

tation y' . we simi)ly count the number of segment boundaries that have a) l)een 

missed and b) been wrongly added. .\()t(> that this dehnition allows loi' (>rrors 

exceeding 100% - for instance, if we were to place considerably more bcjundaries 

than c;an actually be found in a seciuence. 

The number of errors is given by the synnnetric difference between y and y'. 

when segmentations are viewed as sets. This can be written as 

A ( y , y ' ) = |y| + | y ' | - 2 | y n y ' | 

= |y| + ^ [ l - 2 { 6 : G y } ] . (5.3) 

i=l 

Here | • | denotes the cardinality of the set. (5.3) plays a vital role in solving 

(4.6), since it allows us to decompose the loss in y ' into a constant and fmictions 

depending on the segment boundaries only. Note that in the case where we 

want to segment and label, we simply would need to check that the positions are 

accurate and that the labels of the segments match. 

5.3 Feature Representation 

SMMs can extract three kinds of features from the input /output pairs: a) node 

features, i. e. features that encode interac;tions between attributes of the ob-

servation seciuence and the (lal^el of a) segment (rather than the label of each 

observation as in HMMs) , b) features that encode interactions between neigh-

l)ouring labels along the seciuence and c) edge features, i.e., features that encode 

properties of segments. The first two types of features are connnonly used in 

other seciuence models, such as H M M s and CRFs. The third feature type is spe-

cific to Semi-Markov models. In particular, these features can enc-ode properties 

of a whole segment or similarities between two seciuenc:e segments of arbitrary 

lengths. The c:ost of this c^xpressibility is simply a constant factor of the conii>lc^x-

ity of Markov models, if the max imum length of a segment is bomided. These 

types erf features are particularly useful in the fac;e of sparse data. 

As in HMMs . we assume stationarity in our model and sum over the features 

of ceacdi segment to get <I>(x.y). Tlicni. <I> corresponding to models of the middle 
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structur(> given in Figure 5.1 an^ given l)y 

I-1 I 

1=1 1=1 

We let <l>o = 1 - 1 . tlie number of segnunits. The no(l(> features capture tli(> 
dependency of the ciu'rent segment boundary to the observations, whereas the 
edge features <I>2 represent the dependency of the current segment to the observa-
tions. To model the bottom structure in Figure 5.1. one can design features that 
represent the dei)endency of the current segment to its adjacent segments as well 
as the observations, <I>3(x, 6;). The si)ecific choices of the feature map 
<I> are presented in Section 5.5. 

5.4 Column Generation on SMMs 

Tractability of Algorithm 3 dei)ends on the existence of an efficient algorithm 
that finds the most violated constraint (4.4b) via (4.G). Both the cost function of 
Section 5.2 and the featm-e representation of Section 5.3 are defined over a short 
sequence of segment ]x)un(laries. Therefore, using the Markovian proi)erty. one 
can perform the above maximisation step efhciently via a dynamic i)rogrannning 
algorithm. This is a simj^le extension of the Viterbi algorithm. The inference 
given by (5.1) can be performed using the same algorithm, setting A to a constant 
function. 

We first state the dynamic progrannning recursion for F + A in its generality. 
We then give the pseudocode for <I>3 = 0. 

Denote ])y T(t^.t+:x) the largest value of A ( y . p ) + F(x . / ; ) for any partial 
segmentation p that starts at position 0 and which ends with the segment [/_. f+). 
Moreover, let M be a upi)er boimd on the length of a segment. The recursiv(> 
step of the dynamic program is given by 

r ( ^ _ . / + ; x ) = max T{k.t_:x) + (j{k.f_J.) 

where we defined the increment g{k\t_.t+) as 

( ' I>„ (x ) .$ i (x , /+ ) .$ , , (x .^_ , /+ ) .$3(x .A- , / _ . f+ ) .w) + 1 - 2 { ( f _ . / + ) e y } 

where by convention T(i.i') = -oc if ? < 0 for all labels. Since T neefls to be 
computed for al' values of t+-M <t_ < /+. we need to compute 0(| x values, 
each of which recjuires an optimisaticm over M possible values. That is. storage 
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A l g o r i t h m 4 Column Goiieration 

I n p u t : seciueiice x. segiiieiitatioii y. niax-leiigtli of a segment M 

O u t p u t : score s, segment boundaries y' 

Initialise vectors T G M'" and /? e V " to 0 

for / = 1 to / do 

Rj = argmax Tj+g{j,i) 
ma.x(0.i~M)<j<i 

Ti - + g{R„ /) 

end for 

S = Trr, + \y\ 

y' = {'"} 

repeat 

= ynrst 

until i = 0 

requirements are 0(|x|i\/), whereas the computation scales with 0{\yi\M'^). If 

we have a good bound on the maximal sequence length, this can be dealt with 

efficiently. Finally, the recursion is set up by r(() .0,x) = |y |. 

See Algorithm 4 for a pseudocode, when <i>3 = 0. The segmentation corre-

sponding to (4.6) is found by constructing the path traversed by the argument of 

the nrax operation generating T. 

5.5 Local Features 

We now specify the featiu'es described in Section 5.3 for APS. Note that the 

second type of features do not exist for APS since we ignore the labellings of 

segments. 

Node Features <I>i 

Node features (I>i(6j,x) represent the information of the current segment bound-

ary and some attrilnites of the observations around it (which w(> define as the 

can-rent, preceding and successive sentences). These are sentence level features, 

which we adapt from Genzel (2005) and Sporknler and Lapata (2006)^. For the 

bjth sentence, x(/;j), we use the following features 

tDue to space limitations, wo omit the motivations for thei-e features and refer the reader 

to the hterature cited al)ove. 
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• Length of 

• Relative Position of x(6j). 

• Final ])nnctnation of 

• Nnniber of capitalised words in ^{bj). 

• Word Overlap of with the next one 

\VOR,ER{MBJ)MBJ+L)) = 
2 I x{hj)r\x{bj + 1) I 

• First word of x(6j). 

• Bag Of Words (B0\\') features: Let the bag of words of a set of sentences 
5 Ije 

D{S) = (co,Ci CI, ...,CN-I), 

where N is the size of the flictionary and Cj is the frequency of word i in S. 

~ BOW of x(6j), I? ( {x(6j ) } ) 

- BOW of X(bj) and the previous sentence D{{x{bj - l),x(?>j)}) 

- B0\\' of x(6j) and the succeeding sentence Z?({x(ftj), x(6j + 1)}) 

- The inner produc-t of the two items above 

• Cosine Similarity of X{bj) and the previous sentence 

CS{x{b,-L),X(b,)) 

I D{X{BJ - 1)) I X I D{x{b,)) I 

• Shannon's Entropy of x{bj) computed by using a language model as de-
scribed in Genzel and Charniak (2003). 

• Quotes(Qp.QC.Q!)- QP and Q^ are the number of pairs of quotes in the 
previous(A''?i/7/p) and current sentence (Nun)c). Qp = 0.5 x Nrinip and 

QC = C-S X NUNIC. 
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5.5.1 Edge Features $2 

Below is the set of features /^j+i. x) encoding information al)out the current 
segment. These features represent the power of the Semi-Markov models. Note 
tliat T̂';., featur(>s also belong to (Mlge f(>atui-(~s category. In this chaptiM'. we did 
not use feature due to computational issues. 

• Length of The Paragraph: This feature expresses the assumjition that one 
would want to have a balance across the lengths of the paragraphs assigned 
to a text. Very long and very short paragraphs should be unconnnon. 

• Cosine Similarity of the current paragraph and neighbouring sentences: 
Ideally, one would like to measure the similarity of two consecutive para-
graphs and search for a segmentation that assigns k)w similarity scores (in 
order to facilitate changes in the content). This can be encoded using 
< I > ; 5 ( x , f e a t u r e s . When such features are computationally ex-
I)ensive, one can measure the similarity of the current paragraph with the 
preceding sentence as 

CS{P,^{bj - 1)) 
_ {D()W{P),BO]V{^{bj - 1))) 
" I DOW{P) I X I BO\V{x{hj - 1)) I 

where P is the set of sentences in the current paragraph, [hj, hj+i). A similar 

feature is used for x(6j+i)). 

• Shannon's Entropy of the Paragraph: The motivation for including features 
encoding the entropy of the sentences is the observation that the entropies 
of a paragra])h's initial sentences are lower than the others (Genzel and 
Charniak, 2003). The motivation for including features encoding the en-
tropy of the paragraphs, on the other hand, is that the entropy rate should 
remain more or less constant across i)aragraphs. especially for long texts 
like books. We ignore the sentence boundaries and use the same teclmiciue 
that we use to compute the entropy of a sentence. 

5.5.2 Feature Rescaling 

Most of the features described above are binary. Ther(> arc also sonu> features 
such as the entropy whose value could be very large. We rescale all the non-binary 
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valued features so that they do uot override the effect of the biuary features. The 

scaling is performed as follows: 

It — niin(i/) 

nmxiii) — miii(?/) 

where u„eiv is the new feature and u is the old feature. niin(;/) is the niininiuni 

of u. and nrax(».) is the niaxiniuni of u. An exception to this is the rescaling of 

B O W features which is gî -en by 

B(Mb:i)Ur = D{xihj))/{B(x{bj)).B{Mbj))). 

5.6 Experiments 

\\ e collected four sets of data for our experiments. The first corpus, which we call 

SB. consists of manually annotated text from the same book The Adventures of 

Bruce-Partington Plans by Arthur Conan-Doyle. The second corpus, which we 

call SA. again consists of manually annotated text but from 10 different books by 

the same author Conan-Doyle. Our third corpus consists of German (GER) and 

English (ENG) texts. The German data consisting of 12 German no^•els was used 

Iw Sporleder and Lapata (2006). This data uses automatically assigned paragraph 

boundaries, with the labelling error expected to be around 10%. The English data 

contains 12 well known Enghsh books from Project Gutenberg (http:/ /www. 

gutenberg .org/wik i /Main_Page) . For this dataset the paragraph boundaries 

were marked manually. 

All corpora were approximately split into training (72%). validation (21%). 

and test set (7%) (see Table 5.1). The table also reports the accuracy of the 

baseline classifier, denoted as BASE, which either labels all .sentences as para-

graph boundaries or non-boundaries, choosing whichever scheme \-ields a better 

accuracy. 

We evaluate our system using accuracy, precision, recall, and the Fi-score 

given by {2x Precision x Recall)/[Precision +Recall) and compare our resuhs to 

Sporleder and Lapata (2006) who used BoosTexter (Schapire and Singer. 2000) as 

a learning algorithm. To the l)est of our knowledge. BoosTexter (henceforth called 

BT) is the leading method ])ubhshed for this task so far. In order to evaluate 

the importance of the edge features and the resultant large-margin constraint, we 

also compare against a standard binar>' Support Vec:tor Machine (S\'M) which 

uses node features alone to predict whether each sentence is the beginning of a 
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TOTAL TRAIN DEV TES'I' BASE 

SB 59.870 43.078 12,174 3.839 53.70 
SA 09.369 50.080 14.204 4.485 58.02 
EN(! 123.201 88.808 25.804 8.589 03.41 
GEH 370.990 340.410 98.010 31.904 02.10 

Tahle 5.1: N\nnber of sentences and % accm-acy of the l:)aseline classifier (BASE) 
on various datasets us(>(l in our ex])erinients. 

DATASET AL(X). Acc . REC. PREC. Fi 

ENG SMM 7 5 . 6 1 4 6 . 6 7 7 7 . 7 8 5 8 . 3 3 

SVM 58.54 20.07 40.00 32.00 
BT 05.85 33.33 55.50 41.07 

GEH SMM 70.50 40.81 05.07 54.60 
SVM 39.92 1 0 0 . 0 0 38.08 55.79 
BT 7 2 . 5 8 54.20 6 7 . 1 1 6 0 . 0 0 

Table 5.2: Test results on ENG and GER data after model selection. 

paragraph or not. For a fair conii)arison, all classifiers used the linear kernel and 

the same set of node features. 
We perform model selection for all three algorithms by choosing the parameter 

values that achieve the best F]-score on the development set. For both the SVM 
as well as our algorithm, SMM, we tune the parameter C (see (4.4a)) which 
measures the trade-off between training error and margin. For BT, we tune the 
number of Boosting iterations, denoted by N. 

In our first experiment, we compare the performance of om- algorithm. SMM. 
on the English and German corpus to a standard SVM and BoosTexter. As can 
be seen in Table 5.2, our algorithm outperforms both SVM and BT on the EN'G 
corpus and performs very competitively on the GER corpus, achieving accuracies 
c:lose to those of BT. The SVM does not take into accoimt edge features and 
hence does not i)erform well on this task. 

W'e observed a large discrepancy l)etween the performance of our algorithm 
on the development and the test datasets. The situation is similar for both SVM 
and BT. For instance, BT when trained on the ENG corpora, achieves an optimal 
F|-score of 18.07% after N = 100 iterations. For the same N value, the test 
performance is 41.07%. We conjecture that this discrepancy is because the books 
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that we use for training and test are written by ditferent authors. While there 
is some generic information about when to insert a i)aragraph l)reak. it is often 
subjective and part of the authors style. To test this hypothesis, we jjerfornied 
exi)eriments on the SA and SB cori)us. and present results in Table 5.3. Indeed, 
the Fj-.scores obtainetl on the development and test coriMis closely match tor text 
drawn from the same book (whilst exhii)iting l)etter overall performance), differs 
slightly for text drawn from different l)ooks by the same author, and has a large 
deviaticm for the GER and EXG corpus. 

DATASET A r c . REC. PREC. FI-SCORE 

SB (DEV) 

S B (TEST) 

9 2 . 8 1 8(3.44 9 2 . 7 3 8 9 . 4 7 

9 6 . 3 0 9 6 . 0 0 9 6 . 0 0 9 6 . 0 0 

SA (DEV) 

S A (TEST) 

8 2 . 2 4 6 1 . 1 1 8 2 . 3 8 7 0 . 1 7 

8 1 . 0 3 7 9 . 1 7 7 6 . 0 0 7 7 . 5 5 

ENG (DEV) 

ENC; (TEST) 

6 9 . 8 4 1 8 . 4 6 7 8 . 6 3 2 9 . 9 0 

7 5 . 6 1 4 6 . 6 7 7 7 . 7 8 5 8 . 3 3 

GER (DE\ ) 

GER (TEST) 

7 3 . 4 1 4 1 . 6 1 3 8 . 4 6 3 9 . 9 8 

7 0 . 5 6 4 6 . 8 1 6 5 . 6 7 5 4 . 6 6 

Table 5.3: Comparison on different APS datasets on SMM. 

In our next experiment, we investigate the effect of the offset (the weight 
assigned to the constant feature $0) on the performance of our algorithm. We fix 
the best value of C from the development dataset as above, but now we vary the 
offset i)aranieter. If we now use the best offset, tuned for accuracy or Fpscore. 
as the case may be. the performance on the test set changes. This is shown in 
Tables 5.4 and 5.5. 

D.VFASET Arc . REC. PREC. FI-S(^ORE 

ENC; (DE\ ) 

ENG (TEST) 

7 0 . 9 0 

7 3 . 1 7 

2 6 . 1 5 

6 0 . 0 0 

7 2 . 1 0 

6 4 . 2 9 

3 8 . 3 8 

6 2 . 0 7 

GER (DEV) 

GER (TEST) 

8 0 . 9 5 

6 8 . 5 5 

1 9 . 2 5 

2 4 . 4 7 

6 9 . 7 1 

7 6 . 6 7 

3 0 . 1 7 

3 7 . 1 0 

Table 5.4: Performance on develoi)nient and test set after tuning the offset for 
the best accnracv. 
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D-VLASF/R A c c . REC. PKEC. F]-SCORE 

ENC (DF.V) 

ENC; (TEST) 

55.02 
39.02 

98.4G 
93.33 

43.31 
36.84 

60.16 
52.28 

C^F.K (l)F.\ ) 

GEK (IEST) 

()4.2() 
75.40 

(i3.35 
73.40 

32.70 
05.71 

43.14 
69.35 

Table 5.5: Perfoniiaiice on (Icivelopinent and tost set after tuning the offset for 
l)est Fi-score. 

D.VIASET Aixjo. Acc . REC-. PREC. FI-SCORE 

ENG SMM 7 7 . 7 1 ± 6 . 1 8 33.44±13.98 6 4 . 3 3 ± 2 1 . 8 5 4 0 . 1 2 ± 1 1 . 2 2 

SVM 66.95±5.28 3 7 . 0 6 ± 9 . 9 5 37.78±14.24 34.72±4.8G 
BT 75.44±7.27 23.43±12.75 52.03±28.26 29.47±12.58 

GER SUM 76.68±3.71 5 0 . 8 7 ± 1 0 . 8 0 6 0 . 9 6 ± 1 0 . 8 7 5 5 . 1 5 ± 1 0 . 0 8 

SVM 67.22±7.50 19.88±8.60 34.48±10.99 24.70±8.45 
BT 7 7 . 2 9 ± 2 . 4 0 47.06±16.71 59.49±12.02 51.85±14.30 

SB SUM 86.46±8.41 73.62±19.43 86.47±10.22 78.46±15.11 
SVM 63.73±10.05 41.47±13.19 50.31±19.36 43.48±10.61 
BT 8 7 . 9 9 ± 6 . 2 4 7 7 . 5 1 ± 1 4 . 0 6 8 7 . 1 3 ± 1 0 . 3 8 8 1 . 2 3 ± 9 . 5 5 

SA SUM 8 2 . 9 6 ± 6 . 2 2 6 5 . 6 0 ± 1 4 . 0 6 7 8 . 5 3 ± 1 1 . 6 3 7 1 . 1 3 ± 1 2 . 5 7 

SVM 58.26±8.90 49.92±13.15 38.64±15.37 41.05±10.42 
BT 78.41±7.35 57.75±15.39 70.08±18.90 62.46±15.23 

Table 5.G: Performance of various algorithms on our test corpus. 

Thus far. following Sporleder and Lapata (2006) we worked with a single 
random split of the data into training, development, and test set. In our final 
experiment we test the statistical significance of our results by performing lO-fold 
cross validation. For this experiment, we randomly pick l /S" ' of the data from 
each c()r])us and tuni^ i)aranieters on this development set. The parameters ar(> 
now fixed, and the rest of th<> data is used to p(>rform lO-fold cross validation. 
The results are smnmarised in Tal)k' 5.G. While the i)erformance of our algorithm 
is relatively imchang(>d on th(> large GER dataset. there are large variations on 
the relatively small ENG. SA. and SB datasets. This is to be expected because 
lO-fold cross-validation on small sampl(>s can sk(nv the relative distribution of the 
examples used for training and te.sting. 
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5.7 Conclusion 

i)reseiited a competitive algorithm for paragraph segmentation which uses 
the ideas from large margin classifiers and graphical models to extend the semi-
Markov tormalism 1o the large margin case. We obtain an efhcicnit dynamic 
progrannning formulation for segmentation which works in linear time in the 
length of the secjuence. Exi)erimental evaluation shows that our algorithm is 
competitive when compared to state-of-the-art methods. 



Chapter 6 

Action Segmentation and 
Recognition 

A challenging task in luunan action nnderstancling is to segment and recognise a 
video seqnence of continnons elementary actions e.g. rnnning and walking. Tins 
has a wide range of applications in snrveillance, video retrieval and intelligent 
interfaces. The difficnilty conies from high variability of appearances, shapes 
and possible oc:clusions. The task is typically done in two stei)s: 1) segmenting 
and then 2) classifying the segments. Using semi-Markov model (SMM), we can 
segment and classify the video sinniltaneonsly. 

6.1 Max Margin Approach 

As connnonly nsed in Schnldt et al. (2004); Dollar et al. (2005); Wong et al. 
(2007); Jhuang et al. (2007); Nowozin et al. (2007), we assnnie only one i)erson 
appears in a given video secinence x (and we allow people in different video to 
be different) performing actions labeled as y = {{hJk)} 'kJo consisting of i)airs 

/A:) indicates the beginning position and its corresponding action 
for the A:th segment ). Denote F ( x , y : w ) = (w.<I'(x,y)) the discriminant 
fnnction. For an unseen video seciuence x. we i)redict the label via 

y* = argmax log p{y | x. w ) = argniax F(x , y: w) . ((5 j ) 
y y 

L(>arning the SAIM discriniinatively from training data is essentially a regularised 
empirical risk minimisation ])roblem (Tsochantaridis et al.. 2005; Taskar et al., 
2004) with respect to w as in (4.4). The minimisation can be done by the cutting 



CHAPTER 6. ACTION SEGMENTATION AND RECOGNITION 

A l g o r i t h m 5 Bundle Method 
Input: seciiieiice x,- and trne label y, for example i, sample size ni, precision e > 0 
Initialise w = 0 
repeat 

for / = 1 to in do 
Yi = argrnaxy A(y,, y) + F(x,. y; w) 
Conipnte the empirical loss /?cnip(w) (G.2) and the gradient Vw/?enip(w) (6.3). 
W ^ BMRM(i?emp (w) , Vwi?e,n,>(w)) 

end for 
until i?p,„p(w) < e 

plane method as we did for the APS jn'obleni in the previous chapter. Alter-
natively we can do it by Bundle Methods for Regularised Risk Minimisation 
(BMRM) (Teo et ah. 2007; Smola et ah, 2007). Similar to the cutting plane 
method, we need to compute the most violated label y which can be efficiently 
obtained by a viterbi-like dynamic progrannning. BMRM requires two inputs: 
the empirical risk 

i ? e , n p ( w ) - (w, <I>(x,. y j - <I>(x,. yT)) . (6.2) 

i 

and its gradient 

Vwi?emp(w) = - $(x,-,yT). (G.3) 
i 

Empirical studies in Section G.4 show that the bundle method often delivers 
superior results to those of the cutting plane method as observed in Teo et al. 
(2007); Smola et al. (2007). 

6.2 Viterbi-Like Inference 
For both learning algorithms (cutting plane and BMRM), we need to infer 

y^ = argniax A(y^, y ) + F(x , , y; w) . (6.4) 
yey 

This can be done Ijy dynamic programming (hie to decomposition of the feature 
$ and the cost function A. $ ( x . y ) can be decomposed into local features as 

/ 1-1 1-1 i~i 
$ ( x , y ) = ( J ] $ 3 ( x . n i , ni+i,c,-,ci+i) . 

^ !=0 i=0 i=0 / 
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Here local features <i>i and (I>2 capture the ()l)servati()n-lal)el depeudencies within 
the current action segment: <1)] encodes the information on the l)oundary frame 
and $2 encodes the overah characteristics of the entire segment. The interaction 
l)etween two neighboring segments is encoded in Similarly. F (-an also be 
decomposcHl into thr(H> conii)onents / , ( x . y ) = (w ' ' ' , (p,(x. y j ) .V/ = {1 .2 .3 } as 

/-I . s 
y^ f] (x, Hi, Ci) + /2(x, r?;, , Ci) + /;i(x, /ij, 77.;+], Ĉ , Q+j ) . 
i=0 \ ^ 

Here w'̂ ^ are components of w. We use the Hamming chstance to 
nreasure the label cost A ( y , y ' ) between alternative action sequence labels as 

m - \ 

A = 0 

where 1(.) is the indicator function. Apparently, the label cost is decomposable 
as well. 

The decomposition of features and label cost function leads to a Viterbi-
like dynamic progrannning procedure proposed in Algorithm 6. Intuitively, it 
iteratively asks for the best segmentation and classification for all previous frames, 
assuming the current frame is a boundary frame with a known action class, and 
then reuses and stores partial information as needed. However, we don't know 
whether the cm-rent frame is a boundary frame nor the true class of that segment. 
The good news is that, in the end, we know the last frame is an ending franre, 
and we will know the most likely class of the last frame by maniiniising F. Then 
we can back track all i)revious boundaries and classes since the information is 
stored already. 

For any segment i, we denote its related boundaries as := /7i_i and n := 
Similarly the related labels are c_ := c,_i and c := Q. NOW. we maintain a partial 
score S'(x, n ,c ) that sums up to segment i {i.e. starts at i)osition 0 and ends with 
the segment [n_,77.) with labels c_ (for 77_) and c (for n), respectively), and it is 
defined as 

max { 5 (x . + ry(x. r/, c) } . (6.5) 
c_,max{0,ri-y\/}<n_<ri 

Here the increment 

.g(x, r/_, r;, c_, c) = / i (x, n _, c_) + /2(x, /;._, n, c_) 
D-l 

+ ./3(x, n, c_, F) + 1 - J ] KYA-
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Algo i i t l im 6 Mtcibi-Like Iiifeieiice 

I n p u t : seciueiice x of length /. its true label y. and niaxinuun length of a 

segment M 

O u t p u t : score s. the most violat(^d label y 

Initialise matrices 6' G M' x C. J € U. and L € Z' to 0. y = 0 

for ? = 1 to / do 

for r, = 1 to C do 

(./;. Li) = argmax Cj) + g{j. i. Cj.Ci) 

S{,.c,) = S{j\c*,)+g{j\,.c],.c,) 

end for 

end for 

c* = argmax5(/. o ) 

s = S{Lc*i) 

i ^ I 

repeat 

i •(- Ji 

until i = 0 

It is easy to verify that in the end. the sum of two terms in the RHS of (6.4) 

amoinits to S(l. o) . This algorithm can also be used for inference in the prediction 

phase by letting 

fy(x. = / i (x. /;_.c_) + /2(x. r_) +/^(x. u_.n.c_.c). 

This inference algorithm is very efficient time comi)lexity ()(IMC'^). linear 

to the se(}uence length I and memory complexity 0(1 {C + 2)). Our C++ im-

plementation* processes the video sequences at 20 frames per second (FPS) on 

average on an deskto]) with Intel Pentimn 4 3.0GHz ])rocess()r and 512M memorv. 

6.3 Feature Representation 

Xeuro-psychological findings such as Phillii^s et al. (2002) suggest that the visual 

and motor cortices of human percei)tion system are more responsil)l(> than the 

*Source code can be downloaded from htti)://u.sers.rsise.aini.edu.au/'(ishi/code/suini_relea.se.tgz. 
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seiiiaiitic ones for retrieval and recognition of visnal action patterns. This moti-
vates ns to represent action featnres $ l)y a set of local features that capture the 
salient asi)ect of spatial and tenii)oral video gradients. 

The foreground object in each image is obtained using an efficient background 
sul)traction method in Cheng et al. (2000). By applying the SIFT (Lowe. 2004) 
key points detec:tor, the object is represented as a set of key feature jioints ex-
tracted from the foreground with each point having a 128-diniensional feature 
vec:tor. Importantly. SIFT features bear these properties that are critical in our 
context, as being relatively invariant to illumination and view-angle changes, as 
well as being insensitive to the objects" color appearance by capturing local image 
textures in the gradient domain. In addition, from each feature point, we con-
struct an additional GO-dimensional shape context features (Belongie et al.. 2002) 
that roughly encode how each point "sees" the remaining ]:)oints. The two sets 
of features arc then concatenatoxl with proper scaling to form a 188-diuiensional 
vector. This point-set object representation are further transformed into a 50-
diniensional codebook using K-nicans, similar to the visual vocabulary approach 
in Sivic and Zisserman (2003). Therefore, once a new frame is presented, its 
key points will be projected into the existing codebook space with clustering as-
signments. Thus the object is now represented as a 50-diniensional histogranr 
vector. Typical results of the codebook representation are illustrated in Figure 
6.4 (bottom row), where we randomly choose four codebook clusters and impose 
the assigned feature point locations on individual images. Figure 6.4 convincingly 
shows that each cluster of points is able to pick up patches in certain hunran body 
areas, over time and across different people. For example, the white triangles tend 
to stay on the hips. 

With this codebook representation, we now construct feature functions 
$2 and as follows. 

Boundary Frame Features (x. n ,̂ q ) = (x, n^ ® Q, where ® denotes a 
tensor product (similar to (11) and (12) of Tsochantaridis et al. (2005)). ifi is 
a concatenation of two features. The first is a constant 1 which acts as the bias 
or offset term. The second part is obtained from a local window with width 
centered on the boundary frame. When w,, = 1 it l)ecomes a single histogram 
vector. 

Node Features on Segments Node featm-es are devised to capture the char-
acteristics of the segment. <I>2 is defined as <I>2(x, rii, /i,+ i. c,) = ih. Di+i)®^;. 
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Figure 6.1: Coini)ariiig seven methods for action recognition on the synthetic dataset. 

(/?2(x, ni,ni+i) contains three components: the length of this segment, the mean 

and the varianc:e of the histogram vector of the segment {e.g. over frames from 

Ui to Tli+i - 1). 

Edge Features on Neighboring Segments As in practice we have prior 

knowledge about the minimum length of an action segment, we define the niini-

nnmi duration of a segment as d to reduce the complexity of the Viterbi algorithm. 

ni,n,+i.Ci,Q+]) == ^3(x. n,. (g) q (8)c,+]. and it is a concatenation of 

the following components: a) the mean of the histogram vector from frames m 

to m+i - 1, and b) from frames Ui+i to + d. as well as c) the variance of the 

histogram vector from rii to ^j+i - 1, and d) from n̂ +i to Hj+j + d. 

6.4 Experiments 

During the following experiments, the proposed disc^riminative S.MM approach 

is compared to three algorithms: KXN (where K= l . 3, 5). SVM multiclass and 

SVM-H.MM (Tsochantaridis et al.. 2005). In particular, two variants of discrim-

inative SMAI are considered, namely the one with cutting plane method (SVM-

SMM) and the one with Inmdle method (BMRM-SMM). 
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By default, we set e = le — 4, M = 3, and Wg = 3. The trade-off param-

eter // of each method (SVM muhielass. SVM-HMM, SVM-SMM and BMRM-

SMM) is tuned separately using cross-validation. Moreover, we evaluate the ac-

tit)u recognition and segmentation performance separately: A frame-wise recog-

nition rate is utilised to henchniark the rcxognition i)erf()rnianc'e for each oi the 

comparison algorithms. To measure segmentation performance, we adopted the 

Fi-score, which is often used in information retrieval tasks, and is given by 

(2 X Precision x Recall)/(Precision Reeah). 

6.4.1 Synthetic dataset 

We start with a c:ontrolled experiment where we are able to quantitatively mea-

sure the performance of c:omparison algorithms by varying the difhculty level of 

problems from easy to difficult. We do this by constructing a two-person two-

action synthetic dataset consisting of five trials, where each trial has a set of ten 

sequences and corresponds to a certain level of difficulty^ Here a sequence of a 

person P is sampled from a semi-Markov model/process with their own Gaussian 

emission probabilities '^c.p) and duration parameters Ac,f for the two ac-

tions c = 1.2, respec:tively. We sample 150 frames from the SMM model for each 

given person and action. Now, we build five trials as follows: For each trial, five 

secjuences are generated from each person's model, and in the end we have ten 

se(iuences. Across trials, we vary the level of difficulty by moving //2 toward //j 

and fixing other parameters of the models. 

Figure 6.1 displays the action recognition results on this dataset, where 5-fold 

cross-validation is utilised. Here both discriminative SMM variants consistently 

outperform others: In fact, both SVM-SMM and BMRM-SMM give almost the 

same recognition accuracy regardless of the level of difficulty. They are followed 

by SVM-HMM while the other niethotls (namely SVM and KNNs) have inferior 

performance. This is due to SMM exploiting the contextual information from 

neighboring nodes up to neighboring segments. 

6.4.2 K T H dataset 

The KTH dataset (Sc:huldt et al., 2004) contains 25 individuals performing six 

activities: running, walking, jogging, boxing, handdapping and handwaving. where 

each sequence contains a single action with nniltiple action cycles. Figure 0.2 

t T h i s d a t a s e t c a n h e d o w n l o a d e d a t h t t p : / / H s e r s . r s i s e . a i i i i . e ( l u . a i i / ' ' ( i s l i i / c o ( l c / s n i u i J e l o a s e . t g z . 
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j| 
F i g u r e 6.2: Sample frames of one person engaging in six types of actions in the KTH dataset. 

Metiiod Brief Description Accuracy 

Ke et al, (2005) cascade cla,ssifier. sjjatio-temporal 63.0 
Sclinldt et al. (2004) local space time features 71.7 
Schindler and van Gool (2008) SVM. bag of sni])])ets, shape and motion 92.7 
Dollar et al. (2005) SVM. "cuboid" features 81.2 
Nowozin et al. (2007) linear SVM. ••cuboid" features 

subsequence Ijoosting, ••cuboid" features 
87.0 
84.7 

Wong et al. (2007) WX-SVM, "cuboid" features 91.6 
Our SVM 
Our BMRM-SYM 

baseline SVM. ••cuboid" features 
discriminative SMM. "cuboid" features 

85.1 
95.0 

T a b l e 6.1: Action recognition rates on KTH dataset. 

displays exemplar frames of one ])ersoii performing each of the six activities. 

To make direct comparisons to existing methods in literatm'e presented in 
Table 6.1, in this experiment we adopt the "cuboid" (Dollar et al., 2005) feature 
(instead of SIFT) that captm-es the local spatio-temporal characteristics using 
Gabor hlters. More specifically, this detector is tuned to fire whenever variations 
in local image intensities contain distinguishing spatio-temporal characteristics. 
At each detected interest point location, a 3D cuboid is then extracted and repre-
sented as a flattened vector that contains the spatio-temjjoral windowed informa-
tion including normalised pixel values, brightness gradient and windowed optical 
flow. 

We adopt the same train and test sets s])lits as that of Xowozin et al. (2007), 
only here our models are trained on the joined train-f-validation sets: Each model 
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truth vs. predict boxing handclapping handwaving jogging running walking 

boxing 0.91 0.09 0.00 0.00 0.00 0.00 

handclajjping 0.00 0.96 0.00 0.00 0.04 0.00 

handwaving 0.00 0.00 1.00 0.00 0.00 0.00 

joKKiiiK 0.00 0.00 0.00 0.89 0.00 0.11 

running 0.00 o.oo 0.00 0.08 0.00 

walking 0.00 0.00 0.00 0.12 0.00 

T a b l e 6 . 2 : Confusion matrix of BMRM-SMM on the K T H datasot. 

F i g u r e 6 . 3 : Sample frames of subjects each performing one of the four actions: slow walk, 

fast walk, incline walk and walk with a ball, in an action sequence of the CMU MoBo dataset. 

tuning parameters q of our methods are selected using 5-fold cross-validation 

on the Joined sets, then a single model is trained on the joined sets, and tlu; 

final accuracy is reported on the test set. Table 6.1 shows the results of our 

methods: Our SVM baseline (85.1%) is c:omparablc to similar methods (e.g. 

SVM of Dollar et al. (2005); Nowozin et al. (2007)) reported in literature, while 

our BMRM-SMM (95.0%) performs favorably comparing to these state-of-the-

art methods. W'e attribute this to the contextual informatif)n that we are able 

to exploit through the use of $2 features in o\ir SMM framework. Table 6.2 

displays the confusion matrix of the BMRM-SMM method, where the handvmnng 

action can be perfectly identified from the rest of the actions. On the other hand, 

there are a few mistakes among the three easy-to-be-confused c;ategories: walking, 

jogging, and running. 
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IXX SVM HMM S\'M-HMM S\'.M-SMM BMRM-SMM 

Acc 0.65 ± 0.02 0.()7 ± 0.03 0.68 ± 0.08 0.75 ± 0.0() 0.75 ± 0.03 0 . 7 8 - 0 . 0 7 

D.K) ± O.O.'i 0.15 ± 0.0.3 n /a ± n / a 0.43 ± 0.01 0 .59 ± 0 . 0 3 0 . 5 9 ± 0 . 0 3 

Table G.3: Acciirarios (Ace) iiiid F; scones on CMl' MoBo datasrt. 

IXX 3XX 5XX S\'M SVM-HMM SVM-SMM BMRM-SMM 

0.82 ± 0.02 0.80 ± 0.03 0.77 ± 0.03 0.84 ± 0.03 0.87 ± 0.02 0.91 ± 0.02 0 . 9 4 - 0 . 0 1 

Table 6.4: Action recognition rates on the (iataset. 

6.4.3 C M U MoBo datase t 

This dataset (R.Gross and Slii. 2001) contains 24 indivichials^^ walking on a tread-
mill. As illustrated in Figure 6.3. each sul)ject performs in a video clip one of 
the four different actions: slow walk, fast walk, incline walk and slow walk with 
a hall. Each secjuence has l)een pre-processed to contain several cycles of a single 
action and we additionally manually label the boundary positions of these cycles. 
The task on this dataset is to automatically i)artition a sequence into atomic 
action cycles, as well as i)redict the action label of this sequence. 

Table 6.3 i)resents the results averaged over 6-fol(l cross-validation. The re-
sults of 3XX and 5XX are omitted here as they are very similar to IXX. We 
also experiment with generative HMM solely on the task of action recognition 
(predicting action label for each secjuence), where one HMM is trained for each 
action tvi)e using the BamnWelch algorithm. It performs slightly better than 
the baseline methods inchiding KXX (K=1.3.5) and SVM. but is still inferior 
to SVM-HMM (Tsochantaridis et al., 2005), its discriminative counteri)art. Xote 
that both SMM variants (SVM-SMM and BMRM-SMM) significantly outperform 
the other methods inc-luding S\'M-HMM on action label i)r(xlicti()n as well as on 
segmentation of action cycles. 

6.4.4 W B D : A Datase t of Cont inuous Actions 

In addition to the existing datasets (such as the MoBo and the KTH datasets). 
where each secjuence contains exactly one type of action, we construct a Walk-
B(>n(l-Draw (WBD) dataset of continuous actions. S(mie exemplar frames are 
displayed in Figure 6.4. This is an indoor video dataset containing three subjects. 

tThe dataset originally consists of 2.'3 sui).jects. We drop the last person since we experienced 
technical problems obtaining the setiuences of this individual walking with balls. 
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cluster A cluster B ^ cluster C cluster D 

Figure 6.4: A Walk-Beiid-Draw (WBD) dataset. Top shows some sample frames of the 

dataset . Bo t t om disi^lays the assignments of image feature points on four randomly chosen 

codei)ook clusters over time and across person. 

each perfonniiig six action sequences at 30 FPS at a resolution of 720 x 480, and 

each seciuence consists of three continuous actions: slow vjalk, bend body and draw 

on board, and on average each action lasts about 2.5 seconds. We subsaniple each 

seciuence to obtain 30 key frames, and manually label the gromid truth actions. 

The comparison results, obtained using 6-fold cross-validation, are sunnnarised 

in table 6.4. Both discriminative SMM variants consistently deliver the best re-

sults, while here BMRM-SMM slightly outperforms SVM-SMM. They are then 

followed by SVM-HAIM, SVM, and the KNN methods, in an order that is consis-

tent with the experimental results for the synthetic dataset. Furthermore, Tables 

6.5 and 6.6 display the confusion matrices of the two SAIM variants: SVM-SMM 

vs. BMRM-SMM. where the two actions walk and draw seem to be rarely 

confused with each other, nevertheless both sometimes are mis-interpreted as 

bend. This is to l)e expected, as although walk and draw appear to be more 

similar to hvnnan observer in isolated images, it nevertheless can be learned by 

discriminative SMM methods that walk bend and dmw are usually conchictcHl in 

order. 
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truth vs. predict walk bend draw 

walk 0.07 0.00 

bend 0.05 0.02 

(haw 0.01 0.09 

Tal)lo G.5: Confusion matrix of S\ 'M-SMM on ^^"BD. 

truth vs. predict walk ])eud draw 

walk • j Q I 0.09 0.00 
bend 0.03 0.04 
draw 0.00 0.04 

T a b l e 6.6: Confusion matrix of BMRM-SMM on WBD. 

6.5 Conclus ion 

We present a novel disci-iniinative semi-Markov approach to hninan action anal-
ysis. where we intend to sinniltaneously segment and recognise continnons action 
se(inenc:(^s. We then devise a Viterbi-like dynamic progrannning algorithm that 
is aljle to efficiently solve the inference problem, and show the induced learning 
problem can be cast as a convex optimisation i)roblem with many constraints, 
that can be subsequently solved and we present two such solvers. Empirical sim-
ulations demonstrate that our approach is competitive to and often outperforms 
the state-of-th(>-art methods. 

Our approach (tan be extended in several directions. It is promising to explore 
the dual representation in order to incorporate matching cost between point sets. 
On futme work we also i)lan to ai)i)ly this approach to closely related problems, 
such as detecting unusual ac-tions from a large video dataset. 



Chapter 7 

Hybrid Models on NLP and 
Image Categorisation 

CRFs and SVMs can l)e seen as being representative of two different approaches to 
classification problems. The former is a probabilistic approach the conditional 
probability of classes given each observation is explicitly modelled while the 
latter is a max margin approach classification is performed withont any attempt 
to model probabilities. 

Both approaches have their strengths and weaknesses. CRFs (Lafferty et al., 
2()()f; Sha and Pereira, 2{)()3) vise a log loss which is known to be consistent. How-
ever. modelling P ( y | x) often requires a large number of training examples and 
may sacrifice classihcation accuracy if the underlying distribution is complicated 
(Bulatov and Bousquet, 2007). In contrast, Support Vector Machines make more 
efficient use of training examples but are known to be inconsistent when there 
are more than two classes (Tewari and Bartlett. 2007: Liu. 2007). 

Des])ite their different characteristics, CRFs and SVMs appear very similar 
when viewed as optimisation problems. The most salient difference is the loss 
used by each: CRFs are trained using a log loss while SVMs typically use a hinge 
loss. 

In an attempt to capitalise on their relative strengths and avoid tlunr weak-
nesses we propose a hybrid approach that uses a convex "blend"' of thes(^ two 
losses. The new hy])rid loss is conditionally consistent and has a generalisation 
bound guarantee. We postpone the detailed theoretical analysis to Chapter 8 (see 
the consistency of the hybrid loss in Section 8.1.2 and the generalisation bound 
of the hybrid k)ss in Section 8.2.3). We apply it to several natural language pro-
cessing (NLP) applications and image categorisation before concluding with some 
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possible future refiuenients (Sectiou 7.4). 

7.1 The Hybrid Loss 

The scores giveu to labels by a geueral model / : X —> M can be transformed 

into a conditional probability distribution p{:x-: f ) G [0. f]'"' by letting 

, f , exp ( /y (x) ) i ^ x : / = = ' 7.1) 
E y e y e x p ( / y ( x ) ) 

It is easy to show that under this interpretation the hinge loss for a proba-

bilistic model p — p{-: f ) is given by 

Py ^nip-y) = 1 - In 
n i a X y Y y i V J + 

Another well known loss for probabilistic models, such as Conditional Random 

Fields, is the log loss 

h{p-y) =-hipy. (7.3) 

This loss penalises models that assign low probability to likely instances labels 

and. implicitly, that assign high probability to unlikely labels. 

The hybrid loss introduced in this chapter is a loss for proliabilistic models 

that is a convex coni])ination of the hinge and log losses 

L{p-y) = n(iip.y) + {l-Q)('H{p.y) (7.4) 

1 - l n ^ •5) = —Q hi(7Jy) + (1 - a 

L m ^ X y V y i V J 

where mixture of the two losses is controlled by a parameter a G [0.1]. Setting 

Q = 1 or Q = 0 recovers the log loss or hinge loss, respectively-. The intention is 

that choosing q close to 0 will emphasise having the maximum label ]:)robabihty 

as large as possible while an q close to 1 will force models to ])refer accurate 

probability assessments over strong classification. 

7.2 Consistency and Generalisation bound 

We will show in Section 8.1.2 that the hybrid loss can be conditionally consis-

tent when the traditional hinge loss is not (see Theorem 16 in Section 8.1.3) . 

Specifically, the hybrid loss can yield consistent predictions for instances with 

non-dominant labels provided the label probabilities are not too close. Also, we 

will show that the hyl^rid loss has a tighter generalisation bound than C R F s (see 

Theorem 19 in Sectitm 8.2.3). 
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7.3 Applications 

To show how the hyl)rid approach perforins relative^ to the log aiitl hinge losses, 

we apply it to a controlled synthetic nnilticlass dataset in which the dataset size 

and proi)ortion of examples with non-dominant labels is can-fnlly controlled. As 

might l)e expected, we observe that the hyl)rid kjss outperforms the hinge loss 

when there are many instances with non-dominant labels and outperforms the 

log loss when relatively few training exam])les are available and most of those 

have dominant labels. 

We also compare the hybrid loss to the log and hinge losses on several struc-

tured estimation prol:)lems and note that the hybrid loss regularly performs as 

well as either of the other losses. 

7.3.1 Multiclass 

We now rmi two multiclass sinnilations with a controlled data distribution D{y. x) 

having non-dominant class, i.e., with instances with Dy(x) < 1/2 for all labels 

y-

Non-dominant Distributions 

Our first simulation is to see how the hinge, log and hybrid losses perform when 

all data are from a distribution that has no dominant class. In this case one of the 

labels y* for each instanc'e x has Dy. (x) = 0.4G and the rest of the Dy (x), Vy ^ y* 

are of equal value. The instances are drawn from Gaussians. x ~ 

where // = 1.2, a = 0,0.1,0.2, 0.3,... . For a = 0. we generate datasets with 100 

examples from Z)y(x) for the number of classes | y | = 3, 4, 5 , . . . , 10. For instance, 

the dataset with 10 classes has 46 examples from class y*. and 6 examples from 

each of the other classes. A good classifier should i)redict y* as label for it is the 

most likely one. Thus a training error should be 1 — Dy*{:>c) = 0.55. In other 

worfls, predicting any other y instead of y* will give higher error.The training 

errors for hinge, log and hylirid losses are i)lotted in Figure 7.1. As we can see 

clearly, the errors for the log and the hybrid losses remain a constant (1 — Dy.(x)) 

as a g(jod classiher should behave. When^as the hinge loss error increases as th(> 

number of classes incniases. This is in concordance with the consistency analysis 

of the three losses. 
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Figure 7.1: Training error cur^'e with various number of classes, a = 0.5 for the 
hybrid loss. 

Mix of Non-dominant and Dominant Distributions 

Minimising a consistent loss will always outperform an inconsistent one when 
non-dominant distributions are present if the entire data distribution is available. 
However, in practice, we often only have access to a small sample of the entire data 
distribution. Our second simulation is to study how the three losses perform given 
various training set sizes (denoted by m) and various proportions of instances 
with non-dominant distributions (denoted by p). ^\'e generate a 5 class data 
set with 100 feature dimensions as follows. In the non-dominant class case, the 
observation x is fixed and its comhtional distribution is set to be Dy«(x) = 0.4 and 
Dy{x) — 0.15 for y ^ y*. In the dominant c:ase, each dimension of the observation 
X is drawn from a one dimensional normal distribution A'(// = 1 + j , a = 0.6) for 
the class j = 1 , . . . , 5. The proportion p ranges over the values 0.1,0.2, 0 .3 , . . . , 1 
and for each p, we generate the test set and the validation set with the same 
size 1000. Training set sizes of m = 30.60.100.300.600,1000 are used. Given a 
mixing ratio p. we train models using the three losses on the training data with 
size m. and then aj^ply the models to the test and validation data. 

The results are sunnnarised in Figru'e 7.2. from which we can see a clear trend 
when the non-dominant class portion p is small {e.g., when p = 0.1) and ni is 

small (30,60), the hinge loss outperforms the log and hybrid losses. For larger rn, 
the hybrid loss outperforms the log and hinge losses more often than not. 
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Figure 7.2: Accuracy first vs. accuracy secoud. The colored dot iudicates accu-
racy first > accuracy second. The size of the dot is proportional to the difference 
of two accuracies. Different color means the size is significantly different. 

7.3.2 Text Chunking 

Unlike the general nmlticlass case, structured estimation problems have a higher 
chance of non-dominant distributions because of the very large number of labels 
as well as ties or ambiguity regarding those labels. For example, in video segmen-
tation. predicting a bovuidary with 1 or 2 frames offset from the human manually 
marked boundary is considered as "correct". Likewise in text chunking, tagging 
only one phrase differently while the rest are unchanged should not give totally 
different probability predictions especially when there are ambiguities. Likewise 
in image denoising. changing a pixel's predicted graylevel (1 to 255) by 1, should 
not radically change the probability of the predicted whole image. Thus, because 
of the prevalence of non-dominant distributions, we expect that trained models 
using a hinge loss to perform poorly on these problems relative to training with 
hybrid or log losses. 

CONLL2000 Text Chunking 

Our first structured estimation experiment is carried out on the CONLL2()0() 
text chunking task*. The data set has 8936 training sentences and 2012 testing 
sentences with 106978 and 23852 phrases (a.k.a., chunks) respectively. The task is 
to divide a text into syntac:tically correlated parts of words such as noun phrases, 
verb phrases, and so on. For a sentence with L chmiks. its label consists of the 
tagging secjuence of all chunks, i.e. y = ( y ^ y^, y'^), where y^ is the chunking 
tag for chunk i. As is commonly used in this task, the label y is modelled as a ID 
Markov chain, considering the dependenc:y of adjac:ent chunking tags (y j ,y - ' ' ' ' ) 

*do\vuload from litt])://ww\v.cnts.ua.ac.l)e/conll2000/chunkiug/ 
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Algorithm Accuracy Precision Recall F1 Score 
SVAl 94.G1 91.23 91.37 91.30 
CRF 95.10 92.32 91.97 92.15 

Hybrid 95.11 92.35 92.00 92.17 

Table 7.1: Accuracy, precision, recall and F1 Score on the C()XLL2()00 text 
chunking task. \\'innei's are in l)oklface. 

Algorithm Accuracy Precision Recall F1 Score 
SVM 94.64 87.58 88.30 87.94 
CRF 95.21 90.07 88.89 89.48 

Hybrid 95.24 90.12 88.98 89.55 

Table 7.2: Accuracy, precision, recall and F1 Score on the baseXP chunking task. 
\\'inners are in boldface. 

given observation x,. Clearly, the model has exponentially many possible labels, 
which suggest that there might be many non-dominant classes. 

Since the true underlying distribution is unknown, we train a CRF (using 
the feature template from the CRF-j—|- toolkit^ and the CRF code^ from Leon 
Bottou) on the training set and then apply the trahied model to both the testing 
and training datasets to get an estimate of the conditional distributions for each 
instance. We sort the sentences Xj from highest to lowest estimated probability 
on the true chunking label y,- given X;. The result is plotted in Figure 7.3, from 
which we observe the existence of many non-dominant distributions al)out 1/3 
of the testing sentences and about 1/4 of the training sentences. 

We split the data into 3 parts: training (20%). testing (40%) and validation 
(40%). The regularisation parameter A and the weight a are determined via 
Ijarameter selection using the validation set. The ac:curacy. precision, recall and 
F1 Score on test set are reported in Table 7.2 for various used proportion of the 
training set used. As exj^ected. when there is not an abundant amount of data, 
the hybrid loss outperforms both the SVM and CRF. 

^download from http://crfpp.sourceforge.net/ 
^download from littp://leoii.bottou.org/projects/sgd 
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number of sentences 

(a) the testing set 
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number of sentences 

(Ij) the trainhig set 

Figure 7.3: Estimated probabilities of the true label Dy.{-Xi) and most likely label 
Sentences are sorted according to and -Dy»(x,) respectively in 

ascending order. Z) = 1/2 is shown as the straight black dot line. About 700 
sentences out of 2012 in the testing set and 2000 sentences out of 8936 in the 
training set have no dominant class. 

baseNP Chunking 

This dataset is provided in C R F + + toolkit that is mentioned before. It has 900 
sentences in total. The task is to automatically classify a chvmking phrase is as 
baseNP or not. We split the data and select A and a in the same way as the 
above CONLL2000 data. We report the test accuracy, precision, recall and F1 
Score in Table 7.2. The hybrid loss/model outperforms SVM and CRF on all 
nreasures. 

7.3.3 Joint Image Categorisation 

Our final experiment is joint image categorisation. The task is to categorise 
pre-segmented image areas by considering their dependency across the image 
segments. We use the well-known Corel dataset (Ren and Malik. 2003), which 
has 100 images and 7 classes: hippo, polar bear, water, snow, vegetation, ground. 
and sky. This is a very challenging task since there are 7" many possible labels 
for an image with n segments. 

The ground truth segmentations provided from the dataset are used as pre-
segmented o])ject regions. Therefore each image contains one or nuiltiple ob-
jects/regions. We use 5G images for training, and 20 images for testing. The rest 
of the images are excluded either because they are too small or because they con-
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Dataset SVM-linear SVM-RBF SVM-Struct CRF Hybrid 

Corel 7" 58.62 65.52 89.66 86.21 
1 

89.66 

Table 7.3: Image object categorisation on the Corel clataset. SVM-Linear: i.i.d. S\̂]\I 

nsing Linear kernel. SVM-RBF: i.i.d. SVM using RBF kernel. SVM-Striict: structiu'ecl 

SVM using Linear kernel; CRF: CRF on sparse graph using ]\LA.P estimator with LBP 

inference. Hybrid: our hybrid model on a sparse graph. \\'inners arc in boldface. 

tain too many objects. The graphical model of an image is shown in Figure 7.4. 

where each segment is a node and edges capture the adjacency dependence. 

Features 

Any image with n segments and labels is represented as (x. y) = {(x'. 

where the x' and y' are the /-th segment and corresponding label. We assume 

that global feature $ (x .y ) is decomposed over singleton terms <I>,(x'.y^). V?. 1 < 

< n. as well as over i)airwise terms V(?. j ) G A^. where A^, is the set 

of adjacent segments in x 

i (i.j)eyt 

7.6) 

We assume is a tensor product of instance and label feature fiuictions. given 

by $j(x. y) = (y?,(x) ® y,; where is the raw node featiu'e depending only on the 

observed segmented image. Similarly <I\j(x.y) = ^i j(x) <8) y^-. where ^ ^ is the 

raw edge feature depending only on the ol)servation. and y'-' := [y' y^ 

are assembled from 

i and 

We extract a well known texton featiu'e vector Shotton et al. (2006) from 

each patch, hence every ])ixel is represented by a texton vector. The node 

feature for an object is the empirical mean of the texton vector of pixels. 

The raw node feature is given by -fi(x) = [1 yi(x ') • 

(P2 We use the mean of the boosted texton probability density of all interior and 

boundary pixels of the ol)jects as their edge feature. The raw edge feature 

is given by ipij(x) = [1 . 

As shown in Figure 7.4. the graphical model is \'ery general. Exactly com-

puting CRF gradients involves computing an expectation that is XP hard. The 
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Edge Feature Node Feature 

(c) Objects (d) Features 
Figure 7.4: An illustration of the image objects, graph and features, (a) The raw 
hippo image, (b ) The segmentation result, (c ) The objects, (d) Node and edge 
features: node feature encodes the object characteristics, while the edge feature 
encodes the interaction between objects. 

connnon way is to run a]:)i)roxiniation such as Loopy Belief Propagation (LBP) 
or sami)hng. We use LBP for CRF here. All structured algorithms use the same 
node and edge features. Non-structured algorithms use the node feature only. As 
shown in Table 7.4, structured algorithms outperform the non-structured ones as 
exi)ected. And it is interesting to see that structured SVM outperforms CRF. 
We. conjecture that this is because the CRF decision liyperplane becomes less 
accurate due to the approximated gradient i.e., the exi)ectation of the feature. 
Whereas structured SVM needs only an argmax operation which is more efficient 
and perhaps more rehable. 

7.4 Conclusion 

We have i)rovided theoretical and empirical motivation for the use of a novel 
hybrid loss for niulticlass and structured prediction problems which can be used 
in place of the more common log loss or niulticlass hinge loss. This new loss 
attempts to blend the strength of purely discriminative ap])roaches to classifica-
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tioii. such as Siii)poit Vector machines, with i)robat)ihstic approaches, such as 
Coufhtional Random Fields. Theoretically, the hybrid loss enjoys better consis-
tency guarantees than the hinge loss while experimentally we have seen that the 
addition of a purely discriminative component can improve accuracy when data 
is less pre\'alent. 
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Structured Learning Theory 





Chapter 8 

Structured Learning Theory 

Unlike the well clevel()i)e(l statistieal learning theory in non-strnctrn-ed cases (es-

pecially binary classification), the learning theory with structnred data is still 

innnature. There is no connnonly agreed method of capacity control to explain 

or guarantee the ])erforniance of these algorithms. The generalisation bounds -

even the recent structured PAC-Bayes bounds are not yet tight for exponentially 

nrany possible labels. The original Fisher consistency is too coarse a notion to 

characterise structured sm'rogate losses. 

In this chapter, we will extend the Fisher consistency to the structured case, 

and propose a refined notion to characterise the structured surrogate losses. We 

will review the recent development of PAC-Bayes bounds and give a bound on 

the generalisation error of a single structured classifier. We will also introchice 

Probal)ihstic margins (P-margins) which take the label distribution into accomit. 

It turns out that many existing algorithms can be viewed as special cases of P-

niargins. Hopefully the new alternative concept of margins can lielj) understand 

existing algorithms as well as design new algorithms. 

8.1 Fisher Consistency 

Fisher consistency for classification (FCC) is an important property for algo-

rithms, for it tells whether the algorithms yield the l^est opt imal decision bound-

ary given the entire data population. However, the existing F C C is too coarse 

it recjuires that consistency holds for all data distributions. We will propose a 

more refined notion of Fisher consistency, namely Conditional Fisher Consistency 

for Classification (CFCC) . that takes into account the true distribution of c:lass 

labels. We will show how to examine C F C C and how tcj comput(> PAC!-Bayes 
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bounds with an example of a liybrid loss which is CFCC and has a PAC-Bayes 
bound. 

8.1.1 Losses for Structured Prediction 

In classification problems uhaervatums x € X are i^aired with labels y G ^ via 
sonre joint distribution D over X x y. \\'e will write Z)(x, y) for the joint proba-
bility and D(y I x) for the conditional pro])abihty of y given x. Since the labels 
y are finite and discrete we will also use the notation -Dy(x) for the conditional 
probability to emphasise that distributions over ^ can be thought of as vectors 
in M̂ ' for A' = | y |. 

\Mien the munber of possible labels k = | y | > 2 we call the classification 
problem a m,ulticlass classification problem. A special case of this type of i^roblem 
is structured prediction where the set of labels y has some combinatorial structure 
that typically means k is very large (Bakir et al.. 2007). As seen in Section 7 
a variety of problems, such as text tagging and image categorisation, can be 
construed as structured prediction problems. 

Given m training samples S = { (x i ,y j ) } "^ j drawn i.i.d. from D. the aim of 
the learner is to produce a predictor /; : X -> y that minimises the rnisclassi-
ficaiion error Boih) = Pr/j [/?(x) ^ y]. Since the true distribution is unknown, 
an approximate solution to this problem is typically fomid by minimising a regu-
larised empirical estimate of the risk for a surrogate loss i. Examples of surrogate 
losses will be discussed below. 

Once a loss is specified, a solution is found by solving 

1 

i=l 

where each model f : X ^ R'' assigns a vector of scores / ( x ) to each o])servation 
and regulariser Q{f) penalises overly complex functions. A model / found in this 
way can be transformed into a predictor by defining /;(x) = argmaXy^y / y ( x ) . 

In structured predic:tion. the models are usually s])ecified in terms of a param-
eter vector w G R" and a featm'e map 0 : X x y M" by defining /y (x ; w) = 
(w, (f)(x. y ) ) and in this case, the regulariser is n{f) = f || w ||2 for some choice of 
A e R. However much of the analysis does not assume any particular parametric 
model. 

A conmion surrogate loss for nmlticlass problems is a generalisation of the 
binary class hinge loss used for Support Vector Macdnnes (Crammer and Singer. 
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20()()): 

^//(/,y) = [ i - M / , y ) ] + (8.2) 
where [z]+ = 2 for z > 0 and is 0 otherwise, and i\ / ( / ,y ) = /y - maxy/^y 
is the mrmiiv foi' tlie vector / e R'''. Intnitivelv. the liin^f^ loss is minimised 
by models that not only classify obscn'vations correctly but also maximise the 
difference between the highest and second highest scores assigned to the labels. 

8.1.2 Conditional Fisher Consistency For Classification 

We will say that a vector / G M'̂ I is aligned with a distribution D G A ( y ) 
whenever its maxiniisers are also maximisers for D: 

argrnax fy C argniax Dy. 
yey ' yey 

A loss function i is called Fisher consistent for dassifi,cation (FCC) or 
classification calibrated if minimising its conditional risk L{p) = y)] 
yields a vector p* aligned with D. This is an important property for losses since 
it is ecjuivalent to the asymptotic consistency of the empirical risk minimiser for 
that loss (Tewari and Bartlett, 2007, Theorem 2). 

The multi-class hinge loss in is known to be inconsistent for classification 
when there are more than two classes (Liu, 2007; Tewari and Bartlett. 2007). 
The analysis in (Liu. 2007) shows that hinge loss is consistent whenever there 
is an instance x with a non-dominant distribution - that is, £)y(x) < | for all 
y e y. Conversely. A distribution is dominant for an instance x if there is some 
y with Dy(x) > 

In c:ontrast, the log loss used to train CRFs is Fisher consistent for probability 
estimation that is, the associated risk is minimised by the true conditional 
distribution - and thus i c is FCC since the minimising distribution is equal to 
D ( x ) and thus aligned with r>(x). 

The existing FCC is too restrictive since it requires the consistency for all D 

- even for some bizarre D which may never appear in real applications. Hence 
we introduce a more refined notion of Fisher consistency that takes into account 
the true distribution of class labels. 

Definition 15 (Conditional Fisher Consistency For Classification) If D = 
{Di Dk) is a distribution over the labels ^ then we say the loss i is condi-
tionally FCC with respect to D whenever minimising the conditional risk w.r.t. 
D, LD{II) = Ey-w [^(/(,y)] yields a predictor h* that is consistent with D. Of 
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course, if a loss i is conditionally FCC w.r.t. D for all D it is, by definition, 
(unconditionally) FCC. 

8.1.3 Conditional Consistency of Hybrid Loss 

Recall the hybrid loss for probabihstic models that is a convex coinbiiiatioii of 
the hinge and log losses in (7.4). 

T h e o r e m 16 Let D = (Di, Dt) be a distribution over labels and let y j = 
niaxy Dy and yj = niaxy^y^ Dy be the two most likely labels. Then the hylnvl 
loss ia is conditionally FCC for D whenever Dy^ > ^ or 

(8.3) 

Theorem 16 can be inverted and interpreted as a constraint on the distribntion 
D such that a hybrid loss with parameter Q will yield consistent predictions. 
Specifically, the hybrid loss will be consistent if, for all x € X such that £'y(x) has 
no donrinant label {i.e., Dy(x) < ^ for all y e y), the separation Dy^ (x) - Dy^{x) 
between the top two probabilities is more than (1 - a ) ( l - 2Z)y^(x)). When this 
is not the case for some x. the classification problem for that instance is. in some 
sense, too difficult to disambiguate. For the proof see Appendix B. 

Wc expect that some stronger sufficient conditions on a are possible since the 
bounds used to estal)lish Theor em IG are not tight. Oiu' conjecture is that a 
necessary and sufficient condition would include a dependency on the number of 
classes. 

8.2 PAC-Bayes Bounds 

The generalisation error 

eo = Pr ( y ^ argmax F ( x , y'; w) 
(x .y)~i ) \ y/gy 

captures the performance of the algorithm. There are several bounds such as VC 
bound(Vapnik. 1996), Radeniacher bound(Shawe-Taylor and Cristianini, 2004) 
and so on that upper bound the generalisation error. Among them. PAC-Bayes 
bounds (McAllester, 1998; Langforcl et al., 2001; Germain et a l , 2008; Zhu and 
Xing, 2009) are i)articularly tight. 
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There are two types of classifiers cominoiily used in PAC-Bayes Ijouiuis : 
Gibbs classifiers and Average classifiers. Both assume that there exist a i^rior P 
over classihers II e Jf. The task for Gibbs classihers is to choose a posterior Q 
such that the C^-weighted majority vote classifier (a Gil^bs classiher) will have the 
smallest risk. For H parameterised by w via F. we simjily denote the prior and 
posterior on w as P(w) and Q(w) to avoid too much notation. The pre(hction 
then be('onies 

= E. 'w^Q(w) argniax F(x, y'; w^ 
y'ey 

Similarly, an Average classifier predicts by 

y'ey 

So the risk for a Gi1)bs classifier is 

F (x ,y ' ; w; 

(8.4) 

(8.5) 

(8.G) 

= IE(x.y)~D(x,y){Ew~Q(w)[4/l(x, y ; W^ 

(8.7) 

(8.8) 

where the 0/1 loss £o/i(x,y; w) = l ( y argmaXy,gy F(x,y';w^)). l ( s ) = 1 if the 
statement s is true and 0 otherwise. The risk for an Average classifier is 

R{AQ) = E(X.Y)^D(X.Y)[^4Q(X) Y; 

= IE(x.y)~/)(x.y){y argmaxEŵ Q{w; 
y'ey 

i^(x,y';w)]}. 

(8.9) 

(8.10) 

The Gil:ibs classifier seems to l)e easier to bound since the two expectations are 
together. Indeed, the first PAC-Bayes l)ounds were proposed (McAllester, 1998, 
1999) for Gil)bs classifiers. Later, it is o1)serve(l that R{AQ) < 2/?(Gq) (Langford 
and Shawe-Taylor. 2003; Germain et al., 2008), thus one can focus on /?(Gq) 
only. 

8.2.1 PAC-Bayes Bounds on Gibbs Classifiers 

McAllester introduced PAC-Bayes analysis (McAllester. 1998. 1999) which is 
further refined in McAllester (2001); Langford et al. (2001): Langford (2005); 
Langford and Shawe-Taylor (2003). Germain et al. (2008) recently give a sim-
])lified PAC-Bayesian lK)und proof on Gibl)s classifiers for any convex function 
D : [0,1] X [0,1] ^ M. Defining T)(q,p) = 2{q - p f . one can apply it to any 
general k)ss ^(x, y;w), thus giving the foUowing lemma: 
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Theorem 17 (PAC-Bayesian bound(McAllester, 2001; Germain et al., 2008)) 
For any data distribution D, for any prior P and posterior Q over w. for any 
S G (0,1]. for- any loss L With prvbability at least 1 — d oiwr random sample S 
from D wit]) m instances, we have 

mo. < RsiQ. n + J ' S m m M i ^ - - ' 2m 

where KL{Q\\P) := is the Kullback-Leibler divergence between Q 
and P, and 

/ ? (g .£ ) = Eg,z;[{(x.y:w)]. (8.11) 

Bs[Q. i) = Eg 

{E.^om Ew^P e^n,.{R(Q.()-Rs{Q.()f^ ig usually upper bounded b>- a function indejjen-
dent to the data distribution D. For example, for the zero-one loss, it is upper 
bounded by m + 1 (see Germain et al.. 2008). 

8.2.2 PAC-Bayes bounds on Average Classifiers 
Langford et al. (2001) give a margin bound on a\'erage classifier for binary clas-
sification as follows: 

Theorem 18 (Bound on Average Classifier for Binary Classification) For 
y = {-1.1}. for any data distribution D, for any prior P over w. for any w. any 
S e (0,1] and for any 7 > 0. with probability at least 1 - 5 over random samples 
S from D with m instances, we have 

< 0) < ^ ( . E „ . « [ „ ( x ) l < 

y-212^ In m + In m + In 
ni 

Zhu and Xing (2009) later extend it to structured output case for MEDX (see 
Section 4.4.3 for its definition), which is still an average classifier. 

8.2.3 PAC-Bayes Margin bounds 
Here we extend existing PAC-Bayes boinids on Averaging classifiers to a single 
classifier such as SVMs or CRFs in the strtictured output case. Define .U(w'. y ) = 
mhiy/^y (w. ^(x^y) - <I>(x.y')). then the following theorem holds. 
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Theorem 19 (Generalisation Margin Bound) For- any data distnbutum D, 
for any prior P over w, for any w, any d e (0,1] and for any 7 > 0. with 
probahi.lity ai least 1 - S over random sa,m.j)les S from D with in instances, we 
})a,ve 

Pr ( E g ( M ( w ' . y ) ) < 7 ) 

2 \ 
lii(/»| V I) + lirm + 

in / 
For the proof sec Appendix B. The l)ig () notation l)onn(l decreases as 7 in-
creases. However, choosing a large 7 will increase the empirical error ^ = 
Pr(x.y)~,s(EQ(i'\/(w', y ) ) < 7) . Fixing one can then seek the largest possible ^ 
to tighten the l)()nnd. 

hi fact, the theorem holds not only for the hybrid model, bnt also for the 
SVMs and CRFs. Moreover, for a hxed the largest possible 7 in the hybrid 
model implicitly depends on a. This is because SVMs purely maximise the margin 
7 whereas the hybrid model tries to balance a large margin and small log loss 
ac:cording to a. For CRFs, the bound can be meaningless since 7 is not maximised 
at all. Using the FCC analysis, one can always find the smallest a to ensure the 
conditionally FCC on the hybrid model. Ajjplying the theorem gives a non-
trivial generalisation bound on the hybrid model. This way, the hybrid model 
has strengths of both CRFs and SVMs. 

8.3 Probabilistic Margins 
Traditional large margin algorithms have a geometrical interpretation the hy-
perplane separates the correctly and inc:orrectly labeled data in the feature space 
by a large margin. However, the existing margins don't take into account the 
probability distribution of the labels. One may argue that if you want to do 
classification, you don't nô ed to waste your c:om])utational power on modelling 
the distribution. However, if we have some knowledge of the label distribution, 
taking it into account may help design more robust learning algorithms. 

8.3.1 Geometrical Margins 

Crannner and Singcu' give the definition of SVM margins for multiclass classifi-
cation (Crannner and Singer. 2001), which has b(>en further generalised in struc-
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tured lal)el case (Taskar et al.. 2()()4; Tsocliantaridis et al.. 2004). It is known 
that the margin has a geornetriCMl interpretation - the hyper])lane {i.e. the 
(liscriniinant fnnetion F) separates the correctly and incorrectly labeled data in 
the feature s]jace by a large margin. Hence we call it geometrical margin. For 
cxami)le. the hard margin SVMs is dehned as 

max 7 s.t. (8.13a) 
7 

||w|i = l (8.13b) 

V ? \ y ( w . $ ( x , - , y , ) - $ ( x , . y ) ) > 7 . (8.13c) 

where 7 > 0. enforces the separability of input-onti)ut pairs. To allow outliers, 
the soft margin constraint is defined as 

max 7 s-t- (8.14a) 

II w 11 = 1 (8.14b) 

V7.y ( w . $ ( x „ y j - $ ( x ; . y ) ) > 7 - (8.14c) 

8.3.2 Probabilistic Margins 
As we shall see. these margin constraints haven't made use of any information 
about how the data is distributed. It is natm'al to think what we will gain l)y 
making use of the (approximated) distribution of the data \ x ) . We call any 
nrargins represented in terms of Pw(y |x) Prol)abihstic Margins. For simplicity, 
we use p{y) to express \ x ) when the c:ontext of x is clear. 

De f in i t i on 20 (Feasible sets a n d P - m a p p i n g ) The smallest feasible set for 

(my y e y is [p : piy) = e A ( y ) } , i.e. the corresponding corner of the 

simplex. We denote it as Moc(y). A convex set M-, (y) is a feasible set if and 

only if there exists f ]^ : A ( y ) x y ^ M^(y) V7 G R, satisfies: 

( M o n o t o n i c dec rease ) M , j ( y ) D M^, (y ) if and only if < 72; (8.15) 

( C o n v e x i t y ) M-^(y) is still convex. (8.16) 

Such a n^ 'i-s called P-mapping. We also define 

= (8.17) 
yeM 
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P(y=2|x) 

7 0.5 

(a) SVMs 

P(y=2|x) 

(1)) CRFs 

P(y=2|x) 

(c) cycle 

Figure 8.1: Contours of P-margiiis feasil)le sets. The green lines are the boundary 
of M ,̂ on the simplex on selected 7 values. The region with red dots is = 3) 
with the largest 7 value. 3 classes are used for denioiistration purposes, although 
nothing prevents us from using the structured case, (a) SVMs margin. That 

> = 0.5,1,1.5. (b) Lower bounded CRFs margin. That is is in p(y) 
p(y*) 

hip(y) > 7 . 7 = lu(0.G),hi(0.7),hi(0.8). (c) Cycle constraint margin. That is 
(p(y) - 1 ) ' + Ey'^yiPiyT) < (1 - 7 ) ' , 7 = 0.5,0.65.0.8. Red dots are p points 
sampled in the feasible set. Due to synnnetr}^ we only sample from the right half 
region of M.y, and then display sample points synnnetrically on both sides. 

Intuitively, P-margins can be viewed as getting different contours of the feasible 
set via choosing different M-,. Thus increasing 7 , the feasible set shrinks differ-
ently given different H- ^̂ ^ tli® other hand, one can come up with any contour 
of the feasible set, as long as the Monotonic decrease and Convexity hold, it is a 
valid P-margin. This is very convenient. 

Some P-margins are shown in Fig. 8.1. For example Fig. 8.1a shows that the 
contours of SVAIs margin feasil)le sets are parallel to blue bisector lines. Whereas 
for Lower Bounded CRFs (LCRFs), the contours are straight lines (see Fig. 8.11:»). 
What if we want the contours to be cycles centred at each corner as Fig. 8.1c 
shows? It turns out that following constraint {p{y)- l ) '^+T.y'^yiPiy' f ) < (1-7)'"^ 
gives exactly what we want. 

Definition 21 (Realizable P-margins) A func.Uonal // : A (y ) x ^ ^ 
called a realizable P-niargin and only if // satisfies: 

V7 G M, {p: p G A(y), flip.y) > 7} = M7(y)-

IS 
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R(>alizal)le inargiiis have a more intuitive interpretation f i ( p . y ) is greater than 

a certain thres l iokl It is easy to show that margins for S V M s and L C R F S are 

reaUsable. And the cvcle constraint can be rewritten as 

i - / ( y H y ) - l ) - + ^ ( i H y ' ) - ) > ' • 
V yVy 

thus it is reahsable as well. 

We now examine two interpretations of the pro]ial)ilistic margins. T h e first 

relates the p-niargin to losses for probability est imation while the second gives 

a geometrical interpretation in terms of restrictions of models on probability 

siniplexes. This second interpretation provides an intuition as to how the margins 

act as a capacity control, in a similar way to the way the original, geometric 

margin does for classification. 

8.3.3 Losses imply P-Margins 

Many existing algorithm can then be cast as 

max 7 , s.t. (8 .18a) 
p 

y i , p e M - , i y , ) . (8 .18b) 

To allow outliers, a soft margin version is obtained by a relaxed constraint 

m a x o - C V ^ , . s.f. (8 .19a) 
p ^ 

I 

> 0 . (8.191)) 

For realizable margins, the constraints bec:ome 

n i a x 7 - C ^ C i , s.f. (8 .20a) 
i 

(8 .20b) 

Alternatively, it can be written as 

rn 

mm J{p) \i}{p) + ^ .s.i. (8 .21a) 
i=l 

V i . / / ( p . y , ) > 7 o - ^ i . ^ i > 0 . (8 .21b) 

where 70 is a fixed constant. 
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A l g o r i t h m s L o s s e s /'(p-y) 70 
Hinge 

HingeRescale 

ScjuaredHinge 

C R F 

[1 - (w, ( I ) (x .y) - cl>(x,y))]+ 

[-^(y^y) - (w,<i>(x.y) - $ ( x , y ) ) ] + 

i ( l - ( w . $ ( x . y ) - ( I ) ( x . y ) ) ) 2 

(4>(x .y) .w) - l n ( Z ( w l x ) ) 

111 

-ijiu'^r + iu'^, 

-Hp{y)} 

1 

A ( y , y ) 
1 
2 

0 

Table 8.1: Loss functions and their P-niargins constraint fiip. y) > O'o — 

S V M s The soft margin SVM has the hinge loss 

4 ( x , y . w ) = [1 - ( w . $ ( x , y ) - $ ( x , y ) ) ] + 

1 - In 
p{y) 

So I n l a n d 70 = 1. 

C R F s C R F s can be also formulated as 

m 
. w 

a r g ™ ^ 
i=l 

s.f. h i ( p ( y j ) > 6 > 0 , Vz 

So i.i{p,y) = hi(p(y,)) and 70 = 0. 
For more examples of P-margins for various algorithms, see Taljle 8.1. 

(8.22) 

(8.23) 

8.4 Conclusion 

We extended the Fisher consistency to the structured case, and proposed a refined 

notion to characterise the structured surrogate losses. We reviewed the rec.ent 

development of PAC-Bayes bounds and gave a l)ound on the generalisation error 

of a single structured classifier. We also introduce P-niargins whicdi take the lal)el 

distribution into accoTint. Anrl we show that many existing algorithms can be 

viewed as special cases of the new margin concept which may help understand 

existing algorithms as Avell as design new algorithms. 
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Chapter 9 

Summary and Future Directions 

111 this chapter, we will suiiiiiiarise our contributions and discuss future directions. 

9.1 Contribution Summary 

111 this thesis, we made several contributions some are complete, and some 
are at the exploratory stage. We propose hash kernels (in Chapter 2) to facili-
tate efficient kernels (Shi et ah, 2()09a.b) whic-h can deal with massive multi-class 
problems with even more than 7000 classes. W'e exploit the connection between 
hash kernels and compressed sensing, and apply hashing to face recognition which 
significantly speeds up the state-of-the-art (Shi et ah, 2010a) (in Chapter 3). We 
propose a novel approach for automatic paragraph segmentation (Shi et ah, 2007) 
(in Chapter 5), namely training Semi-Markov models discriminatively using a 
Max-Margin method. This method allows us to model the seciuential nature of 
the problem and to incorporate features of a whole paragraph. We jointly seg-
ment and recognise actions in video seciuences with a discriminative semi-Markov 
model framework (Shi et al.. 2008. 2009(1) (in Chapter C). A Viterbi-like algo-
rithm is devised to help efhciently solve the induced optimisation i)r()bleni. We 
propose a novel hybrid loss (Shi et ah, 2009c, 2010b) (in Chapter 7) which has the 
advantages of both CRFs and SVMs it is consistent and has a tight PAC-Bayes 
bound. We apply it to various applications such as Text chunking. Named En-
tity Recognition and Joint Image Categorisation. We study the recent advances 
in PAC-Bayes l)ounds, and apply them to structured learning (Shi et al., 2009c, 
20101)) (ill Chapter 8). Moreover, we propose a more refined notion of Fisher con-
sistency. namely Condittonal Ftsher Consistency for Class?fiaiHon (CFCC)(Shi 
et ah. 20101)), that conditions on the knowledge of the true distribution of class 
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labels. It turns out that the hybrid loss is CFCC ljut not FCC. \\e also intro-

duce Probabilistic: margins (in Chapter 8) wliieh take the label distribution into 

account. And we show that many existing algorithnrs can be viewed as special 

cases of the new margin concept which may help understand existing algorithms 

as well as design new algorithms. 

9.2 Future Directions 

9.2.1 Tightening PAC-Bayes bounds 

PAC-Bayes bounds incorporate both data and the distributions of models. How-

ever. those existing bomids are often pessimistic and loose. It may be possible 

to develop tighter l:)o\nids using more information exacted from the data. For 

example, the true conditional distribution of a label for an observation is often 

on few labels. Hence the large c^uantity of the size of the label space in the PAC-

Bayes bomid might be replaced by some much smaller (juantity which may lead 

to tighter bound. 

9.2.2 Adaptive hybrid loss 

The cvu'rent hybrid model uses a single, fixed o for each training set. One inter-

esting avenue to explore would be trying to dynamically estimate a good value of 

Q on a per-observation basis. This may further imi)rove the efficacy of the hybrid 

loss by exi^loiting the robustness of SVMs (low Q ) when the label distribution for 

an observation has a dominant class but switching to probability estimation ^•ia 

CRFs (high Q) when this is not the case. 

9.2.3 Compressed Sensing and Graphical model inference 

Inference for large graphical models is often extremely expensive. For instance, 

a 1000 by 1000 pixels image can have a graphical model with 1 million nodes. 

Even approximate inference algorithms become very expensi\'e. How to infer and 

learn models as such scales is still an open (piestion. 

Compressed Sensing (CS) (Candes and Tao. 2005: Candes et al.. 2006: Donoho. 

2006; Tropp and Gilbert. 2007; Song et a l , 2008) in the context of information 

theory and signal processing discovered a surprising result - a sparse signal can 

be recovered by a sampling rate nuicli smaller than the conventional Shannon-

Nyquist rate. Hsu et al. (2009) apply CS to multi-label prediction problems with 
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large output spaces under the assumption of output sparsity. They learn a regres-

sor from which one can predict a compressed label which is then used to recover 

the original lal)el. However, their technicjue can not deal with deijendent labels 

in graphical models. Cevher et al. (2008) infer a restricted Markov Random Field 

with only binary classes on each nod(>. .MonH)ver. they iiiipUcitUj assume that the 

expected feature is the same as or similar to the expected label values, so that 

they can avoid designing potential functions in the c:onipressed sjiace. 

We are interested in api)lying CS to more general graphical models. Com-

pared to nnilti-class or niulti-lal)el. graphical models are already comi)act rejire-

sentations. The notion of sparsity in CS may no longer be applicable to general 

graphical models. We would instead lilce to define a novel notion compres.sibil-

ity instead on graphical models. By random mapping or mapping acc:ording to 

clustering/separa1)ihty, we may be able to map the original large graphical mod-

els to nmch smaller grai)hical models with careful design of potential functions 

which guarantee the consistency between the inference in the original graphical 

models and that in the compressed ones. The task of inferenc:e is to find the most 

likely labels which are often grouped or sejiarated into subspaces. Exj^loiting the 

correlation between subspaces such as ])locked/groui)ed regularisation (Stojnic, 

2009) or more general model-l)ased CS (Baraniuk et al., 2009) is a possiljle way 

to reco\'er the original best label from the conii)ressed Ijest label. This way, one 

could infer a large graphical model with millions of nodes with the cost of only 

thousands of nodes. 
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Appendix A 

Appendix 

This appendix contains proofs for hash kernels and compressive sensing. 
Theorem 2 For a random fnnction mapping / featin-es chiphcated c times into 
a space of size n, for ah loss functions L and distributions D on n features, the 
probability (over the random function) of no information loss is at least: 

1 - 1[1 - {I - c/nY + {Ic/n] 

Proof The proof is essentially a counting argument with consideration of the 
fact that we are dealing with a hash fimctton rather than a random variable. It 
is structurally similar to the proof for a Bloom filter (Bloom. 1970), because the 
essential question we address is: "What is a lower bound on the probability that 
all features have one duplicate not colliding with any other feature?" 

Fix a feature / . W'e'll argue about the probability that all c duplicates of / 
collide w îth other features. 

For feature duplicate i, let = / ; ( / o i). The probability that //,• = / ; ( / ' o ?') 
for some other feature f oi' is bounded by (/ — l)c/n because the probability for 
each other mapping of a collision is 1/n by the assumption that h is a random 
function, and the union bound applied to the (/ - l )r mappings of other features 
yields (/ — l)c/n. Note that we do not care about a collision of two duplicates of 
the same feature, because the feature value is preserved. 

The probability that all duplicates 1 < i < c collifle with another feature is 
bcjundcxl by {Ic/nf + ! - ( ! - c/nY. To sec this, let c' < c be the number of 
flistinct duplicates of / after ('(jllisicjus. The probability of a collision with the hrst 
of these is bounderl by Conditioned on this collision, the probability of the 
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next collision is at most where 1 is snbtracted becanse the first location is 

fixed. Similarly, for the /th clnplicate. the probability is . We can npper 

bound eac:h term as ^ , implying the probability of all c' duplicates colliding with 

other features is at most (Ic/nY'. The probability that c' = c is the probability 

that none of the duplicates of / collide, which is - ~ '^Y'- H 

we pessimistically assvune that c' < c implies that eA'ery duplicate collides with 

another feature, then 

P(con) < P(coll|c' = c) P ( c ' = c) + P ( c ' ^ c) 

< {ic/nr + i-{{i-c)/ir. 

Simi:)lification gives [Ic/nY + l — (l—c/riY as claimed. Taking a union bound over 

all I features, we find that the probability any feature has all duphcates collide is 

bomided by /[I - (1 - c/nf + [Ic/nY]. U 

T h e o r e m 3 Assume that the probability of deviation between the hash kernel 

and its expected value is bounded ])y an exponential inequality via 

> e < cexp(—c'e^n) k ( x , x ' ) - E / , k ( x , x ' ) 

for some constants c, c' depending on the size of the hash and the kernel used. In 

this case the error e arising from ensuring the above inequality, with probability 

at least 1 — 5, for m ol)servations and M classes for a joint feature ma]) $ ( x , y), 

is bounded by 

e < log(n( + 1) + 2 log(.'\/ + 1) - log5 + log c - 2 log 2)/nc'. (A. l ) 

P r o o f Apply the union bound to the kernel matrix of size { n i M f , that is, to 

all T := mini + 1)M{M + l ) / 4 unique elements. Solving 

Tcex\)(—c'e^n) = S, 

we get the bound 

Cn 
Bounding l o g ( r c ) from above 

log (Tc) = log T + log c < 2 log(m + 1) + 2 \ogiM + 1) + log c - 2 log 2, 

and substituting it into (A. l ) yields the result. 



Corollary 10 [Recovery on a Specific Basis] For any //-sparse signal a G M" 
and two constants 21,22 > 0, let d > 2i / / log( / / / / / ) . and draw d row vectors 

I'l independently from the standard Ganssian distril)ntion on M"'. Denote 
the stacked vectors as the matrix R G M'̂ '™. For any matrix A G M'"-" 
with nnit lengtli cohnnns, witli probability at least 1 - f the signal a can be 
recovered via 

a* = argmin |jRx - ( R + ^llc^lk-
aeK" 

P r o o f Let Aj,j = 1 ,n denote the j - th cohnnn vector of the matrix A and let 
A := R A, I.e., the row vectors A ; = ((r^, A , ) , . . . , (r.;, A „ ) ) for (•/ = 1 d). 

Note that the inner prodnct ( r j . A j ) = Yl^lLi^i.k -^kj is still a random variable 
drawn from Ganssian distribution A^.j). Hence are random 
vectors independently drawn from the Gaussian distribution in R'" . Corollary 10 
follows Theorem 9. • 

T h e o r e m 12 [Hashing OAIP Rcx'overy] For any //-sparse signal oc E R " and 
c:onfidence > 0, given hash matrix H, let d > 16?f log(n/S), for any matrix 
A G R™'". take the measurements such that H x = (HA)q : . Then with proba-
bility at least 1 — the signal q can be recovered via Algorithm 2. 

P r o o f Admissibility mainly relies on the coherence statistic // niaxj<t | (R^, Rj.] 
In a hash matrix H , { — 1. 1} are equally likely to appear so E[(Hj,H/,.)] = 0. By 
the hoeffding inequality, P(| (Hj . Hj.) > e|) < The union bound argu-
ment fm'ther gives the bound on -P(/0 < d of H as of Bernoulli random matrix. 
This then leads to the same bound on the smallest singular value. Also we know 
the columns of H with multiple hash functions are independent and normalization 
only changes the scale, hence H is admissible. Admissibility implies reconstruc-
tion, so the theorem holds. • 
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Appendix B 

Appendix 

This a])peiKlix contains proofs for structured learning. 

Theorem 16 Let D = (D[,..., Dk) be a distribution over lal)els and let y^ = 

niaxy Dy and y2 = niaXy^y^ Dy l)e the two most likely labels. Then the hybrid 

loss is conditionally FCC for D whenever -Dŷ  > | or 

Q > 1 - (B.l) 
1 - 2Dy^ 

Proof Since we a free to permute labels within y we will assume without loss of 

generality that Dj = maxygtj Dy and D2 = niaxy^i Dy. The proof now proceeds 

by contradiction and assumes there is some minimiser p = argmin^g^(y) La{q. D) 
that is not aligned with D. That is, there is some y* 1 such that Py. > p^. For 

sim])hcity. and again without loss of generality, we will assume y* = 2. 

The hrst case to consider is when p2 is a maximum and p̂  < p2. Here 

we construct a q that "flips" the values of pi and p2 and leaves all the values 

unchanged. That is, qi = P2- q-i = P\ and Vy = Py for all y = 3 k. Intuitively, 

this new point is closer to D and therefore the CRF comi)onent of the loss will 

be reduced while the SVM loss won't increase. The difference in conditional risks 

satisfies 

k 
L^ip.D)- L^(q,D) = 

y=i 

+D2.iUp,2) - (\Aq-2)) 
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since ( a i p . l ) = Ca{q.2) and 4 ( ^ - 2 ) = and the other terms cancel l)y 

construction. As D\ - D2 > 0 by assnniption. all that is reqnired now is to show 

that 2) - 1) = a In | + (1 - fv)(^//(r/. 2) - i n i q , 1)) is strictly positive. 

Since ry, > (jy for y 1 we have In ^ > 0. /'/^r/. 2) = 1 - In > 1. 

and C i i i qA ) = 1 - In ^ 
'ly < 1. and so (ii{q.2) - t,i{q. 1) > 1 - 1 = 0. Tims. 

(a iq , 2) — Haiq. 1) > 0 as reqnired. 

Now suppose that p-j = p\ is a maxinnun. In this case we show a slight 

pertm-bation q = {pi +€.p2-e,p-i, Pk) yields a lower for e > 0. For y 1, 2 we 

have II {p. y)-C{q, y ) = 0 and since p2 > Py and qi > qy thus in {p- y ) (9- y ) = 

1 - In g + 1 - In J = In ^ > 1 - ^ = since -\iix>l-x for x G (0,1) and 

q\ = P\ + e = p2 + f • Therefore 

( 1 - Q ) 
- > - e -

P\ 
(B.2) 

W h e n y = l J . d p A ) - h { q . l ) = - In a > M = ^ 

(1 - In a ) - (1 - In = In I = In ^ since p, = p^. T ims 1) - (^^iq. 1) > 

1 - ^ = And so Pi+e Pi+e 

L{p-y) - ia{q,y) > e Q I 2 ( 1 - q ) 

P\ P\ + e 
(B.3) 

Finally, when y = 2 we have l i i p - ^ ) - 2) = - In ^ > ^ ^ = 
P2 Pi and 

( h ( p . 2) - 2) = (1 - In - (1 - In f ) = In ^ > 1 - £ = Thus. 
91 91 92 Pl+e' 

a 

Pi 

2(1 - q) 
P\ + f 

(B.4) 

Putting the inequahties (B.2), (B.3) and (B.4) together yields 

lim 
e-)-0 

L^ip.D)-L^iq.D) 

> hni (Di - D2) 
e->0 

« I 2 ( 1 - g ; 

Pi Pi + e 

Pi 
•-{2-a)-

1 
Pi 

k 

-E^y 

y=3 

( l - o ) 

1 - a 

Pi 

= - { D i - D2 + {l-a)i2Di-l)). 
Pi 

Observing that since D j > D2. when D i > ^ the final term is positive without 

any constraint on a and when D i < ^ the difference in risks is positi^•e whenever 

Di - Do 
T ^ (B.5) Q > 1 -



(•()ini)lotes the i)r()of. 

Theorem 19 [Geiieialisatioii Margin Bound] For any data distribution D, for 

any ])rior P ovor w. for anv w. any S e (0. 1] and for any 7 > 0. witli ])rol)abi]itv 

at least 1 — over random sanijjles S from D with tn instances, we have 

e „ < P r ( E g ( M ( w ' , y ) ) < 7 ) ( x . y ) ~ 5 

In (ml y I ) + hrm + hi^^ - 1 
m 

Proo f By choosing the weight prior P(w) = •^exp(—- -) and the posterior 

Q(w') = one can show e.o = Pr„(EQ y) < 0) by sym-

metry argument proposed in Langford et al. (2001): McAllester (2007). Ap})lying 

the PAC-Bayes margin l)ound Langford et al. (2001): Zhu and Xing (2009) and 

using the fact that KL(Q||P) = ^ ^ ^ yields the theorem. • 
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