49,507 research outputs found

    Experimental study of energy-minimizing point configurations on spheres

    Full text link
    In this paper we report on massive computer experiments aimed at finding spherical point configurations that minimize potential energy. We present experimental evidence for two new universal optima (consisting of 40 points in 10 dimensions and 64 points in 14 dimensions), as well as evidence that there are no others with at most 64 points. We also describe several other new polytopes, and we present new geometrical descriptions of some of the known universal optima.Comment: 41 pages, 12 figures, to appear in Experimental Mathematic

    Three-point bounds for energy minimization

    Full text link
    Three-point semidefinite programming bounds are one of the most powerful known tools for bounding the size of spherical codes. In this paper, we use them to prove lower bounds for the potential energy of particles interacting via a pair potential function. We show that our bounds are sharp for seven points in RP^2. Specifically, we prove that the seven lines connecting opposite vertices of a cube and of its dual octahedron are universally optimal. (In other words, among all configurations of seven lines through the origin, this one minimizes energy for all potential functions that are completely monotonic functions of squared chordal distance.) This configuration is the only known universal optimum that is not distance regular, and the last remaining universal optimum in RP^2. We also give a new derivation of semidefinite programming bounds and present several surprising conjectures about them.Comment: 30 page

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Characterisation of a family of neighbour transitive codes

    Get PDF
    We consider codes of length mm over an alphabet of size qq as subsets of the vertex set of the Hamming graph Γ=H(m,q)\Gamma=H(m,q). A code for which there exists an automorphism group X≤Aut(Γ)X\leq Aut(\Gamma) that acts transitively on the code and on its set of neighbours is said to be neighbour transitive, and were introduced by the authors as a group theoretic analogue to the assumption that single errors are equally likely over a noisy channel. Examples of neighbour transitive codes include the Hamming codes, various Golay codes, certain Hadamard codes, the Nordstrom Robinson codes, certain permutation codes and frequency permutation arrays, which have connections with powerline communication, and also completely transitive codes, a subfamily of completely regular codes, which themselves have attracted a lot of interest. It is known that for any neighbour transitive code with minimum distance at least 3 there exists a subgroup of XX that has a 22-transitive action on the alphabet over which the code is defined. Therefore, by Burnside's theorem, this action is of almost simple or affine type. If the action is of almost simple type, we say the code is alphabet almost simple neighbour transitive. In this paper we characterise a family of neighbour transitive codes, in particular, the alphabet almost simple neighbour transitive codes with minimum distance at least 33, and for which the group XX has a non-trivial intersection with the base group of Aut(Γ)Aut(\Gamma). If CC is such a code, we show that, up to equivalence, there exists a subcode Δ\Delta that can be completely described, and that either C=ΔC=\Delta, or Δ\Delta is a neighbour transitive frequency permutation array and CC is the disjoint union of XX-translates of Δ\Delta. We also prove that any finite group can be identified in a natural way with a neighbour transitive code.Comment: 30 Page
    • …
    corecore