40 research outputs found

    Generic Construction of UC-Secure Oblivious Transfer

    No full text
    International audienceWe show how to construct a completely generic UC-secure oblivious transfer scheme from a collision-resistant chameleon hash scheme (CH) and a CCA encryption scheme accepting a smooth projective hash function (SPHF). Our work is based on the work of Abdalla et al. at Asiacrypt 2013, where the authors formalize the notion of SPHF-friendly commitments, i.e. accepting an SPHF on the language of valid commitments (to allow implicit decommitment), and show how to construct from them a UC-secure oblivious transfer in a generic way. But Abdalla et al. only gave a DDH-based construction of SPHF-friendly commitment schemes, furthermore highly relying on pairings. In this work, we show how to generically construct an SPHF-friendly commitment scheme from a collision-resistant CH scheme and an SPHF-friendly CCA encryption scheme. This allows us to propose an instanciation of our schemes based on the DDH, as efficient as that of Abdalla et al., but without requiring any pairing. Interestingly, our generic framework also allows us to propose an instantiation based on the learning with errors (LWE) assumption. For the record, we finally propose a last instanciation based on the decisional composite residuosity (DCR) assumption

    Algebraic Frameworks for Cryptographic Primitives

    Full text link
    A fundamental goal in theoretical cryptography is to identify the conceptually simplest abstractions that generically imply a collection of other cryptographic primitives. For symmetric-key primitives, this goal has been accomplished by showing that one-way functions are necessary and sufficient to realize primitives ranging from symmetric-key encryption to digital signatures. By contrast, for asymmetric primitives, we have no (known) unifying simple abstraction even for a few of its most basic objects. Moreover, even for public-key encryption (PKE) alone, we have no unifying abstraction that all known constructions follow. The fact that almost all known PKE constructions exploit some algebraic structure suggests considering abstractions that have some basic algebraic properties, irrespective of their concrete instantiation. We make progress on the aforementioned fundamental goal by identifying simple and useful cryptographic abstractions and showing that they imply a variety of asymmetric primitives. Our general approach is to augment symmetric abstractions with algebraic structure that turns out to be sufficient for PKE and much more, thus yielding a “bridge” between symmetric and asymmetric primitives. We introduce two algebraic frameworks that capture almost all concrete instantiations of (asymmetric) cryptographic primitives, and we also demonstrate their applicability by showing their cryptographic implications. Therefore, rather than manually building different cryptosystems from a new assumption, one only needs to build one (or more) of our simple structured primitives, and a whole host of cryptosystems immediately follows.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/166137/1/alamati_1.pd

    CCA-Secure Deterministic Identity-Based Encryption Scheme

    Get PDF
    Deterministic public-key encryption, encrypting a plaintext into a unique ciphertext without involving any randomness, was introduced by Bellare, Boldyreva, and O'Neill (CRYPTO 2007) as a realistic alternative to some inherent drawbacks in randomized public-key encryption. Bellare, Kiltz, Peikert and Waters (EUROCRYPT 2012) bring deterministic public-key encryption to the identity-based setting, and propose deterministic identity-based encryption scheme (DIBE). Although the construc- tions of chosen plaintext attack (CPA) secure DIBE scheme have been studied intensively, the construction of chosen ciphertext attack (CCA) secure DIBE scheme is still challenging problems. In this paper, we introduce the notion of identity-based all-but-one trapdoor functions (IB-ABO-TDF), which is an extension version of all-but-one lossy trapdoor function in the public-key setting. We give a instantiation of IB-ABO-TDF under decisional linear assumption. Based on an identity-based lossy trapdoor function and our IB-ABO-TDF, we present a generic construction of CCA-secure DIBE scheme

    Regular Lossy Functions and Their Applications in Leakage-Resilient Cryptography

    Get PDF
    In STOC 2008, Peikert and Waters introduced a powerful primitive called lossy trapdoor functions (LTFs). In a nutshell, LTFs are functions that behave in one of two modes. In the normal mode, functions are injective and invertible with a trapdoor. In the lossy mode, functions statistically lose information about their inputs. Moreover, the two modes are computationally indistinguishable. In this work, we put forward a relaxation of LTFs, namely, regular lossy functions (RLFs). Compared to LTFs, the functions in the normal mode are not required to be efficiently invertible or even unnecessary to be injective. Instead, they could also be lossy, but in a regular manner. We also put forward richer abstractions of RLFs, namely all-but-one regular lossy functions (ABO-RLFs) and one-time regular lossy filters (OT-RLFs). We show that (ABO)-RLFs admit efficient constructions from both a variety of number- theoretic assumptions and hash proof system (HPS) for subset membership problems satisfying natural algebraic properties. Thanks to the relaxations on functionality, the constructions enjoy much compact key size and better computational efficiency than that of (ABO)-LTFs. We demonstrate the utility of RLFs and their extensions in the leakage-resilient cryptography. As a special case of RLFs, lossy functions imply leakage-resilient injective one-way functions with optimal leakage rate 1−o(1)1 - o(1). ABO-RLFs (or OT-RLFs) immediately imply leakage-resilient one-time message authentication code (MAC) with optimal leakage rate 1−o(1)1 - o(1). ABO-RLFs together with HPS give rise to leakage-resilient chosen-ciphertext (CCA) secure key encapsulation mechanisms (KEM) (this approach extends naturally to the identity-based setting). Combining the construction of ABO-RLFs from HPS, this gives the first leakage-resilient CCA-secure public-key encryption (PKE) with optimal leakage rate based solely on HPS, and thus goes beyond the barrier posed by Dodis et al. (Asiacrypt 2010). Our construction also applies to the identity-based setting, yielding LR-CCA secure IB-KEM with higher leakage rate than previous works

    Almost Tight Multi-User Security under Adaptive Corruptions from LWE in the Standard Model

    Get PDF
    In this work, we construct the first digital signature (SIG) and public-key encryption (PKE) schemes with almost tight multi-user security under adaptive corruptions based on the learning-with-errors (LWE) assumption in the standard model. Our PKE scheme achieves almost tight IND-CCA security and our SIG scheme achieves almost tight strong EUF-CMA security, both in the multi-user setting with adaptive corruptions. The security loss is quadratic in the security parameter, and independent of the number of users, signatures or ciphertexts. Previously, such schemes were only known to exist under number-theoretic assumptions or in classical random oracle model, thus vulnerable to quantum adversaries. To obtain our schemes from LWE, we propose new frameworks for constructing SIG and PKE with a core technical tool named probabilistic quasi-adaptive hash proof system (pr-QA-HPS). As a new variant of HPS, our pr-QA-HPS provides probabilistic public and private evaluation modes that may toss coins. This is in stark contrast to the traditional HPS [Cramer and Shoup, Eurocrypt 2002] and existing variants like approximate HPS [Katz and Vaikuntanathan, Asiacrypt 2009], whose public and private evaluations are deterministic in their inputs. Moreover, we formalize a new property called evaluation indistinguishability by requiring statistical indistinguishability of the two probabilistic evaluation modes, even in the presence of the secret key. The evaluation indistinguishability, as well as other nice properties resulting from the probabilistic features of pr-QA-HPS, are crucial for the multi-user security proof of our frameworks under adaptive corruptions. As for instantiations, we construct pr-QA-HPS from the LWE assumption and prove its properties with almost tight reductions, which admit almost tightly secure LWE-based SIG and PKE schemes under our frameworks. Along the way, we also provide new almost-tight reductions from LWE to multi-secret LWE, which may be of independent interest

    Applied cryptography in network systems security for cyberattack prevention

    Get PDF
    Application of cryptography and how various encryption algorithms methods are used to encrypt and decrypt data that traverse the network is relevant in securing information flows. Implementing cryptography in a secure network environment requires the application of secret keys, public keys, and hash functions to ensure data confidentiality, integrity, authentication, and non-repudiation. However, providing secure communications to prevent interception, interruption, modification, and fabrication on network systems has been challenging. Cyberattacks are deploying various methods and techniques to break into network systems to exploit digital signatures, VPNs, and others. Thus, it has become imperative to consider applying techniques to provide secure and trustworthy communication and computing using cryptography methods. The paper explores applied cryptography concepts in information and network systems security to prevent cyberattacks and improve secure communications. The contribution of the paper is threefold: First, we consider the various cyberattacks on the different cryptography algorithms in symmetric, asymmetric, and hashing functions. Secondly, we apply the various RSA methods on a network system environment to determine how the cyberattack could intercept, interrupt, modify, and fabricate information. Finally, we discuss the secure implementations methods and recommendations to improve security controls. Our results show that we could apply cryptography methods to identify vulnerabilities in the RSA algorithm in secure computing and communications networks

    Generic Construction of UC-Secure Oblivious Transfer

    Get PDF
    We show how to construct a completely generic UC-secure oblivious transfer scheme from a collision-resistant chameleon hash scheme (CH) and a CCA encryption scheme accepting a smooth projective hash function (SPHF). Our work is based on the work of Abdalla et al. at Asiacrypt 2013, where the authors formalize the notion of SPHF-friendly commitments, i.e. accepting an SPHF on the language of valid commitments (to allow implicit decommitment), and show how to construct from them a UC-secure oblivious transfer in a generic way. But Abdalla et al. only gave a DDH-based construction of SPHF-friendly commitment schemes, furthermore highly relying on pairings. In this work, we show how to generically construct an SPHF-friendly commitment scheme from a collision-resistant CH scheme and an SPHF-friendly CCA encryption scheme. This allows us to propose an instantiation of our schemes based on the DDH, as efficient as that of Abdalla et al., but without requiring any pairing. Interestingly, our generic framework also allows us to propose an instantiation based on the learning with errors (LWE) assumption. For the record, we finally propose a last instantiation based on the decisional composite residuosity (DCR) assumption

    Simpler Statistically Sender Private Oblivious Transfer from Ideals of Cyclotomic Integers

    Get PDF
    We present a two-message oblivious transfer protocol achieving statistical sender privacy and computational receiver privacy based on the RLWE assumption for cyclotomic number fields. This work improves upon prior lattice-based statistically sender-private oblivious transfer protocols by reducing the total communication between parties by a factor O(nlog⁥q)O(n\log q) for transfer of length O(n)O(n) messages. Prior work of Brakerski and Döttling uses transference theorems to show that either a lattice or its dual must have short vectors, the existence of which guarantees lossy encryption for encodings with respect to that lattice, and therefore statistical sender privacy. In the case of ideal lattices from embeddings of cyclotomic integers, the existence of one short vector implies the existence of many, and therefore encryption with respect to either a lattice or its dual is guaranteed to ``lose more information about the message than can be ensured in the case of general lattices. This additional structure of ideals of cyclotomic integers allows for efficiency improvements beyond those that are typical when moving from the generic to ideal lattice setting, resulting in smaller message sizes for sender and receiver, as well as a protocol that is simpler to describe and analyze

    Statistical Methods in Cryptography

    Get PDF
    Cryptographic assumptions and security goals are fundamentally distributional. As a result, statistical techniques are ubiquitous in cryptographic constructions and proofs. In this thesis, we build upon existing techniques and seek to improve both theoretical and practical constructions in three fundamental primitives in cryptography: blockciphers, hash functions, and encryption schemes. First, we present a tighter hybrid argument via collision probability that is more general than previously known, allowing applications to blockciphers. We then use our result to improve the bound of the Swap-or-Not cipher. We also develop a new blockcipher composition theorem that is both class and security amplifying. Second, we prove a variant of Leftover Hash Lemma for joint leakage, inspired by the Universal Computational Extractor (UCE) assumption. We then apply this technique to construct various standard-model UCE- secure hash functions. Third, we survey existing “lossy primitives” in cryptography, in particular Lossy Trapdoor Functions (LTDF) and Lossy Encryptions (LE); we pro- pose a generalized primitive called Lossy Deterministic Encryption (LDE). We show that LDE is equivalent to LTDFs. This is in contrast with the block-box separation of trapdoor functions and public-key encryption schemes in the computational case. One common theme in our methods is the focus on statistical techniques. Another theme is that the results obtained are in contrast with their computational counterparts—the corresponding computational results are implausible or are know to be false

    Non-Interactive Proofs: What Assumptions Are Sufficient?

    Get PDF
    A non-Interactive proof system allows a prover to convince a verifier that a statement is true by sending a single round of messages. In this thesis, we study under what assumptions can we build non-interactive proof systems with succinct verification and zero-knowledge. We obtain the following results. - Succinct Arguments: We construct the first non-interactive succinct arguments (SNARGs) for P from standard assumptions. Our construction is based on the polynomial hardness of Learning with Errors (LWE). - Zero-Knowledge: We build the first non-interactive zero-knowledge proof systems (NIZKs) for NP from sub-exponential Decisional Diffie-Hellman (DDH) assumption in the standard groups, without use of groups with pairings. To obtain our results, we build SNARGs for batch-NP from LWE and correlation intractable hash functions for TC^0 from sub-exponential DDH assumption, respectively, which may be of independent interest
    corecore