
Generic Construction of UC-Secure Oblivious Transfer

Olivier Blazy1 and Céline Chevalier2

1 Université de Limoges, XLim, France
2 Université Panthéon-Assas, Paris, France

Abstract. We show how to construct a completely generic UC-secure oblivious transfer scheme from a collision-resistant
chameleon hash scheme (CH) and a CCA encryption scheme accepting a smooth projective hash function (SPHF).
Our work is based on the work of Abdalla et al. at Asiacrypt 2013, where the authors formalize the notion of SPHF-friendly
commitments, i.e. accepting an SPHF on the language of valid commitments (to allow implicit decommitment), and show how to
construct from them a UC-secure oblivious transfer in a generic way. But Abdalla et al. only gave a DDH-based construction of
SPHF-friendly commitment schemes, furthermore highly relying on pairings. In this work, we show how to generically construct
an SPHF-friendly commitment scheme from a collision-resistant CH scheme and an SPHF-friendly CCA encryption scheme.
This allows us to propose an instanciation of our schemes based on the DDH, as efficient as that of Abdalla et al., but without
requiring any pairing. Interestingly, our generic framework also allows us to propose an instantiation based on the learning with
errors (LWE) assumption. For the record, we finally propose a last instanciation based on the decisional composite residuosity
(DCR) assumption.
Keywords. Commitments, Smooth Projective Hash Functions, CCA encryption, Oblivious Transfer, UC Framework.

1 Introduction

Oblivious Transfer (OT) was introduced in 1981 by Rabin [Rab81] as a way to allow a receiver to get exactly one out
of k messages sent by another party, the sender. In these schemes, the receiver should be oblivious to the other values,
and the sender should be oblivious to which value was received. This primitive has been widely used and studied in
the community, and recently, the authors of [ABB+13] propose a generic way to obtain a UC-secure oblivious transfer
scheme from an SPHF-friendly commitment scheme, and an instantiation based on DDH. In this paper, our goal is to
strengthen their result to obtain a truly generic way to obtain a UC-secure oblivious transfer scheme, so we follow their
path of construction from commitment schemes.

Commitment schemes have become a very useful tool used in cryptographic protocols. These two-party primitives
(between a committer and a receiver) are divided into two phases. In a first commit phase, the committer gives the
receiver an analogue of a sealed envelope containing a value m, while in the second opening phase, the committer
reveals m in such a way that the receiver can verify it was indeed m that was contained in the envelope. It is required
that a committer cannot change the committed value (i.e., he should not be able to open to a value different from the one
he committed to), this is called the binding property. It is also required that the receiver cannot learn anything about m
before the opening phase, this is called the hiding property. El Gamal [ElG84] or Cramer-Shoup [CS02] encryptions
are famous examples of perfectly binding commitments, and Pedersen encryption [Ped91] is the most known example
of perfectly hiding commitments.

In many applications, for example password-based authenticated key-exchange in which the committed value is
a password, one wants the decommitment to be implicit, which means that the committer does not really open its
commitment, but rather convinces the receiver that it actually committed to the value it pretended to. In [ACP09], the
authors achieved this property thanks to the notion of Smooth Projective Hash Functions [CS02, GL03], which has
been widely used since then (see [KV11, BBC+13b, ABB+13] for instance). These hash functions are defined such
as their value can be computed in two different ways if the input belongs to a particular subset (the language), either
using a private hashing key or a public projection key along with a private witness ensuring that the input belongs
to the language. The hash value obtained is indistinguishable from random in case the input does not belong to the
language (property of smoothness) and in case the input does belong to the language but no witness is known (property
of pseudo-randomness).

An additional difficulty arises when one wants to prove the protocols in the universal composability framework
proposed in [Can01]. In a nutshell, security in the UC framework is captured by an ideal functionality (in an ideal
world) and a protocol is proven secure if, given any adversary to the protocol in the real world, one can construct a

simulator of this adversary such that no environment can distinguish between the execution in the ideal world (between
dummy players, the ideal functionality and the simulator of the adversary) and the execution in the real world (between
the real players executing the real protocol and interacting between themselves and the adversary) in a non-negligible
way. Skipping the details, when the protocol makes use of commitments, this usually forces those commitments to be
both extractable (meaning that a simulator can recover the valuem committed to thanks to a trapdoor) and equivocable
(meaning that a simulator can open a commitment to a value m′ different from the value m it committed to thanks to a
trapdoor), which is quite a difficult goal to achieve.

The now classical way [CF01,ACP09,ABB+13] to achieve both extractability and equivocability is to combine an
equivocable CPA encryption scheme (such as Pedersen [Ped91]) and an extractable CCA encryption scheme (such as
Cramer-Shoup [CS02]) and to link them with an SPHF in order to obtain an implicit decommitment. What we show in
this paper is that we can broaden the class of primitives that can be used for the equivocable part, by using chameleon
hashes (introduced in [KR00]), which can be seen as conceptually easier building blocks to understand and to construct.

Related Work. The first UC-secure commitment schemes were given by [CF01] and [DN02] and the former were
the first to formalize the methodology described in the previous section (combining an equivocable primitive and an
extractable primitive). Building on their idea, the authors of [ACP09] add the notion of smooth projective hash function
to obtain implicit decommitment and obtain the first UC-secure password-authenticated key-exchange in the standard
model as an application. Many works have been done in the same field since then, for instance [Lin11,FLM11,BCPV13]
for the UC-commitment schemes and [KV11, BBC+13b] for the UC PAKE schemes, in which the relations between
commitments and SPHF have proven being very useful. This relation was formalized in [ABB+13] by the notion of
SPHF-friendly commitments, expliciting the properties to be fulfilled by the commitment in order to accept an SPHF
(and thus to be very useful for all kinds of applications). The authors also prove that their new notion of SPHF-friendly
commitments is strictly stronger than the notion of UC commitments and give an example of such a commitment
scheme based on Haralambiev commitment [Har11, Section 4.1.4] and Cramer-Shoup encryption, in a pairing-friendly
setting. They also propose a generic way to construct UC one-round PAKE and oblivious transfer scheme from this
primitive.

Many oblivious transfer schemes have been proposed since [Rab81], including some in the UC framework [NP01,
CLOS02]. Recently, some instantiations have tried to reach round-optimality [HK07], or low communication costs [PVW08].
As already explained, the authors of [ABB+13] propose a generic way to obtain a UC-secure oblivious transfer scheme
from an SPHF-friendly commitment scheme, and an instantiation based on DDH. Choi et al. [CKWZ13] also propose
a generic method and an efficient instantiation secure against adaptive corruptions in the CRS model with erasures,
based on DDH, but it is only 1-out-of-2 and it does not scale to 1-out-of-k OT, for k > 2.

Contributions1. Our first contribution is to give a generic construction of SPHF-friendly commitments, which have
proven since [ABB+13] to be an extremely useful primitive, from two simple blocks: a collision-resistant chameleon
hash (CH) function which is verifiable (either publicly or for the receiver only) and an SPHF-friendly CCA encryption
scheme. The extra requirement on the CH function is simple to achieve as soon as only classical algebraic operations
are applied to the randomness, and SPHF-friendly encryption is now well-known since [CS02], with several instances
(contrary to SPHF-friendly commitments, which is a difficult task).

We then give three instantiations of this SPHF-friendly scheme, respectively based on DDH, LWE and DCR.
Our construction thus allows us to provide, as a second and main contribution, a generic way to obtain a UC-secure

OT scheme from the same building blocks (CH and CCA encryption) and three concrete instantiations from DDH,
LWE and DCR. While the construction in [ABB+13] is an ad hoc solution with pairings, ours is generic and does
not specifically induce pairings. Furthermore, our 3 instantiations come straightforward from our generic framework
(and [ABB+13] can be derived from it).

Concerning complexity comparisons, the most studied assumptions in the literature are variants of DDH. Our
version of 1-out-of-t oblivious transfer is apparently almost equivalent to that given in [ABB+13] in raw number of
elements because we need a communication complexity of 9m+6 elements in G and a scalar, compared to 8m+42 in
G1, m in G2 and a scalar (with t = 2m), but since we do not need a pairing-friendly setting, none of our elements have

1 This is an extended abstract. The full paper [BC15] is available at the Cryptology Eprint Archive, http://eprint.iacr.org.
2 It should be noted that their original computation was off by one scalar, probably half the projection key was missing.

2

to be bigger, hence the comparison is in favor of our new proposal (by an equivalent of m/2 − 1 elements). (Those
numbers do not take into account in both cases the last message that transmits the database, adding an additional m
elements in both cases).

To compare with existing protocols in the case of 1-out-of-2 under SXDH, [ABB+13] needs 12 elements in G1,
and 1 in G2 during 3 rounds (some elements previously in G2 can be transferred into G1 in this case, and one can
be skipped), [CKWZ13] requires 26 group elements and 7 scalars in 4 rounds ; and using [GWZ09] to achieve a
constant-size CRS, [PVW08] requires 8 rounds and 51 elements. Using plain DDH, we need 15 group elements (but
because [ABB+13] requires one in G2 we have strictly the same communication cost with a better scaling and no
pairing computation) hence under classical instantiation both schemes require to transmit roughly 3200 bits of data.

Communication cost comparisons of various Elliptic Curve based OT schemes

Paper Assumption # Group elements # Rounds
Static Security

[PVW08] + [GWZ09] SXDH 51 8
[CKWZ13] SXDH 26 + 7s 4

Adaptive Security
[ABB+13] SXDH 12 G1 + 1 G2 3
This paper DDH 15 3

Considering classical instantiations on Barreto-Naehrig Curves [BN05], elements on a DDH curve are at least twice
smaller than the big ones on a SXDH one, making our scheme have a better scaling for 1-out-of-m OT. With recent
attacks exploiting the existence of a pairing, managing to maintain the efficiency while removing the need for a pairing
structure is a strong asset of elliptic curve based cryptography. For constructions based on generic hypothesis, the
construction of [PVW08] leads to a non constant size CRS (in the number of user), while ours achieve constant (and
small) CRS size.

2 Definitions

In this section we recall classical definitions and tools that are going to be useful in the rest of the paper.

Commitments. Formal definitions and results from [ABB+13] are given in Appendix B but we give here an informal
overview to help the unfamiliar reader with the following. A non-interactive labelled commitment scheme C is defined
by three algorithms:

– SetupCom(1K) takes as input the security parameter K and outputs the global parameters, passed through the CRS
ρ to all other algorithms;

– Com`(x) takes as input a label ` and a message x, and outputs a pair (C, δ), where C is the commitment of x
for the label `, and δ is the corresponding opening data (a.k.a. decommitment information). This is a probabilistic
algorithm.

– VerCom`(C, x, δ) takes as input a commitment C, a label `, a message x, and the opening data δ and outputs 1
(true) if δ is a valid opening data for C, x and `. It always outputs 0 (false) on x = ⊥.

The basic properties required for commitments are correctness (for all correctly generated CRS ρ, all commitments
and opening data honestly generated pass the verification VerCom test), the hiding property (the commitment does not
leak any information about the committed value) and the binding property (no adversary can open a commitment in
two different ways).

A commitment scheme is said equivocable if it has a second setup SetupComT(1K) that additionally outputs a
trapdoor τ , and two algorithms

– SimCom`(τ) that takes as input the trapdoor τ and a label ` and outputs a pair (C, eqk), where C is a commitment
and eqk an equivocation key;

3

– OpenCom`(eqk, C, x) that takes as input a commitment C, a label `, a message x, an equivocation key eqk, and
outputs an opening data δ for C and ` on x.

such as the following properties are satisfied: trapdoor correctness (all simulated commitments can be opened on any
message), setup indistinguishability (one cannot distinguish the CRS ρ generated by SetupCom from the one generated
by SetupComT) and simulation indistinguishability (one cannot distinguish a real commitment (generated by Com)
from a fake commitment (generated by SCom), even with oracle access to fake commitments), denoting by SCom the
algorithm that takes as input the trapdoor τ , a label ` and a message x and which outputs (C, δ)

$← SCom`(τ, x),
computed as (C, eqk) $← SimCom`(τ) and δ ← OpenCom`(eqk, C, x).

A commitment scheme C is said extractable if it has a second setup SetupComT(1K) that additionally outputs a
trapdoor τ , and a new algorithm

– ExtCom`(τ, C) which takes as input the trapdoor τ , a commitment C, and a label `, and outputs the committed
message x, or ⊥ if the commitment is invalid.

such as the following properties are satisfied: trapdoor correctness (all commitments honestly generated can be cor-
rectly extracted: for all `, x, if (C, δ) $← Com`(x) then ExtCom`(C, τ) = x), setup indistinguishability (as above) and
binding extractability (one cannot fool the extractor, i.e., produce a commitment and a valid opening data to an input x
while the commitment does not extract to x).

We recall in Section 3 the difficulties implied by a commitment being both equivocable and extractable and give a
construction of such a commitment.

Smooth Projective Hash Function. Smooth projective hash functions (SPHF) were introduced by Cramer and Shoup
in [CS02] for constructing encryption schemes. A projective hashing family is a family of hash functions that can be
evaluated in two ways: using the (secret) hashing key, one can compute the function on every point in its domain,
whereas using the (public) projected key one can only compute the function on a special subset of its domain. Such
a family is deemed smooth if the value of the hash function on any point outside the special subset is independent of
the projected key. The notion of SPHF has already found applications in various contexts in cryptography (e.g. [GL03,
Kal05,ACP09]). A Smooth Projective Hash Function over a language L ⊂ X , onto a set G, is defined by five algorithms
(Setup,HashKG,ProjKG,Hash,ProjHash):

– Setup(1K) where K is the security parameter, generates the global parameters param of the scheme, and the de-
scription of an NP language L;

– HashKG(L, param), outputs a hashing key hk for the language L;
– ProjKG(hk, (L, param),W), derives the projection key hp from the hashing key hk.
– Hash(hk, (L, param),W), outputs a hash value v ∈ G, thanks to the hashing key hk and W .
– ProjHash(hp, (L, param),W,w), outputs the hash value v′ ∈ G, thanks to the projection key hp and the witness w

that W ∈ L.

In the following, we consider L as a hard-partitioned subset of X , i.e. it is computationally hard to distinguish a
random element in L from a random element in X \ L.

A Smooth Projective Hash Function SPHF should satisfy the following properties:

– Correctness: Let W ∈ L and w a witness of this membership. Then, for all hashing keys hk and associated
projection keys hp we have Hash(hk, (L, param),W) = ProjHash(hp, (L, param),W,w).

– Smoothness: For all W ∈ X \ L the following distributions are statistically indistinguishable:

∆0 =

(L, param,W, hp, v)
param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W),
v = Hash(hk, (L, param),W)


∆1 =

{
(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),

hp = ProjKG(hk, (L, param),W), v
$← G

}
.

4

Labelled Encryption Scheme. A labelled public-key encryption scheme E is defined by four algorithms:

– Setup(1K), where K is the security parameter, generates the global parameters param of the scheme;
– KeyGen(param) generates a pair of keys, the public encryption key pk and the private decryption key sk;
– Encrypt`(pk,m; r) produces a ciphertext c on the input message m ∈ M under the label ` and encryption key pk,

using the random coins r;
– Decrypt`(sk, c) outputs the plaintext m encrypted in c under the label `, or ⊥ for an invalid ciphertext.

An encryption scheme E should satisfy the following properties

– Correctness: for all key pair (pk, sk), any label `, all random coins r and all messagesm, Decrypt`(sk,Encrypt`(pk,m; r)) =
m.

– Indistinguishability under chosen-
ciphertext attacks: this security notion
IND-CCA can be formalized by the
following experiments Expind-cca-b

A (K),
where the adversary A transfers some
internal state state between the various
calls FIND and GUESS, and makes use
of the oracle ODecrypt:

Expind-cca-b
A (K)

param
$← Setup(1K)

(pk, sk)
$← KeyGen(param)

(`∗,m0,m1, state)← AODecrypt·(·)(FIND : pk)
c∗ ← Encrypt`

∗
(pk,mb)

b′ ← AODecrypt·(·)(state,GUESS : c∗)
If ((`∗, c∗) ∈ CT) Return 0
Else Return b′

• ODecrypt`(c): This oracle outputs the decryption of c under the label ` and the challenge decryption key sk.
The input queries (`, c) are added to the list CT .

These experiments implicitly define the advantages Advind-cca
E (A,K) and Advind-cca

E (t). One sometimes uses the
notation Advind-cca

E (qd, t) to bound the number of decryption queries.

In the following we also want two additional properties. First we want an additional functionality, we want to be
able to supersede the decryption, by an implicit decommitment. So we require the encryption to admit an efficient
implicit decommitment. We will call an SPHF-friendly encryption, an encryption where there exists an SPHF for the
Language of valid ciphertexts of a message m using as sole witness the randomness used in the encryption.

We then are going to want to strengthen the idea of ind-cca encryption. In the sense that we are going to encrypt
vector of messages, and when the challenges vectors shares some component we want to provide the randomness used
specifically for those components to the adversary. (Intuitively this would be done to allow an honest computation of the
SPHF on this part). In [ABB+13], they call such property VIND-PO-CCA for Partial Opening, and show that Cramer-
Shoup encryption obeys such property. We recall this security notion in Appendix A for the sake of completeness.
We denote by nEncrypt`(pk,m; r) and nDecrypt`(sk, c) the corresponding algorithms for encryption or decryption of
vectors of n bits.

Chameleon Hash. A Chameleon Hash Function is traditionally defined by three algorithms CH = (KeyGen,CH,Coll):

– KeyGen(K): Outputs the chameleon hash key ck and the trapdoor tk;
– CH(ck,m; r): Picks a random r, and outputs the chameleon hash a.
– Coll(ck,m, r,m′, tk): Takes as input the trapdoor tk, a start message and randomness pair (m, r) and a target

message m′ and outputs a target randomness r′ such that CH(ck,m; r) = CH(ck,m′; r′).

The standard security notion for CH is collision resistance, which means it is infeasible to find (m1, r1), (m2, r2)
such that CH(ck,m1, r1) = CH(ck,m2, r2) and m1 6= m2 given only the Chameleon hash key ck. Formally, CH is
(t, ε)− coll if for the adversary A running in time at most t we have:

Pr

[
(ck, tk)

$← KeyGen(K); ((m1, r1), (m2, r2))
$← A(ck)

∧ CH(ck,m1; r1) = CH(ck,m2; r2) ∧m1 6= m2

]
≤ ε.

However, any user in possession of the trapdoor tk is able to find a collision using Coll. Additionally, Chameleon Hash
functions have the uniformity property, which means the hash value leaks nothing about the message input. Formally,

5

for all pair of messages m1 and m2 and the randomly chosen r, the probability distributions of the random variables
CH(ck,m1, r) and CH(ck,m2, r) are computationally indistinguishable.

We need here the hash value to be verifiable, so that we add two VKeyGen and Valid algorithms (executed by the
receiver) and we modify the existing algorithms as follows:

– VKeyGen(ck): Outputs the chameleon designated verification key vk and the trapdoor vtk. This trapdoor can be
empty or public if the chameleon hash is publicly verifiable.

– CH(ck, vk,m; r): Picks a random r, and outputs the chameleon hash a as well as the witness d, i.e. the correspond-
ing data needed to verify a.

– Valid(ck, vk,m, a, d, vtk): Allows to check that the sender knows how to open a Chameleon Hash a to a specific
value m for the witness d. The verification can be public if vtk is empty or public, or specific to the receiver
otherwise.

– Coll(ck, vk,m, r,m′, tk): Takes as input the public keys, the trapdoor tk, a start messagem and randomness r and a
target messagem′ and outputs a target randomness r′ such that if CH(ck, vk,m; r) = (a, d), then CH(ck, vk,m′; r′) =
(a, d′).

Once again, we expect the chameleon hash to be collision resistant on the first part of the output, which means
it is infeasible to find (m1, r1), (m2, r2) such that CH(ck, vk,m1, r1) = (a, d1) and CH(ck,m2, r2) = (a, d2) and
m1 6= m2 given only the Chameleon public keys ck and vk.

We expect the verification to be sound, which means that, given a tuple (m, a, d) satisfying Valid(ck, vk,m, a, d, vtk),
there always exists at least one tuple (r, d′) such that CH(ck, vk,m; r) = (a, d′).

Protocols in the UC Framework. The goal of the UC framework is to ensure that UC-secure protocols will continue
to behave in the ideal way even if executed in a concurrent way in arbitrary environments. It is a simulation-based
model, relying on the indistinguishability between the real world and the ideal world. In the ideal world, the security
is provided by an ideal functionality F , capturing all the properties required for the protocol and all the means of
the adversary. In order to prove that a protocol Π emulates F , one has to construct, for any polynomial adversary
A (which controls the communication between the players), a simulator S such that no polynomial environment Z
(the distinguisher) can distinguish between the real world (with the real players interacting with themselves and A
and executing the protocol π) and the ideal world (with dummy players interacting with S and F) with a significant
advantage. The adversary can be either adaptive, i.e. allowed to corrupt users whenever it likes to, or static, i.e. required
to choose which users to corrupt prior to the execution of the session sid of the protocol. After corrupting a player,A has
complete access to the internal state and private values of the player, takes its entire control, and plays on its behalf.

UC-Secure Oblivious Transfer. The ideal functionality of an Oblivious Transfer (OT) protocol is depicted in Figure 1.
It is inspired from [CKWZ13, ABB+13].

The functionality F(1,k)-OT is parametrized by a security parameter K. It interacts with an adversary S and a set of parties P1,. . . ,Pn via the
following queries:

– Upon receiving an input (Send, sid, ssid, Pi, Pj, (m1, . . . ,mk)) from party Pi, with mi ∈ {0, 1}K: record the tuple
(sid, ssid, Pi, Pj , (m1, . . . ,mk)) and reveal (Send, sid, ssid, Pi, Pj) to the adversary S. Ignore further Send-message with the same ssid
from Pi.

– Upon receiving an input (Receive, sid, ssid, Pi, Pj, s) from party Pj , with s ∈ {1, . . . , k}: record the tuple (sid, ssid, Pi, Pj , s),
and reveal (Receive, sid, ssid, Pi, Pj) to the adversary S. Ignore further Receive-message with the same ssid from Pj .

– Upon receiving a message (Sent, sid, ssid, Pi, Pj) from the adversary S: ignore the message if (sid, ssid, Pi, Pj , (m1, . . . ,mk)) or
(sid, ssid, Pi, Pj , s) is not recorded; otherwise send (Sent, sid, ssid, Pi, Pj) to Pi and ignore further Sent-message with the same ssid
from the adversary.

– Upon receiving a message (Received, sid, ssid, Pi, Pj) from the adversary S: ignore the message if (sid, ssid, Pi, Pj , (m1, . . . ,mk))
or (sid, ssid, Pi, Pj , s) is not recorded; otherwise send (Received, sid, ssid, Pi, Pj ,ms) to Pj and ignore further Received-message
with the same ssid from the adversary.

Fig. 1. Ideal Functionality for 1-out-of-k Oblivious Transfer F(1,k)-OT

6

3 Generic Construction of UC-Secure Oblivious Transfer

In this section, we show how to construct in a generic way a UC-secure oblivious transfer from any collision-resistant
chameleon hash and CCA-2 encryption scheme.

In [ABB+13], the authors give a way to construct such a UC-secure oblivious transfer protocol from an SPHF-
friendly commitment, but they only give an instantiation of such an SPHF-friendly commitment in a DDH-based
setting, using Haralambiev commitment scheme [Har11] and Cramer-Shoup encryption scheme [CS02].

Our goal is thus to strengthen the generic part of the construction, by showing how to construct, in a generic way, a
UC-secure SPHF-friendly commitment scheme in any setting, from a collision-resistant chameleon hash and a CCA-2
encryption scheme.

3.1 From Commitment to Oblivious Transfer

Introduction. In an oblivious transfer scheme, we consider the interaction between a server, possessing a database
called DB containing t = 2m lines, and a user, willing to request the line j of the database in an oblivious way.
Informally, this implies that the user will gain no information about the other lines of the database, and also that the
server will obtain no information about the specific line the user wants to obtain.

In the protocol described in [ABB+13], from a high point of view3, the user sends to the server a commitment of
the number j of the line it is willing to obtain. The server then computes a pair of keys for a smooth projective hash
function (SPHF) adapted to the commitment. It keeps secret the hash key and sends the projection key to the user,
along with the hash value of all the lines of the database. Thanks to the properties of the SPHF, the user will then be
able to recover the particular line it wants, using the public projection key and the secret random coins it used to create
its committed value in the first place. The properties of the SPHF also ensure that the server has no idea about the line
the user is requiring, and that the user cannot obtain any information from the hash values of the other lines of DB,
which are exactly the requirements of a secure OT.

The authors of this protocol prove its security in the UC framework, which implies the use of a commitment with
strong security properties. Indeed, the simulator of a user needs to be able to change its mind about the line required,
hence an equivocable commitment; and the simulator of a server also needs to be able to extract the line required by
the user, hence an extractable commitment. Unfortunately, combining both equivocability and extractability on the
same commitment scheme, especially if we require this commitment scheme to admit an SPHF, is a difficult task and
requires more security properties, as we recall in the following.

Properties for Commitments. We informally recall these specific properties, defined in [ABB+13] and formally stated
in Appendix B . We call a commitment scheme E2 (for extractable and equivocable and the necessary properties) if the
indistinguishable setup algorithm outputs a common trapdoor that allows both equivocability and extractability, and the
two following properties are satisfied: strong simulation indistinguishability (one cannot distinguish a real commitment
(generated by Com) from a fake commitment (generated by SCom), even with oracle access to the extraction oracle
(ExtCom) and to fake commitments (using SCom)) and strong binding extractability (one cannot fool the extractor,
i.e., produce a commitment and a valid opening data (not given by SCom) to an input x while the commitment does
not extract to x, even with oracle access to the extraction oracle (ExtCom) and to fake commitments (using SCom)).

A commitment is said to be robust if one cannot produce a commitment and a label that extracts to x′ (possibly
x′ = ⊥) such that there exists a valid opening data to a different input x, even with oracle access to the extraction
oracle (ExtCom) and to fake commitments (using SCom).

Finally, a commitment is said to be SPHF-friendly if it is an E2 commitment that admits an SPHF on the languages
Lx = {(`, C)| ∃δ, VerCom`(C, x, δ) = 1}, and that is both strongly-simulation-indistinguishable and robust.

3 Note that we omit here for the sake of simplicity the creation of a secure channel between the user and the server (this is only needed in the
adaptive version of the protocol).

7

3.2 Generic Construction of SPHF-Friendly Commitment

Introduction. We start by a high-level description of the (Cramer-Shoup-based) commitment given in [ABB+13] in
the pairing-friendly setting (G1, g1, h1,G2, g2,GT , p, e). They set T = g2

t, t being a value chosen at random in Zp.
We omit the labels for the sake of simplicity. First, they cut the message M to be committed into bits, denoted here as
~M = (Mi)i ∈ {0, 1}m. They then compute a TC4 Haralambiev [Har11] equivocable commitment of each bit Mi: ~a =
(ai)i with ai = g2

ri,MiTMi with ri,Mi chosen at random in Zp and ri,Mi
= 0. The opening values (for decommitment)

are the values di,j = g1
ri,j . They then compute a multi-Cramer-Shoup encryption ~b = (bi,j)i,j of ~d = (di,j)i,j with

randomness ~s = (si,j)i,j . The commitment is (~a,~b), the opening information being ~s. To open the commitment, the
receiver checks the validity of the ciphertexts bi,Mi , extracts each value di,Mi from bi,Mi and si,Mi and finally checks
whether the equality e(g1, ai/T

Mi) = e(di,Mi , g2) holds.
The equivocability of the commitment is ensured by the knowledge of t, enabling the sender to set ri,Mi

= ri,Mi±t
rather than ri,Mi

= 0. The extractability is ensured by the knowledge of the decryption keys of the Cramer-Shoup
encryption.

Our first goal, in this concrete instantiation, is to get rid of the pairing setting, and in particular of the pairing
verification, in order to be able to propose constructions in other settings. To this aim, we change the TC4 commitment
ofMi for a verifiable chameleon hash ofMi. Making this change enables us to get a generic version of this commitment,
requiring only “compatible” chameleon hash (playing the role of the TC4 scheme above) and CCA encryption schemes
(playing the role of the Cramer-Shoup above). The chameleon hash can either be publicly verifiable (which gives us a
non-interactive commitment), or verifiable by the receiver, which requires a pre-flow, in which the server generates a
verification key and its trapdoor and sends the verification key to the sender.

Building Blocks. We assume the existence of compatible CCA-encryption (Setup,KeyGen,Encrypt,Decrypt) and
chameleon hash (KeyGen,VKeyGen,CH,Coll,Valid), in the sense that is feasible to compute a CCA-encryption of the
opening value of the chameleon hash. For example, a Pedersen Chameleon Hash is not compatible with Cramer Shoup
encryption, as we would need to encrypt the randomness as a scalar, while the decryption algorithm only allows us to
recover group elements.

In order for our commitment to accept an SPHF, we require the CCA-encryption to accept an SPHF on the language
of valid ciphertexts. The precise language needed will depend on the way the chameleon hash is verified, but will be
easily constructed by combining several simple languages as described in [BBC+13a].

We require the chameleon hash to be verifiable by the receiver. For the sake of concision, we describe here the
case where the chameleon hash is only verifiable by the server. In this case, we need a pre-flow, in which the server is
assumed to execute the algorithm VKeyGen to generate a verification key and its trapdoor and send the verification key
to the sender. This makes the commitment not completely non-interactive anymore but it should be noted that if the
global protocol is not one-round, these values can be sent by the receiver during the first round of the protocol. In the
case where the chameleon hash is publicly verifiable, one simply has to consider the keys vk and vtk empty, and ignore
the pre-flow.

Construction. We now describe the different algorithms of our chameleon-hashed targeted commitment protocol CHCS
from player P to Q (see Section 2 for the notations of the algorithms).

– Setup and simulated setup algorithms: SetupComT(1K) (the algorithm for setup with trapdoors) generates the
various parameters param, for the setting of the SPHF-friendly labelled CCA-encryption scheme and the chameleon
hash scheme. It then generates the corresponding keys and trapdoors: (ck, tk) for the chameleon hash scheme and
(ek, dk) for the encryption scheme.
For SetupCom(1K) (the algorithm for setup without trapdoors), the setting and the keys are generated the same
way, but forgetting the way the keys were constructed (such as the scalars, in a DDH-based setting), thus without
any trapdoor.
The algorithms both output the CRS ρ = (ek, ck, param). In the first case, τ denotes the trapdoors (dk, tk).

– Pre-flow (verification key generation algorithm): player Q executes VKeyGen(ck) to generate the chameleon
designated verification key vk and the trapdoor vtk and sends vk to the sender P .

8

– Targeted commitment algorithm: Com`(~M ;Q) from player P to player Q, for ~M = (Mi)i ∈ {0, 1}m and a
label `, works as follows:

• For i ∈ J1,mK, it chooses ri,Mi at random and computes CH(ck, vk,Mi; ri,Mi) to obtain the hash value ai and
the corresponding opening value di,Mi . It samples at random the values ri,1−Mi and di,1−Mi . We denote as
~a = (a1, . . . , am) the tuple of commitments and ~d = (di,j)i,j .
• For i ∈ J1,mK and j = 0, 1, it gets ~b = (bi,j)i,j = 2mEncrypt`

′
pk(

~d;~s), where ~s is taken at random and
`′ = (`,~a).

The commitment is C = (~a,~b), and the opening information is the m-tuple δ = (s1,M1 , . . . , sm,Mm).

– Verification algorithm: VerCom`(vtk, C, ~M, δ) first checks the validity of the ciphertexts bi,Mi with randomness
si,Mi , then extracts di,Mi from bi,Mi and si,Mi , and finally checks the chameleon hash ai with opening value di,Mi ,
for i ∈ J1,mK, via the algorithm Valid(ck, vk,Mi, ai, di,Mi , vtk).

– Simulated targeted commitment algorithm: SimCom`(τ ;Q) from the simulator to player Q, takes as input the
equivocation trapdoor, namely tk, from τ = (dk, tk), and outputs the commitment C = (~a,~b) and equivocation
key eqk = ~s, where

• For i ∈ J1,mK, it chooses ri,0 at random, computes (ai, di,0) = CH(ck, vk, 0; ri,0), and uses the equivoca-
tion trapdoor tk to compute ri,1 used to open the chameleon hash to 1 such that CH(ck, vk, 1; ri,1) is equal
to (ai, di,1). This leads to ~a and ~d, making di,j the opening value for ai,j for all i ∈ J1,mK and j = 0, 1.
• ~b is built as above:~b = (bi,j)i,j = 2mEncrypt`

′
pk(

~d;~s), where eqk = ~s is taken at random and `′ = (`,~a).

– Equivocation algorithm: OpenCom`(eqk, C, ~M) simply uses part of the equivocation key eqk (computed by the
SimCom algorithm) to obtain the opening information δ = (s1,M1 , . . . , sm,Mm) in order to open to ~M = (Mi)i.

– Extraction algorithm: ExtCom`(τ, vtk, C) takes as input the extraction trapdoor, namely the decryption key dk,
from τ = (dk, tk), the verification trapdoor vtk and a commitment C = (~a,~b). For i ∈ J1,mK and j = 0, 1, it
first extracts the value di,j from the ciphertext bi,j , using the decryption key dk. Then, for i ∈ J1,mK, it checks the
chameleon hash ai with opening values di,0 and di,1 with the help of the algorithm Valid(ck, vk, j, ai, di,j , vtk) for
j = 0, 1. If only one opening value di,j satisfies the verification equality of the chameleon hash, then j = Mi. If
this condition holds for each i ∈ J1,mK, then the extraction algorithm outputs (Mi)i. Otherwise (either if ~b could
not be correctly decrypted, or there was an ambiguity while checking ~a, with at least one chameleon hash ai with
two possible opening values di,0 and di,1), it outputs ⊥.

Security Result. Given a publicly verifiable collision-resistant chameleon hash and a secure CCA-encryption accepting
an SPHF on the language of valid ciphertexts, the above construction provides a commitment scheme which is SPHF-
friendly.

Proof. According to the results recalled at the beginning of this section, page 7, we first need to prove that this E2 com-
mitment is strongly-simulation-indistinguishable and robust. Due to lack of space, the proof of this result is postponed
to Appendix C.1 .

One then additionally needs to construct an SPHF on the languages LM = {(`, C)| ∃δ such that VerCom`(vtk, C,
M, δ) = 1}. Recall that the CCA-encryption admits an SPHF on the languages Lenc

M = {(`, C)| ∃r such that Encrypt`(pk,
M ; r)) = C}, directly giving us the required SPHF since the algorithm VerCom, on input C = (~a,~b), first checks the
CCA-encryptions bi,Mi and then verifies the chameleon hashes ai for all i. More precisely, the required language
is as follows: LM = {(`, C)|∀i ∈ {1, . . . ,m} ∃ri,Mi , si,Mi , di,Mi such that mEncrypt∗,`(pk, (di,Mi)i; (si,Mi)i) =
(bi,Mi)i and that CH(ck, vk,Mi; ri,Mi) = (ai, di,Mi)}, on which one can easily construct an SPHF by disjunction
using the method described in [ACP09, BBC+13a]4.

4 The notation mEncrypt∗,`(pk, (di,Mi)i; (si,Mi)i) simply means that we compute 2mEncrypt`(pk, (di,j)i,j ; (si,j)i,j) and take the m com-
ponents corresponding to j =Mi for every i.

9

3.3 Generic Construction of UC-Secure Oblivious Transfer

Introduction. We denote by DB the database of the server containing t = 2m lines, and j the line requested by the
user in an oblivious way. We assume the existence of a Pseudo-Random Generator (PRG) F with input size equal to
the plaintext size, and output size equal to the size of the messages in the database and a IND-CPA encryption scheme
E = (Setupcpa,KeyGencpa,Encryptcpa,Decryptcpa) with plaintext size at least equal to the security parameter. We
also assume the existence of compatible CCA-encryption and chameleon hash with the properties described in the
former section, and we generically obtain from them the SPHF-friendly commitment scheme given above.

Protocol. We exactly follow the construction given in [ABB+13], giving the protocol presented on Figure 2. The only
difference is that we take advantage of the pre-flow to ask the server to generate the CH verification keys (vk, vtk). For
the sake of simplicity, we only give the version for adaptive security, in which the server generates pk and c to create a
somewhat secure channel (they would not be used in the static version).

CRS: ρ = (ek, ck, param)
$← SetupCom(1K), paramcpa

$← Setupcpa(1
K).

Pre-flow:
1. Server generates a key pair (pk, sk) $← KeyGencpa(paramcpa) for E , stores sk and completely erases the random coins used by KeyGen

2. Server generates a verification key pair (vk, vtk) $← VKeyGen(ck) for CH, stores vtk and completely erases the random coins used by
VKeyGen

3. Server sends pk and vk to User

Index query on j:
1. User chooses a random value J , computes R← F (J) and encrypts J under pk:

c
$← Encryptcpa(pk, J)

2. User computes (C, δ) $← Com`(j) with ` = (sid, ssid, Pi, Pj)
3. User stores δ and completely erases J , R and the random coins used by Com and Encryptcpa and sends C and c to Server

Database input (n1, . . . , nt):
1. Server decrypts J ← Decryptcpa(sk, c) and then R← F (J)

2. For s = 1, . . . , t: Server computes hks
$← HashKG(Ls, param),

hps ← ProjKG(hks, (Ls, param), (`, C)), Ks ← Hash(hks, (Ls, param), (`, C)),
and Ns ← R⊕Ks ⊕ ns

3. Server erases everything except (hps, Ns)s=1,...,t and sends them over a secure channel

Data recovery:
Upon receiving (hps, Ns)s=1,...,t, User computes
Kj ← ProjHash(hpj , (Lj , param), (`, C), δ) and gets nj ← R⊕Kj ⊕Nj .

Fig. 2. UC-Secure 1-out-of-t OT from an SPHF-Friendly Commitment (for Adaptive Security)

Security Result. The oblivious transfer scheme described in Figure 2 is UC-secure in the presence of adaptive adver-
saries, assuming reliable erasures and authenticated channels, as soon as the commitment scheme is constructed from
a secure publicly-verifiable chameleon hash and a secure CCA encryption scheme admitting an SPHF on the language
of valid ciphertexts, as described in the former section.

The proof remains the same; It is given in Appendix C.2 for completeness.

4 Instantiation Based on Cramer-Shoup Encryption (DDH)

Let us now show how to build SPHF-friendly commitment schemes from various assumptions. While it may seem to
be a tremendously far-fetched idea for a construction, we are going to show throughout the following sections that in
fact such schemes can be easily built on any of the main modern fields of cryptographic hypotheses.

10

We start with the construction based on DDH: Since it is easier to understand, it will help to underline the key
points. This commitment revisits the one used in [ABB+13] but we remove the pairing used in it thanks to the methods
described in the previous section, by generating vtk on the fly. For the chameleon hash, we are going to use a CDH-
based Pedersen encryption scheme. However as such CH is not designated verifier, we are going to transform it in an
Haralambiev way [Har11, Section 4.1.4]. For the CCA encryption we will rely on an extended version of Cramer-Shoup
encryption.

4.1 Building Blocks

CDH-based Chameleon Hash5

– KeyGen(K): Outputs the chameleon hash key ck = (g, h) and the trapdoor tk = α, where gα = h;
– VKeyGen(ck): Generates vk = f and vtk = logg(f)
– CH(ck, vk,m; r): Picks a random r ∈ Zp, and outputs the chameleon hash a = hrgm. Sets d = f r.
– Coll(m, r,m′, tk): outputs r′ = r + (m−m′)/α.
– Valid(ck, vk,m, a, d, vtk): The user outputs d, so that one can check if a = hm · d1/vtk.

The trivial way to check this CH requires a pairing instead of knowing vtk. Note that this trivial verification indeed
leads to the protocol described in [ABB+13]. Instead, we let the verifier (the server in latter use) picks a new f and its
discrete logarithm.

2m-labelled multi twisted Cramer-Shoup Encryption Scheme
We first recall the Cramer-Shoup encryption scheme, which is IND-CCA under the DDH assumption.

– KeyGen(K): Assuming two independent generators g and h, for random scalars x1, x2, y1, y2, z
$← Zp, we set

sk = (x1, x2, y1, y2, z) to be the private decryption key and ek = (g1, g2, c = gx1
1 gx2

2 , d = gy1
1 g

y2
2 , h1 = gz1 ,H) to

be the public encryption key, whereH is a random collision-resistant hash function fromH.
– IfM ∈ G, the Cramer-Shoup encryption is defined as CS`(pk,M ; r) = (u = gr1, v = gr2, e = hr ·M,w = (cdθ)r),

where θ = H(`, u, v, e).
– Such a ciphertext is decrypted byM = e/uz , after having checked the validity of the ciphertext:w ?= ux1+θy1vx2+θy2 .

The above scheme can be extended naturally to encrypt vectors of group elements ~D = (D1, . . . , D2m) ∈ G2m, by
having 2m tuples of random scalars in the secret key, and a global value θ for the encryption. The authors of [ABB+13]
proved that this scheme is VIND-PO-CCA under the DDH assumption.

4.2 Diffie-Hellman Based Commitment Scheme

We simply apply the construction described in Section 3 to obtain the commitment scheme from these blocks.

– SetupComT(1K) generates a multiplicative group param = (p,G, g);
ek = (g1, g2, c, d, h1,H) and the decryption key dk corresponding to the various discrete log in basis g, ck = (g, h),
tk the respective discrete logarithm.
For SetupCom(1K), the CRS is generated the same way, but forgetting the scalars, and thus without any trapdoor.
The algorithms both output ρ = (ek, ck, param).

– Pre-flow: During the preflow, the server Q runs VKeyGen(ck) and outputs vk = f and keeps its discrete logarithm
vtk.

– Com`(~M ;Q) from player P to player Q, for ~M = (Mi)i ∈ {0, 1}m and a label `, works as follows:
• For i ∈ J1,mK, it chooses a random ri,Mi ∈ Zp, a random ri,1−Mi , and computes ai = gMihri,Mi and sets di,j =
f ri,j for j = 0, 1, which makes di,Mi part of the opening value for ai to Mi. Let us write ~a = (a1, . . . , am), the
tuple of commitments.

5 As there is no pairing in our construction, we do not really need the linear based version of both schemes, but similar variants can be imagined
based on the linear assumption or even on any matrix assumption [EHK+13].

11

• For i ∈ J1,mK and j = 0, 1, it gets ~b = (bi,j)i,j = 2mEncrypt`
′
(pk, ~d;~s), where ~s is from the random string

and `′ = (`,~a).
The commitment is C = (~a,~b), and the opening information is the m-tuple δ = (sM1 , . . . , sMm).

– VerCom`(C, ~M, δ) checks the validity of the ciphertexts bi,Mi with sMi , extracts di,Mi from bi,Mi and si,Mi , and
checks whether (ai/gMi)vtk = di,Mi .

– SimCom`(τ) takes as input the equivocation trapdoor, namely tk, and outputs C = (~a,~b) and eqk = ~s, where
• For i ∈ J1,mK, it chooses a random ri,0, sets ai = gri,0 , and uses the equivocation trapdoor to computes the

randomness ri,1 = ri,0 − 1/tk. This leads to ~a and ~d;
• ~b is built as above:~b = (bi,j)i,j = 2mEncrypt`

′
(pk, ~d;~s), with random scalars eqk = (s∗,i,j)i,j .

– OpenCom`(eqk, C, ~M) simply uses eqk to set the opening value δ = (sM1 , . . . , sMm) in order to open to ~M =
(Mi)i.

– ExtCom`(τ, C) takes as input the extraction trapdoor, namely the decryption key dk and the chameleon verification
trapdoor vtk. Given ~b, it can decrypt all the bi,j into di,j and checks consistency with (ai/g

j)vtk ?= di,j or not. If,
for each i, exactly one j = Mi satisfies the equality, then the extraction algorithm outputs (Mi)i, otherwise (no
correct decryption or ambiguity with several possibilities) it outputs ⊥.

4.3 The SPHF Associated with the Commitment Scheme

For the sake of simplicity, we first give an explicit writing of the said SPHF when the strings are of length one.
This SPHF is defined on Cramer-Shoup encryption (see for instance [BBC+13b]), except that it is done on an

encryption of “an encryption of M , such that the projected hash value of this encryption is the value sent in the
commitment of M”, rather than simply on an encryption of M . But the internal language is easily verifiable, making
this SPHF having the good properties simply applying the methodology described in [BBC+13b].

– Com`(b;Q): A commitment to a bitmi, can now be written asC = hrmigmi , b1,0 = (hs01 g
r0 , gs01 , g

s0
2 , (cd

β)s0), b1,1 =
(hs11 g

r1 , gs11 , g
s1
2 , (cd

β)s1).
where β = H(hrbgmi , (h

sj
1 g

rj , g
sj
1 , g

sj
2)j∈J0,1K) and the session id.

– VerCom`(C, b, δ):
• ProjKG(C, b;Q): To implicitly check if the commitment is a valid commitment to b, one simply has to compute

projection keys hp = hλfµ, hpmi = hµ1g
µmi
1 g

νmi
2 (cdβ)θmi , where all new Greek letters are random scalars. And

the hash value Hmi = (C/gmi)λ ·~bhkmimi .)
• ProjHash(C, b, hpmi ;P): The prover will compute H ′mi = hp

smi
mi hp

rmi .

If everything was done honestly, those two values are equal, otherwise they are seemingly random. To see why
this is smooth, considering the number of free variables in the system of equations generated by the public view of
the projection key hp guarantees that not enough information leaks about the hashing keys in order to weaken the
smoothness.

In the real protocol where the string is cut into bits, one simply has to do an AND of all those languages, where
H =

∏
Hi,mi , and where one uses a vector of projections keys hpi,mi . To optimize the construction on bit strings,

one can simply use the polynomial trick from [BBC+13a], where they provide hp1, a random scalar ε and assume that
hpi = hp

ε(i−i)
1 , a classical inversion argument on the matrices of discrete logarithm of the given exponents will show

that the SPHF remains smooth.
Efficiency consideration shows that the pre-flow requires 2 group elements (1 for pk, 1 for vk), for each bit we

need 9 elements (1 for ai and 2*4 for bi,{0,1}, we also have the additional encryption for the verification linked to the
pre-flow (so 2 elements). We now need to give two elements for the hp, and in case of more that one bit, a random
scalar ε. Overall this leads to 9m+ 6 group elements and a scalar.

5 Instantiation Based on Dual Regev Encryption (LWE)

Lattices present an interesting challenge, since because of the noise many properties are harder to achieve. However,
our construction requires only two simple blocks to work.

12

5.1 Building Blocks

Chameleon Hash
We present here a Chameleon Hash constructed from the SIS assumption, following the chameleon hash given

in [CHKP10] but using the Micciancio-Peikert trapdoor generation [MP12]. We here only present the scheme, since
the security proof comes directly following the proof of Lemma 4.1 in [CHKP10].

Let k = dlog qe = O(logK) andm = O(Kk). LetD = DZm̄×Kk,ω(
√

logK) be the Gaussian distribution over Zm̄×Kk

with parameter ω(
√
logK) and let s = O(

√
Kk) be a Gaussian parameter. Let the randomness space be defined as

R = DZm,s·ω(
√

logK). Then, the Chameleon Hash is defined as follows:

– KeyGen(K): choose a random matrix A0
$← ZK×`

q .

Sample (A1,R1)
$← GenTrapD(1K, 1m, q). Define ck = (A0,A1) and tk = R1.

– VKeyGen(ck): Outputs vk = ⊥, vtk = ⊥
– CH(ck, vk,m; r): choose a vector r from the Gaussian distribution DZm,s·ω(

√
logK), r← DZm,s·ω(

√
logK). Compute

the chameleon hash value c = A0m +A1r. Return the chameleon hash c and the opening information r. (which
we will later commit using the CCA2 scheme)

– Coll(tk, (m0, r0),m1): compute u = (A0m0+A1r0)−A0m1 and sample r1 ∈ Zm according toDΛ⊥u (A1),s·ω(
√

logK),

r1
$← SampleD(R1,A1,u, s).

– Verify(ck, vtk,m, c, r): accept if ‖r‖ ≤ s · ω(
√
logK) ·

√
m and c = A0m+A1r; otherwise, reject.

It should be noted, that the trapdoor allows to recover not only a collision, but also a preimage if need be.

Naive 2m-labelled multi LWE-based Encryption Scheme
Katz and Vaikuntanathan proposed in [KV09] a labelled CCA-Encryption with an approximate SPHF. In order to

achieve the 2m-labelled, one simply has to use the same label in all the encryptions, and then add a one-time signature,
built for example by using the previous chameleon hash.

5.2 Oblivious Transfer using an Approximate SPHF

The approximate SPHF presented in [KV09] is sufficient for our application with a small modification to our generic
framework. Indeed, instead of obtaining two identical values for Hash and ProjHash, the correctness only guarantees
that for a well-formed ciphertext, those two values have a small Hamming distance, hence xoring the two values
together leads to a string with low Hamming weight. Assuming the line in the database is first encoded using an Error
Correcting Code, and then masked by the server using the Hash value, the user can then use his projective hash value to
recover a word near a valid encoding for the required entry, and then decoding using the Error Correcting Code as the
remaining nose is small, he will recover the valid string. On invalid lines, the noise is seemingly random, hence beyond
the decoding limit of any possible code.

6 Instantiation Based on Paillier Encryption (Composite Residuosity)

The solution is pretty straightforward on how to instantiate the previous scheme while relying on a DCR assumption.
This simply requires the generic transformation from any native DDH scheme into a DCR based one presented in
[HO09].

It is interesting to note that this boils down to using the Paillier-based CCA encryption presented in [CS02], in
addition to a DCR-based Chameleon Hash encryption. (Operations are done modulo N2 except if indicated otherwise)

For lack of space, we only present here the two needed building blocks and postpone the description of the com-
mitment scheme and the associated smooth projective hash function to Appendix D .

13

6.1 Building Blocks

DCR-based Chameleon Hash
We simply use a direct transposition of the Chameleon Hash described in Section 4 in a group of order ZN2 . While

this may be improved, the description remain simple.

2m-labelled multi DCR-based Encryption Scheme
We use the variant of the CCA-2 encryption introduced in [CS02]. The encryption key ek is now a tuple (g, s, s̃),

where g = N + 1, s = gk0 and s̃i = gki where ~k $← J0, bN2/2cKβ+2, and the encryption process becomes:
Encrypt(pk,M ;w): pick w $← J0, N/2K and compute γ = H(`′, gw,Msw, s̃w1), and~b = (gw,Msw, s̃w1

∏β+1
j=2 s

wγj
j).

Once again, knowing the respective discrete logarithms in the encryption keys allows to decrypt the ciphertext.

Acknowledgements. This work was supported in part by the French ANR-14-CE28-0003 EnBiD Project.

References

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and David Pointcheval. SPHF-friendly non-interactive
commitments. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 214–234. Springer,
December 2013.

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projective hashing for conditionally extractable commitments.
In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 671–689. Springer, August 2009.

[BBC+13a] Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. Efficient UC-secure authenti-
cated key-exchange for algebraic languages. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS,
pages 272–291. Springer, February / March 2013.

[BBC+13b] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. New techniques for SPHFs and
efficient one-round PAKE protocols. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages
449–475. Springer, August 2013.

[BC15] Olivier Blazy and Céline Chevalier. Generic Construction of UC-Secure Oblivious Transfer. Cryptology ePrint Archive, 2015. Full
version of the present paper.

[BCPV13] Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. Analysis and improvement of Lindell’s UC-secure
commitment schemes. In Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-Naini, editors,
ACNS 13, volume 7954 of LNCS, pages 534–551. Springer, June 2013.

[BN05] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order. In Bart Preneel and Stafford Tavares,
editors, SAC 2005, volume 3897 of LNCS, pages 319–331. Springer, August 2005.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS, pages 136–145. IEEE
Computer Society Press, October 2001.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 19–40. Springer, August 2001.

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryption. In Christian Cachin and
Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 207–222. Springer, May 2004.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a lattice basis. In Henri Gilbert, editor,
EUROCRYPT 2010, volume 6110 of LNCS, pages 523–552. Springer, May 2010.

[CKWZ13] Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Efficient, adaptively secure, and composable oblivious
transfer with a single, global CRS. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages
73–88. Springer, February / March 2013.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and multi-party secure compu-
tation. In 34th ACM STOC, pages 494–503. ACM Press, May 2002.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 265–281. Springer, August 2003.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption.
In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64. Springer, April / May 2002.

[DN02] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding universally composable commitment schemes with
constant expansion factor. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 581–596. Springer, August 2002.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic framework for Diffie-Hellman assumptions.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, August 2013.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In G. R. Blakley and David
Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer, August 1984.

[FLM11] Marc Fischlin, Benoît Libert, and Mark Manulis. Non-interactive and re-usable universally composable string commitments with
adaptive security. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 468–485.
Springer, December 2011.

14

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key exchange. In Eli Biham, editor, EURO-
CRYPT 2003, volume 2656 of LNCS, pages 524–543. Springer, May 2003. http://eprint.iacr.org/2003/032.ps.gz.

[GWZ09] Juan A. Garay, Daniel Wichs, and Hong-Sheng Zhou. Somewhat non-committing encryption and efficient adaptively secure oblivi-
ous transfer. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 505–523. Springer, August 2009.

[Har11] Kristiyan Haralambiev. Efficient Cryptographic Primitives for Non-Interactive Zero-Knowledge Proofs and Applications. PhD
thesis, New York University, 2011.

[HK07] Omer Horvitz and Jonathan Katz. Universally-composable two-party computation in two rounds. In Alfred Menezes, editor,
CRYPTO 2007, volume 4622 of LNCS, pages 111–129. Springer, August 2007.

[HO09] Brett Hemenway and Rafail Ostrovsky. Lossy trapdoor functions from smooth homomorphic hash proof systems. Electronic
Colloquium on Computational Complexity (ECCC), 16:127, 2009.

[Kal05] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. In Ronald Cramer, editor, EUROCRYPT 2005,
volume 3494 of LNCS, pages 78–95. Springer, May 2005.

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876
of LNCS, pages 581–600. Springer, March 2006.

[KR00] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In NDSS 2000. The Internet Society, February 2000.
[KV09] Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing and password-based authenticated key exchange from lattices.

In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 636–652. Springer, December 2009.
[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenticated key exchange. In Yuval Ishai, editor,

TCC 2011, volume 6597 of LNCS, pages 293–310. Springer, March 2011.
[Lin11] Yehuda Lindell. Highly-efficient universally-composable commitments based on the DDH assumption. In Kenneth G. Paterson,

editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 446–466. Springer, May 2011.
[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In David Pointcheval and Thomas

Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer, April 2012.
[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao Kosaraju, editor, 12th SODA, pages 448–457.

ACM-SIAM, January 2001.
[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan Feigenbaum, editor,

CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, August 1991.
[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable oblivious transfer. In David

Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 554–571. Springer, August 2008.
[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical Report TR81, Harvard University, 1981.

A Definitions

A.1 Vector-Indistinguishability with Partial Opening, Under Chosen-Ciphertext Attacks

Vector-indistinguishability with partial opening, under chosen-
ciphertext attacks: this security notion VIND-PO-CCA can be
formalized by the following experiments Expvind-po-cca-bA (K),
where the adversary A keeps some internal state between the
various calls FIND and GUESS, and makes use of the above
ODecrypt oracle. However, Encrypt∗ has an additional input ∆,
that consists of the common values in ~M0 and ~M1, and ⊥ at the
places of distinct values. It also outputs the values ~r that allow
to check that C∗ actually encrypts a vector ~M that corresponds
to ∆ (i.e., that is equal to ∆ for places different than ⊥). The
exact definition of these values ~r depend on the actual encryption
scheme.

Expvind-po-cca-bA (K)

param
$← Setup(1K)

(pk, sk)
$← KeyGen(param)

(`∗, ~M0, ~M1, state)
$← AODecrypt·(·)(FIND : pk)

∆ = ~M0 ∩ ~M1

(C∗, ~r)
$← Encrypt∗`

∗
(pk,∆, ~Mb)

b′
$← AODecrypt·(·)(state,GUESS : C∗, ~r)

If ((`∗, C∗) ∈ CT) Return 0
Else Return b′

This models the fact that when distinct random coins are used for each component of the vector, the random coins
of the common components can be revealed, it should not help to distinguish which vector has been encrypted.
These experiments Expvind-po-cca-bA (K) define the advantages Advvind-po-ccaE (A,K) and Advvind-po-ccaE (t). Fol-
lowing [ABB+13], we will use Advvind-po-ccaE (m, qd, γ, t) to make precise the length m of the vectors, and to bound
by qd the number of decryption queries and by γ the number of distinct values in the pairs of vectors.

In addition to Cramer-Shoup like ciphertexts, one can see that this property can easily be achieved using transfor-
mations similar to [Kil06, CHK04], one can easily see that a classical labelled CCA-1 encryption can be transformed
into a VIND-PO-CCA using a Strong One-time signature. One simply computes a set of keys for the one time signa-
ture, includes the verification key into the label of the CCA-1 encryption, encrypts independently each component of

15

Exphid-bA (K)

ρ
$← SetupCom(1K)

(`, x0, x1, state)
$← A(ρ)

(C, δ)
$← Com`(xb)

Return A(state, C)

ExpbindA (K)

ρ
$← SetupCom(1K)

(C, `, x0, δ0, x1, δ1)
$← A(ρ)

If (¬VerCom`(C, x0, δ0)) Return 0
If (¬VerCom`(C, x1, δ1)) Return 0 Return x0 6= x1

Fig. 3. Hiding and Binding Properties

the vector, and then signs the ciphertext. In the reduction, as no information can leak on the encryption of the shared
parts (as the randomness used in this part is completely independent from the rest), the simulator will simply encrypts
them honestly and used the CCA-1 indistinguishability only on the different parts.

B Formal Definitions and Properties for Commitments

For the sake of completeness, we give here the formal definitions and results for commitments following [ABB+13].
We first give the basic definitions of non-interactive commitments (hiding and binding properties), then the more
interesting ones (equivocability and extractability) and finally the most complex ones (SPHF-friendliness, robustness)
defined in [ABB+13], leading to the results we use in this paper.

As usual, the qualities of adversaries will be measured by their successes and advantages in certain experiments
Expsec or Expsec-b (between the cases b = 0 and b = 1), denoted Succsec(A,K) and Advsec(A,K) respectively,
while the security of a primitive will be measured by the maximal successes or advantages of any adversary running
within a time bounded by some t in the appropriate experiments, denoted Succsec(t) and Advsec(t) respectively.
Adversaries can keep state during the different phases. We denote $← the outcome of a probabilistic algorithm or the
sampling from a uniform distribution.

B.1 Non-Interactive Labelled Commitments

A non-interactive labelled commitment scheme C is defined by three algorithms:

– SetupCom(1K) takes as input the security parameter K and outputs the global parameters, passed through the CRS
ρ to all other algorithms;

– Com`(x) takes as input a label ` and a message x, and outputs a pair (C, δ), where C is the commitment of x for
the label `, and δ is the corresponding opening data (a.k.a. decommitment information).
This is a probabilistic algorithm;

– VerCom`(C, x, δ) takes as input a commitment C, a label `, a message x, and the opening data δ and outputs 1
(true) if δ is a valid opening data for C, x and `. It always outputs 0 (false) on x = ⊥.

Using the experiments ExphidA (K) and ExpbindA (K) defined in Figure 3, one can state the basic properties required
for commitments:

– Correctness: for all correctly generated CRS ρ, all commitments and opening data honestly generated pass the
verification VerCom test: for all `, x, if (C, δ) $← Com`(x), then VerCom`(C, x, δ) = 1;

– Hiding Property: the commitment does not leak any information about the committed value. C is said (t, ε)-hiding
if AdvhidC (t) ≤ ε.

– Binding Property: no adversary can open a commitment in two different ways. C is said (t, ε)-binding if SuccbindC (t) ≤
ε.

Correctness is always perfectly required, and one can also require either the binding or the hiding property to be
perfect. Note that the labels are useless here, but will be very useful in the following, while defining E2 commitment
schemes.

16

Expsim-ind-bA (K)

(ρ, τ)
$← SetupComT(1K)

(`, x, state)
$← ASCom·(τ,·)(ρ)

If (b = 0) (C, δ)
$← Com`(x)

Else (C, δ)
$← SCom`(τ, x)

Return ASCom·(τ,·)(state, C, δ)

Expbind-extA (K)

(ρ, τ)
$← SetupComT(1K)

(C, `, x, δ)
$← AExtCom·(τ,·)(ρ)

x′ ← ExtCom`(τ, C)
If (x′ = x) Return 0
Else Return VerCom`(C, x, δ)

Fig. 4. Simulation Indistinguishability and Binding Extractability

B.2 Equivocable Commitments

An equivocable commitment scheme C extends on the previous definition, with SetupCom, Com, VerCom, and a
second setup SetupComT(1K) that additionally outputs a trapdoor τ , and

– SimCom`(τ) that takes as input the trapdoor τ and a label ` and outputs a pair (C, eqk), where C is a commitment
and eqk an equivocation key;

– OpenCom`(eqk, C, x) that takes as input a commitment C, a label `, a message x, and an equivocation key eqk for
this commitment, and outputs an opening data δ for C and ` on x.

Let us denote SCom the algorithm that takes as input the trapdoor τ , a label ` and a message x and which outputs
(C, δ)

$← SCom`(τ, x), computed as (C, eqk) $← SimCom`(τ) and δ ← OpenCom`(eqk, C, x).
Three additional properties are then associated: a correctness property, and two indistinguishability properties,

which all together imply the hiding property.

– Trapdoor Correctness: all simulated commitments can be opened on any message: for all `, x, if (C, eqk)
$←

SimCom`(τ) and δ ← OpenCom`(eqk, C, x), then VerCom`(C, x, δ) = 1;
– Setup Indistinguishability: one cannot distinguish the CRS ρ generated by SetupCom from the one generated

by SetupComT. C is said (t, ε)-setup-indistinguishable if the two distributions for ρ are (t, ε)-computationally
indistinguishable. We denote Advsetup-indC (t) the distance between the two distributions.

– Simulation Indistinguishability: one cannot distinguish a real commitment (generated by Com) from a fake commit-
ment (generated by SCom), even with oracle access to fake commitments. C is said (t, ε)-simulation-indistinguish-
able if Advsim-indC (t) ≤ ε (see the experiments Expsim-ind-bA (K) in Figure 4).

More precisely, when the trapdoor correctness is satisfied, since commitments generated by SimCom are perfectly
hiding (they can be opened in any way using OpenCom), AdvhidC (t) ≤ Advsetup-indC (t) + Advsim-indC (t).

Definition 1 (Equivocable Commitment). A commitment scheme C is said (t, ε)-equivocable if, first, the basic com-
mitment scheme satisfies the correctness property and is both (t, ε)-binding and (t, ε)-hiding, and, secondly, the
additional algorithms guarantee the trapdoor correctness and make it both (t, ε)-setup-indistinguishable and (t, ε)-
simulation-indistinguishable.

B.3 Extractable Commitments

An extractable commitment scheme C also extends on the initial definition, with SetupCom, Com, VerCom, as well as
the second setup SetupComT(1K) that additionally outputs a trapdoor τ , and

– ExtCom`(τ, C) which takes as input the trapdoor τ , a commitment C, and a label `, and outputs the committed
message x, or ⊥ if the commitment is invalid.

As above, three additional properties are then associated: a correctness property, and the setup indistinguishability,
but also an extractability property, which implies, together with the setup indistinguishability, the binding property:

– Trapdoor Correctness: all commitments honestly generated can be correctly extracted: for all `, x, if (C, δ)
$←

Com`(x) then ExtCom`(C, τ) = x;

17

Exps-sim-ind-bA (K)

(ρ, τ)
$← SetupComT(1K);

(`, x, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ)

If (b = 0) (C, δ)
$← Com`(x)

Else (C, δ)
$← SCom`(τ, x)

Return ASCom·(τ,·),ExtCom·(τ,·)(state, C, δ)

Exps-bind-extA (K)

(ρ, τ)
$← SetupComT(1K)

(C, `, x, δ)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ)

x′ ← ExtCom`(τ, C)
If ((`, x′, C) ∈ Λ) Return 0
If (x′ = x) Return 0
Else Return VerCom`(C, x, δ)

Fig. 5. Strong Simulation Indistinguishability and Strong Binding Extractability

– Setup Indistinguishability: as above;
– Binding Extractability: one cannot fool the extractor, i.e., produce a commitment and a valid opening data to an

input x while the commitment does not extract to x. C is said (t, ε)-binding-extractable if Succbind-extC (t) ≤ ε
(see the experiment Expbind-extA (K) in Figure 4).

More precisely, when one breaks the binding property with (C, `, x0, δ0, x1, δ1), if the extraction oracle outputs
x′ = x0, then one can output (C, `, x1, δ1), otherwise one can output (C, `, x0, δ0). In both cases, this breaks the
binding-extractability: AdvbindC (t) ≤ Advsetup-indC (t) + Succbind-extC (t).

Definition 2 (Extractable Commitment). A commitment scheme C is said (t, ε)-extractable if, first, the basic com-
mitment scheme satisfies the correctness property and is both (t, ε)-binding and (t, ε)-hiding, and, secondly, the addi-
tional algorithms guarantee the trapdoor correctness and make it both (t, ε)-setup-indistinguishable and (t, ε)-binding-
extractable.

B.4 E2 Commitments: Equivocable and Extractable Commitments

Definition 3 (E2 Commitment). A commitment scheme C is said (t, ε)-E2(equivocable and extractable) if the indistin-
guishable setup algorithm outputs a common trapdoor that allows both equivocability and extractability. If one denotes
Adve

2

C (t) the maximum of Advsetup-indC (t), Advsim-indC (t), and Succbind-extC (t), then it should be upper-bounded by
ε.

But with such a common trapdoor, the adversary could exploit the equivocation queries to break extractability and
extraction queries to break equivocability. Stronger notions have thus been defined in [ABB+13], using the experiments
Exps-sim-ind-bA (K) and Exps-bind-extA (K) in Figure 5, in which SCom is supposed to store each query/answer (`, x, C)
in a list Λ and ExtCom-queries on such an SCom-output (`, C) are answered by x (as it would be when using Com
instead of SCom).

– Strong Simulation Indistinguishability: one cannot distinguish a real commitment (generated by Com) from a fake
commitment (generated by SCom), even with oracle access to the extraction oracle (ExtCom) and to fake commit-
ments (using SCom). C is said (t, ε)-strongly-simulation-indistinguishable if one has Advs-sim-indC (t) ≤ ε;

– Strong Binding Extractability (informally introduced in [CLOS02] as “simulation extractability”): one cannot fool
the extractor, i.e., produce a commitment and a valid opening data (not given by SCom) to an input xwhile the com-
mitment does not extract to x, even with oracle access to the extraction oracle (ExtCom) and to fake commitments
(using SCom). C is said (t, ε)-strongly-binding-extractable if Succs-bind-extC (t) ≤ ε.

They both imply the respective weaker notions since they just differ by giving access to the ExtCom-oracle in the
former game, and to the SCom oracle in the latter. We insist that ExtCom-queries on SCom-outputs are answered by
the related SCom-inputs. Otherwise, the former game would be void. In addition, VerCom always rejects inputs with
x = ⊥, which is useful in the latter game.

18

ExprobustA (K)

(ρ, τ)
$← SetupComT(1K)

(C, `)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ)

x′ ← ExtCom`(τ, C)
If ((`, x′, C) ∈ Λ) Return 0
If (∃x 6= x′, ∃δ, VerCom`(C, x, δ)) Return 1
Else Return 0

Fig. 6. Robustness

The functionality Fcom is parametrized by a security parameter k. It interacts with an adversary S and a set of parties P1,. . . ,Pn via the
following queries:

Commit phase: Upon receiving a query (Commit, sid, ssid, Pi, Pj, x) from party Pi: record the tuple (sid, ssid, Pi, Pj , x) and
generate a public delayed output (receipt, sid, ssid, Pi, Pj) to Pj . Ignore further Commit-message with the same ssid from Pi.
Decommit phase. Upon receiving a query (Reveal, sid, ssid, Pi, Pj) from party Pi: ignore the message if (sid, ssid, Pi, Pj , x) is not
recorded; otherwise mark the record (sid, ssid, Pi, Pj) as revealed and generate a public delayed output (Revealed, sid, ssid, Pi, Pj , x)
to Pj . Ignore further Reveal-message with the same ssid from Pi.

Fig. 7. Ideal Functionality for Commitment Scheme Fcom

B.5 Robust Commitments

As explained in the introduction of this paper, SPHF are useful combined with commitments, in order to check implic-
itly the plaintexts. The corresponding language is Lx = {(`, C)| ∃δ, VerCom`(C, x, δ) = 1}.

The problem is that when commitments are equivocable, a commitment C with the label ` contains any x and is
thus in all the languages Lx. In order to be able to use SPHF with E2 commitments, we thus want the commitments
generated by polynomially-bounded adversaries to be perfectly binding, and thus to belong to at most one language Lx.
In order to achieve this property, the authors of [ABB+13] formalized it by the robust verification property as defined
in the following.

Definition 4 (Robustness). One cannot produce a commitment and a label that extracts to x′ (possibly x′ = ⊥) such
that there exists a valid opening data to a different input x, even with oracle access to the extraction oracle (ExtCom)
and to fake commitments (using SCom). C is said (t, ε)-robust if SuccrobustC (t) ≤ ε, according to the experiment
ExprobustA (K) in Figure 6.

It is important to note that the latter experiment ExprobustA (K) may not be run in polynomial time. Robustness
implies strong-binding-extractability.

B.6 UC-Secure Commitments

UC-Secure Commitments. The security definition for commitment schemes in the UC framework was presented by
Canetti and Fischlin [CF01], refined by Canetti [Can01]. The ideal functionality is presented in Figure 7, where a
public delayed output is an output first sent to the adversary S that eventually decides if and when the message is
actually delivered to the recipient. In case of corruption of the committer, if this is before the receipt-message for the
receiver, the adversary chooses the committed value, otherwise it is provided by the ideal functionality, according to the
Commit-message. Note this is actually the multiple-commitment functionality that allows multiple executions of the
commitment protocol (multiple ssid’s) for the same functionality instance (one sid). This avoids the use of joint-state
UC [CR03].

The authors of [ABB+13] proved the following result.

Theorem 5. A labelled E2commitment scheme C, that is in addition strongly-simulation-indistinguishable or strongly-
binding-extractable, is a non-interactive UC-secure commitment scheme in the presence of adaptive adversaries, as-
suming reliable erasures and authenticated channels.

19

We refer the interested reader to their paper for the full proof, but for the sake of completeness, we recall here the
simulator.

– when receiving a commitment C from the adversary, and thus either freshly generated by the adversary or a replay
of a commitment C generated by the simulator in another session (with a different label), the simulator extracts the
committed value x, and uses it to send a Commit message to the ideal functionality. A dummy value is used in case
of bad extraction;

– when receiving a receipt-message, which means that an honest player has committed a value, the simulator gen-
erates (C, eqk)

$← SimCom`(τ), with ` = (sid, ssid, Pi, Pj), to send C during the commit phase of the honest
player;

– when receiving (x, δ), if the verification succeeds, the simulator asks for a Reveal query to the ideal functionality;
– when receiving a Revealed-message on x, it then generates δ ← OpenCom`(eqk, C, x) to actually open the

commitment.

Any corruption just reveals x earlier, which allows a correct simulation of the opening.

B.7 SPHF-Friendly Commitments

Finally, the authors of [ABB+13] give the definition of SPHF-friendly commitments, which admit an SPHF on the
languages Lx = {(`, C)| ∃δ, VerCom`(C, x, δ) = 1}.

Definition 6 (SPHF-Friendly Commitments). An SPHF-friendly commitment is an E2 commitment that admits an
SPHF on the languages Lx, and that is both strongly-simulation-indistinguishable and robust.

Let us consider such a family F of SPHFs on languages Lx for x ∈ X , with X a non trivial set (with at least two
elements), with hash values in the set G.

From the smoothness of the SPHF on Lx, one can derive the two following properties on SPHF-friendly commit-
ments, modelled by the experiments in Figure 8.

The first notion of smoothness deals with adversary-generated commitments, that are likely perfectly binding from
the robustness, while the second notion of pseudo-randomness deals with simulated commitments, that are perfectly
hiding.

They are inspired by the security games from [GL03].
In both security games, note that when hk and hp do not depend on x nor on C, and when the smoothness holds

even if the adversary can choose C after having seen hp (i.e., the SPHF is actually a KV-SPHF [BBC+13b]), they can
be generated from the beginning of the games, with hp given to the adversary much earlier.

Smoothness of SPHF-Friendly Commitments. If the adversary A, with access to the oracles SCom and ExtCom,
outputs a fresh commitment (`, C) that extracts to x′ ← ExtCom`(τ, C), then the robustness guarantees that for any
x 6= x′, (`, C) 6∈ Lx (excepted with small probability), and thus the distribution of the hash value is statistically
indistinguishable from the random distribution, even when knowing hp. In the experiment Expc-smoothA (K), we let the
adversary choose x, and we have: Advc-smoothC,F (t) ≤ SuccrobustC (t) + Advsmooth

F .

Pseudo-Randomness of SPHF on Robust Commitments. If the adversary A is given a commitment C by SCom
on x′ with label `, both adversary-chosen, even with access to the oracles SCom and ExtCom, then for any x, it
cannot distinguish the hash value of (`, C) on language Lx from a random value, even being given hp, since C could
have been generated as Com`(x′′) for some x′′ 6= x, which excludes it to belong to Lx, under the robustness. In the
experiment Expc-ps-randA (K), we let the adversary choose (`, x), and we have: Advc-ps-randC,F (t) ≤ Advs-sim-indC (t)+

SuccrobustC (t) + Advsmooth
F .

20

Expc-smooth-bA (K)

(ρ, τ)
$← SetupComT(1K)

(C, `, x, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ); x′ ← ExtCom`(τ, C)

If ((`, x′, C) ∈ Λ) Return 0

hk
$← HashKG(Lx); hp← ProjKG(hk, Lx, (`, C))

If (b = 0 ∨ x′ = x)H ← Hash(hk, Lx, (`, C))

ElseH
$← G

Return ASCom·(τ,·),ExtCom·(τ,·)(state, hp, H)

Expc-ps-rand-bA (K)

(ρ, τ)
$← SetupComT(1K)

(`, x, x′, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ); (C, δ) $← SCom`(τ, x′)

hk
$← HashKG(Lx); hp← ProjKG(hk, Lx, (`, C))

If (b = 0)H ← Hash(hk, Lx, (`, C))

ElseH
$← G

Return ASCom·(τ,·),ExtCom·(τ,·)(state, C, hp, H)

Fig. 8. Smoothness and Pseudo-Randomness

C Proofs of the Generic Schemes

C.1 Proof of the Generic Chameleon-Hashed Commitment Scheme

Setup-indistinguishability. this is trivially satisfied since the two setup algorithms are exactly the same but just output
the trapdoor or not, and thus Advsetup-indE2C (t) = 0 for any t.

(t, ε)-strong-simulation-indistinguishability. Let us build a sequence of games from the security experiment with
b = 1 to the experiment with b = 0. We stress that SCom does not only output C = (~a,~b), but also δ = (si,Mi)i, where
the si,j’s are the random coins in the multi-CCA encryption.

1. We first start with the real game with b = 1 (use of SCom for the challenge commitment), with all the trapdoors to
emulate the oracles;

2. the simulator now knows the equivocation trapdoor to emulate the SCom-oracle, but has just access to the decryp-
tion oracle to emulate the ExtCom-oracle;

3. for the challenge oracle on x = (xi)i, the simulator uses ri,1−xi = 0, which leads to the plaintext di,1−xi = 1 that
are thereafter encrypted under the CCA encryption scheme. Applying the VIND-PO-CCA security of the multi-
CCA encryption scheme, in which them components of the vector that correspond to the committed vector x are the
same in the two 2m-long vectors, one can note that the bias is upper-bounded by Advvind-po-ccaMCCA (2m, qd,m, t),
where qd the number of extraction queries. The two vectors submitted to the encryption oracle Encrypt∗ in the
security game VIND-PO-CCA are (d1,0, d1,1, . . . , dm,0, dm,1), where the di,xi’s keep the same in the two games,
but the di,1−xi’s are all replaced by 1 in the second game. Then, the Encrypt∗ oracle additionally outputs the si,xi’s
(that correspond to the common components), which allows to output δ.

4. giving back all the trapdoors to the simulator, we are in the real game with b = 0 (use of Com for the challenge
commitment).

In conclusion, one thus gets Advs-sim-indE2C (t) ≤ Advvind-po-ccaMCCA (2m, qd,m, t).

(t, ε)-strong-binding-extractability. Let us build a sequence of games from the security experiment to an attack to the
underlying computational hypothesis of the CCA encryption scheme.

1. we first start with the real game, with all the trapdoors to emulate the oracles;
2. the simulator replaces all the SCom-oracle queries by Com-oracle queries. With an hybrid proof, where we replace

sequentially the SCom emulations by Com emulations, as above, one introduces a bias upper-bounded by qc ·
Advs-sim-indE2C (t), and thus qc · Advvind-po-ccaMCCA (2m, qd,m, t), where qc is the number of SCom-queries and qd the
number of extract queries;

21

3. the simulator does not need any more the equivocation trapdoor, but can still extract the correct di,xj , by decrypting
the CCA ciphertexts, to open the commitment and check the value of ~ai with respect to di,xi When the adversary
breaks the strong-binding-extractability, it provides C with a valid opening (~M, δ), whereas C extracts to ~M ′ 6= ~M
(possibly ⊥).
Since opening/verification always lead to one ~M , this means that the CCA decryption gives at least one valid
opening for each ai. But because of the different extraction output ~M ′, extraction technique is ambiguous on C: for
an index i, it can provide two different opening values for ai, which breaks the collision-resistance of the chameleon
hash.

In conclusion, one thus gets Succs-bind-extE2C (t) ≤ qc · Advvind-po-ccaMCCA (2m, qd,m, t) + Advcoll-res
CH (t), where qc is

the number of SCom-queries and qd the number of extract queries.

Robustness. In the above proof of strong-binding-extractability, as soon as different opening values exist, by decrypting
the CCA ciphertexts, one breaks the collision-resistance of the chameleon hash: SuccrobustE2C (t) ≤ qc · Advind-cca

MCCA (t) +
Advcoll-res

CH (t), where qc is the number of SCom-queries.

C.2 Proof of the Generic Oblivious Transfer Scheme

To prove this theorem, we exhibit a sequence of games. The sequence starts from the real game, where the adversary
A interacts with real players and ends with the ideal game, where we have built a simulator S that makes the interface
between the ideal functionality F and the adversary A. We prove the adaptive version of the protocol. The proof of the
static version can be obtained by removing the parts related to adaptive version from the proof below. We denote as Pi
the sender (i.e. the server) and Pj the receiver (i.e. the user).

Essentially, one first makes the setup algorithm additionally output the trapdoor (setup-indistinguishability); one
can then replace all the commitment queries by simulated (fake) commitments (simulation-indistinguishability). When
the sender submits the values (hpi,Mi)i the simulator can extract all the message thanks to the trapdoor and get
the witnesses for each indices. This allows to simulate the Send-query to the ideal functionality. Eventually, when
simulating the honest senders, the simulator extracts the committed value s, to set hps and Ms consistent with ms, the
other values can be random. More details follow:

Game G0: This is the real game.
Game G1: In this game, the simulator generates correctly every flow from the honest players, as they would do

themselves, knowing the inputs (m1, . . . ,mk) and s sent by the environment to the sender and the receiver. In all
the subsequent games, the players use the label ` = (sid, ssid, Pi, Pj). In case of corruption, the simulator can give
the internal data generated on behalf of the honest players.

Game G2: In this game, we just replace the setup algorithm SetupCom by SetupComT that additionally outputs
the trapdoor (ρ, τ)

$← SetupComT(1K), but nothing else changes, which does not alter much the view of the
environment under setup indistinguishability. Corruptions are handled the same way.

Game G3: We first deal with honest senders Pi: when receiving a commitment C, the simulator extracts the com-
mitted value s. Instead of computing the key Kt, for t = 1, . . . , k with the hash function, it chooses Kt

$← G for
t 6= s.
With an hybrid proof, applying the smoothness (see Figure 8 – left), for every honest sender, on every index t 6= s,
since C is extracted to s, for any t 6= s, the hash value is indistinguishable from a random value.
In case of corruption, everything has been erased (except after the pre-flow, where the simulator can reveal the
keys (pk, sk, vk, vtk) generated honestly). This game is thus indistinguishable from the previous one under the
smoothness.

Game G4: Still in this case, when receiving a commitment C, the simulator extracts the committed value s. Instead
of proceeding as the sender would do on (m1, . . . ,mk), the simulator proceeds on (m′1, . . . ,m

′
k), with m′s = ms,

but m′t = 0 for all t 6= s. Since the masks Kt, for t 6= s, are random, this game is perfectly indistinguishable from
the previous one.

22

Game G5: We now deal with honest receivers Pj : we replace all the commitments (C, δ)
$← Com`(s) with ` =

(sid, ssid, Pi, Pj) in Step 1 of the index query phase of honest receivers by simulated commitments (C, δ)
$←

SCom`(τ, s), which means (C, eqk) $← SimCom`(τ) and δ ← OpenCom`(eqk, C, s). We then store (`, s, C, δ) in
Λ.
With an hybrid proof, applying the Exps-sim-ind security game for each session, in which SCom is used as an
atomic operation in which the simulator does not see the intermediate values, and in particular the equivocation
key, one can show the indistinguishability of the two games. In case of corruption of the receiver, one learns the
already known value s.

Game G6: We deal with the generation of R for honest senders Pi on honestly-generated queries (adaptive case
only): if Pi and Pj are honest at least until Pi received the second flow, the simulator sets R = F (J ′) for both Pi
and Pj , with J ′ a random value, instead of R = F (J).
With an hybrid proof, applying the IND-CPA property for each session, one can show the indistinguishability of
this game with the previous one.

Game G7: Still in the same case, the simulator sets R as a random value, instead of R = F (J ′).
With an hybrid proof, applying the PRF property for each session, one can show the indistinguishability of this
game with the previous one.

Game G8: We now deal with the generation of Ks for honest senders Pi on honestly-generated queries:
– in the static case (the pre-flow is only needed to compute (vk, vtk), and thus we assume R = 0) the simulator

chooses Ks
$← G (for t 6= s, the simulator already chooses Kt

$← G), where s is the index given by the ideal
functionality to the honest receiver Pj .
With an hybrid proof, applying the pseudo-randomness (see Figure 8 – right), for every honest sender, the
hash value is indistinguishable from a random value, because the adversary does not know any decommitment
information δ for C;

– in the adaptive case, and thus with the additional random mask R, one can send a random Ms, and Ks can be
computed later (when Pj actually receives its flow).
As above, but only if Pj has not been corrupted before receiving its flow, the simulator chooses Ks

$← G. With
an hybrid proof, applying the pseudo-randomness (see Figure 8 – right), for every honest sender, the hash value
is indistinguishable from a random value, because the adversary does not know any decommitment information
δ for C. If the player Pj involved in the pseudo-randomness game gets corrupted (but δ is unknown) we are not
in this case, and we can thus abort it.
In case of corruption of Pi, everything has been erased (except after the pre-flow, where the simulator can reveal
the keys (pk, sk, vk, vtk) generated honestly). In case of corruption of the receiver Pj , and thus receiving the
value ms, the simulator chooses R (because it was a random value unknown to the adversary and all the other
Kt are independent random values too) such that

R⊕ ProjHash(hps, Ls, (`, C), δs)⊕Ms = ms.

This game is thus indistinguishable from the previous one under the pseudo-randomness.
Game G9: Still in this case, the simulator proceeds on (m′1, . . . ,m

′
k), with m′t = 0 for all i. Since the masks Kt⊕R,

for any t = 1, . . . , k, are independent random values (the Kt, for t 6= s are independent random values, and Ks is
also independently random in the static case, while R is independently random in the adaptive case), this game is
perfectly indistinguishable from the previous one.
We remark that it is therefore no more necessary to know the index s given by the ideal functionality to the honest
receiver Pj , to simulate Pi (but it is still necessary to simulate Pj).

Game G10: We do not use anymore the knowledge of s when simulating an honest receiver Pj : the simulator gen-
erates (C, eqk)

$← SimCom`(τ), with ` = (sid, ssid, Pi, Pj), to send C during the index query phase of honest
receivers. It then stores (`,⊥, C, eqk) in Λ. We essentially break the atomic SCom in the two separated processes
SimCom and OpenCom. This does not change anything from the previous game since δ is never revealed. Λ is first
filled with (`,⊥, C, eqk), it can be updated with correct values in case of corruption of the receiver.

23

When it thereafter receives (Send, sid, ssid, Pi, Pj , (hp1,M1, . . . , hpk,Mk)) from the adversary, the simulator com-
putes, for i = 1, . . . , k, δi ← OpenCom`(eqk, C, i), Ki ← ProjHash(hpi, (`, Li), C, δi) and mi = Ki ⊕ R ⊕Mi.
This provides the database submitted by the sender.

Game G11: We can now make use of the functionality, which leads to the following simulator:
– when receiving a Send-message from the ideal functionality, which means that an honest sender has sent a

pre-flow, the simulator generates a key pair (pk, sk) $← KeyGen(1K) and (vk, vtk)
$← VKeyGen(ck) and sends

(pk, vk) as pre-flow;
– after receiving a pre-flow (pk, vk) (from an honest or a corrupted sender) and a Receive-message from

the ideal functionality, which means that an honest receiver has sent an index query, the simulator generates
(C, eqk)

$← SimCom`(τ) and c $← Encrypt(pk, J), with ` = (sid, ssid, Pi, Pj) and R a random value, to send
C and c during the index query phase of the honest receiver;

– when receiving a commitment C and a ciphertext c, generated by the adversary (from a corrupted receiver),
the simulator extracts the committed value s, and uses it to send a Receive-message to the ideal functionality
(and also decrypts the ciphertext c as J , and computes R = F (J));

– when receiving (hp1,M1, . . . , hpk,Mk) from the adversary (a corrupted sender), the simulator computes, for
i = 1, . . . , k, δi ← OpenCom`(eqk, C, i), Ki ← ProjHash(hpi, Li, (`, C), δi) and mi = Ki⊕R⊕Mi. It uses
them to send a Send-message to the ideal functionality.

– when receiving a Received-message from the ideal functionality, together with ms, on behalf of a corrupted
receiver, from the extracted s, instead of proceeding as the sender would do on (m1, . . . ,mk), the simulator
proceeds on (m′1, . . . ,m

′
k), with m′s = ms, but m′i = 0 for all i 6= s;

– when receiving a commitment C and a ciphertext c, generated by an honest sender (i.e., by the simulator itself),
the simulator proceeds as above on (m′1, . . . ,m

′
k), with m′i = 0 for all i, but it chooses R uniformly at random

instead of choosing it as R = F (J); in case of corruption afterward, the simulator will adapt R such that
R⊕ ProjHash(hps, Ls, (`, C), δs)⊕Ms = ms, where ms is the message actually received by the receiver.

Any corruption either reveals s earlier, which allows a correct simulation of the receiver, or reveals (m1, . . . ,mk)
earlier, which allows a correct simulation of the sender. When the sender has sent his flow, he has already erased
all his random coins. However, there would have been an issue when the receiver is corrupted after the sender has
sent is flow, but before the receiver receives it, since he has kept δs: this would enable the adversary to recover ms

from Ms and hps. This is the goal of the epheremal mask R that provides a secure channel.

D Instantiation Based on Paillier Encryption (Composite Residuosity)

D.1 Decisional Composite Residuosity Based Commitment Scheme

– SetupComT(1K) picks two safe prime p, q of size K, computes N = pq; defines the function ξ : J1, N2K →
J1, NK, x ← b where x can be uniquely decompose as aN + b for a, b ∈ J1, NK, and a Collision Resistant Hash
FunctionH mapping from (J1, N2K× J1, N2K)2n → J0, 2K − 1K.
Sets g = N + 1 and defines the encryption key for the Chameleon Hash as ck = (N, g, h) where h = gt with
tk = t ∈ J0, bN2/2cK, and vtk = α ∈ J0, bN2/2cK.
He then generates the encryption key for the CCA by picking β + 2 scalars in J0, bN2/2cK, and defining: s =
gk0 , s̃i = gki . The global encryption key is ek = (N, g, h, f, s, (s̃i)) and the decryption key dk their various
discrete log in basis g. It has been shown in [CS02], that for a K big enough, the use of a Collision Resistant Hash
Function allows to pick β = 1. For SetupCom(1K), the CRS is generated the same way, but forgetting the discrete
logarithms, and thus without any trapdoor.
The algorithms both output ρ = (ek, ck, param).

– Pre-flow : During the pre-flow, the player Q runs VKeyGen(ck) and generates vk = f and vtk corresponding to its
discrete logarithm in basis g.

– Com`(~M ;Q) from player P to player Q, for ~M = (Mi)i ∈ {0, 1}m and a label `, works as follows:
– Commit(m,U ; ρ): To commit a bitstring m for a user U , for each bit mi:
• Computes ai = gMihri,Mi and sets di,j = f ri,j , for random scalars r. Let us also write ~a = (a1, . . . , am), the

tuple of commitments.

24

• For i ∈ J1,mK and j = 0, 1, it gets ~b = (bi,j)i,j = 2mEncrypt`
′
(pk, ~d;~s), where ~s is from the random

string and `′ = (`,~a, ~H ′), then picks wi,b
$← J0, N/2K to compute γ = H(`′,~a, ~d), and ~b = (bi,j)i,j =

(gwi,b , di,bs
wi,b , s̃

wi,b
1

∏β+1
j=2 s

wi,bγj
j)6.

The commitment is C = (~a,~b), and eqk = ~w.
– VerCom`(eqk, C, ~M) recovers the m-tuple δ = (wM1 , . . . , wMm) from eqk and checks the validity of the cipher-

texts bi,Mi with wi,Mi , then extracts di,Mi from bi,Mi , and checks the consistency using vtk.
– SimCom`(τ) takes as input the equivocation trapdoor, namely tk, and outputs C = (~a,~b) and eqk = ~w, where

• For i ∈ J1,mK, it chooses a random ri,0, sets ai, di,0 = CH(0; ri,0), and uses the equivocation trapdoor to
computes the randomness ri,1 = ri,0 − 1/tk. This leads to ~a, ~d;
• ~b is built as above:~b = (bi,j)i,j = 2mEncrypt`

′
(pk, ~d; ~w), with random scalars eqk = ~w.

– OpenCom`(eqk, C, ~M) simply uses eqk to set the opening value (w1,M1 , . . . , wm,Mm) in order to open to ~M =
(Mi)i.

– ExtCom`(τ, C) takes as input the extraction trapdoor, namely the decryption key dk and vtk. Given~b, it can decrypt
all the bi,j into di,j and check whether di,j = (ai/g

j)vtk or not. If, for each i, exactly one j = Mi satisfies the
equality, then the extraction algorithm outputs (Mi)i, otherwise (no correct decryption or ambiguity with several
possibilities) it outputs ⊥.

D.2 The Smooth Projective Hash Function Associated With the Commitment Scheme

Once again we make an implicit decommitment by describing the SPHF checking that the elements π are correctly
computed.

It is simply a linear exponentiation equation where one checks that there is a wmi such that the encryption leads to
a valid projective hash. hpmi = sµgµmi (s̃1

∏β+1
j=2 s

γj
j)νmi is a good projection key.

It is easy to see that hprmihp
wmi
mi = (C/gmi)λ ·~bhkmimi .

It should be noted that, as explained in [CS02], this final hash computation can then be run through the function ξ
to obtain an element of reasonable size.

This SPHF is a generalization of the one described for the DDH scheme. Considering the number of randomness
used in the projective keys and the linear equations it creates, it can easily be seen that enough entropy remains in the
corresponding hash keys, hence guaranteeing the smoothness.

6 This is just an analogue of the Multi Cramer-Shoup used in the earlier section.

25

