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Abstract. In this work, we construct the first digital signature (SIG)
and public-key encryption (PKE) schemes with almost tight multi-user
security under adaptive corruptions based on the learning-with-errors
(LWE) assumption in the standard model. Our PKE scheme achieves al-
most tight IND-CCA security and our SIG scheme achieves almost tight
strong EUF-CMA security, both in the multi-user setting with adaptive
corruptions. The security loss is quadratic in the security parameter λ,
and independent of the number of users, signatures or ciphertexts. Previ-
ously, such schemes were only known to exist under number-theoretic as-
sumptions or in classical random oracle model, thus vulnerable to quan-
tum adversaries.

To obtain our schemes from LWE, we propose new frameworks for
constructing SIG and PKE with a core technical tool named probabilis-
tic quasi-adaptive hash proof system (pr-QA-HPS). As a new variant of
HPS, our pr-QA-HPS provides probabilistic public and private evaluation
modes that may toss coins. This is in stark contrast to the traditional
HPS [Cramer and Shoup, Eurocrypt 2002] and existing variants like ap-
proximate HPS [Katz and Vaikuntanathan, Asiacrypt 2009], whose pub-
lic and private evaluations are deterministic in their inputs. Moreover,
we formalize a new property called evaluation indistinguishability by re-
quiring statistical indistinguishability of the two probabilistic evaluation
modes, even in the presence of the secret key. The evaluation indistin-
guishability, as well as other nice properties resulting from the probabilis-
tic features of pr-QA-HPS, are crucial for the multi-user security proof
of our frameworks under adaptive corruptions.

As for instantiations, we construct pr-QA-HPS from the LWE as-
sumption and prove its properties with almost tight reductions, which
admit almost tightly secure LWE-based SIG and PKE schemes under our
frameworks. Along the way, we also provide new almost-tight reductions
from LWE to multi-secret LWE, which may be of independent interest.

1 Introduction

Tight Security. In modern cryptography, the security of cryptographic prim-
itives like digital signatures (SIG) and public-key encryptions (PKE) is estab-
lished by security reductions. Roughly speaking, a reduction turns an efficient
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adversary A breaking the security of the considered scheme with running time
tA and advantage ϵA into an efficient algorithm B solving some computationally
hard problem with running time tB and advantage ϵB, and establishes a relation
ϵA/tA ≤ ℓ · ϵB/tB, where ℓ is called the security loss factor.

Usually, ℓ is a large polynomial in the number of users, signatures and/or
ciphertexts in a deployed system. When instantiating the scheme in a theoret-
ically sound manner, we have to compensate the security loss ℓ by increasing
key lengths, group sizes or vector dimensions of the scheme. However, it might
not be clear at the time of deployment that how many users will be involved
and how many signatures or ciphertexts will be generated in the lifetime of the
cryptographic system. If the estimation is too small, the provided security guar-
antee will not be backed by the security proof. Therefore, it is desirable that ℓ
is a small constant or a small polynomial in the security parameter λ. Such a
security reduction is called a tight one or an almost tight one. We do not distin-
guish tightness and almost tightness, but we will detail the security loss in the
security theorems and scheme comparisons to reflect almost tightness.

Multi-User Security under Adaptive Corruptions (MUc). The standard
security notion for SIG is existential unforgeability under chosen-message attacks
(EUF-CMA) and that for PKE is indistinguishability under chosen-plaintext/ciph-
ertext attacks (IND-CPA/CCA). Both of the security notions are defined in a
single-user setting. However, in practice, SIG and PKE are usually deployed in
multi-user (and multi-challenge for PKE) settings, and leave more opportunities
to adversaries implementing new attacks. An important attack is user corruption
in that the adversary takes full control of some users and of course their secret
keys. This happens since some adversary may snatch secrets from some user by
system hacking or from key exposure due to the user’s bad key management.
Therefore, it is reasonable for us to consider EUF-CMA and IND-CPA/CCA secu-
rities in the multi-user (and multi-challenge) setting under adaptive corruptions
[6, 33], denoted by MUc-CMA and MUMCc-CPA/CCA, respectively. For ease of
exposition, we also refer to them in a unified way as the MUc security.

Apart from the motivations for the security itself, another important reason
for considering MUc security is that it captures the actual security requirements
of many cryptosystems that use SIG and/or PKE as building blocks. A well-
known example is authenticated key exchange (AKE) protocols which use SIG to
authenticate protocol transcripts and use key encapsulation mechanism (KEM)
or PKE to encapsulate elements contributing to session keys. Standard AKE
security models, such as the Bellare-Rogaway [9] and the (extended) Canetti-
Krawczyk [17, 32] models, are in multi-user settings and allow adversaries to
corrupt secret keys of some users. In particular, Bader et al. [6] present the
first tightly MUc-CMA secure SIG and tightly MUMCc-CPA secure KEM (and
PKE), and use them to construct the first tightly secure AKE protocol. An-
other example is signcryption, which can be built from SIG and PKE in various
ways like “Encrypt-then-Sign”, “Sign-then-Encrypt” and “Encrypt-and-Sign”
[3]. The insider security model, which is concluded by Badertscher et al. [8] as
the standard for signcryption and followed up by Bellare and Stepanovs [10],
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is also in multi-user settings and allows adaptive corruptions. In such scenarios,
MUc-CMA security for SIG and MUMCc-CPA/CCA security for PKE play central
roles. Tight MUc security of SIG and PKE would lead to tight security of the
applied cryptosystems.

On Achieving Tight MUc Security. Due to their importance, SIG and
PKE with tight MUc security have become an active area recently, including
impossibility results [7, 39] and feasibility constructions [6, 25, 33, 26, 20, 40, 27].

On the one hand, it is quite challenging to construct SIG and PKE with
tight MUc security. In general, single-user security can only non-tightly imply
MUc security by a guessing strategy, which incurs a security loss linear in the
number of users. As shown by Bader et al. [7], it is even impossible to achieve
tight MUc-CMA and tight MUMCc-CPA/CCA securities if the relation between
public key and secret key satisfies certain properties, which are satisfied by many
existing SIG and PKE schemes. Alternatively, if the signing algorithm of SIG is
deterministic, tight MUc-CMA security is also impossible to achieve [39].

On the other hand, there are very few SIG and PKE constructions in the
literature proved to have tight MUc security, even in the random oracle (RO)
model. To the best of our knowledge, SIG schemes in [6, 25, 26, 20, 40, 27] and
PKE schemes in [6, 33, 27] are the only ones with tight MUc security. Almost all
of them base their security on number-theoretic assumptions, such as the Diffie-
Hellman assumptions in cyclic groups or ϕ-hiding assumptions, which lead to
insecurity in the presence of powerful quantum adversaries. The only exception is
the SIG scheme of Pan and Wagner [20], which can be instantiated under either
the learning-with-errors (LWE) or isogeny-based assumptions. However, their
tight MUc-CMA security proof is based on the classical RO model, and it is left
as an open problem in [20] to extend their approach in the quantum RO model,
or even in the standard model. As for PKE, there is currently no construction
with tight MUMCc-CCA security based on post-quantum assumptions, no matter
in the RO model or in the standard model. This raises the following question:

Can we construct SIG and PKE schemes with tight MUc security based on
post-quantum assumptions (such as LWE) in the standard model?

Our Contributions. In this work, we answer the above question affirmatively.

• We present the first SIG and PKE schemes whoseMUc security can be almost
tightly reduced to the LWE assumptions in the standard model. The security
loss is quadratic in the security parameter λ. Our PKE scheme achieves
almost tight MUMCc-CCA security, and our SIG scheme achieves almost
tight MUc-CMA security with strong existential unforgeability, denoted by
strong MUc-CMA security, which even guarantees the hardness for adversary
to forge a new signature for an already signed message.

• We obtain our schemes by proposing new frameworks for tightly MUc se-
cure SIG and PKE. The core technical tool in our frameworks is a new
variant of hash proof system (HPS) named probabilistic quasi-adaptive HPS
(pr-QA-HPS), with new properties resulting from its probabilistic features.
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We instantiate pr-QA-HPS from the LWE assumption and prove its proper-
ties with almost tight reductions, which is crucial for the almost tight MUc

security of the resulting SIG and PKE schemes.

• Along the way, we also provide new almost-tight reductions from LWE to
multi-secret LWE, which serves as pivots for the almost tight MUc security
of our SIG and PKE schemes.

Technical Overview. In a recent work, Han, Liu and Gu [27] provided nice
solutions to almost tightlyMUc secure SIG and PKE in the standard model, with
the help of quasi-adaptive HPS (QA-HPS). Here “quasi-adaptive” means that
the projection key of HPS may depend on the language for which HPS hash
values are generated. Note that their frameworks apply only when QA-HPS
has exact correctness and their framework for SIG also requires QA-HPS to be
publicly verifiable. For the LWE-based cases, however, their frameworks (named
HLG frameworks) do not work any more, because of the following obstacles.

– Obstacle 1: There is no LWE-based QA-HPS with exact correct-
ness. It is not an easy task to instantiate (traditional) HPS under LWE, as
there are many subtleties regarding the correctness (aka projectiveness) of
HPS, let alone QA-HPS. Loosely speaking, HPS has two evaluation modes
for computing HPS hash values, a public mode Pub using a projection key
and a private mode Priv using a secret key. The (exact) correctness requires
that the two evaluation models result in the same value for element in the
language. Due to the noise inherent in LWE, it is hard (and even seems im-
possible) to achieve exact correctness. Instead, there are several attempts in
the literature [24, 31, 11, 46, 29] to instantiate HPS under LWE by relaxing
the exact correctness to approximate correctness, i.e., requiring only that the
two evaluation models result in sufficiently close values. We refer to such HPS
as approximate HPS. This is sufficient for the purpose of [31, 11, 46, 29], but
it is insufficient for the HLG framework [27] in proving MUc security. Similar
to the Cramer-Shoup argument [19], the computations of HPS hash value
need to be switched from one mode (e.g., the real scheme uses the public
mode) to the other mode (e.g., the security proof uses the private mode),
without being noticed by the adversary. However, in the MUc security proof,
the adversary can first see the evaluated hash value, then ask to corrupt the
user and obtain its secret key. With the secret key, the adversary is able
to recompute the hash value in the private mode and compare it with the
obtained hash value. Thus, any difference between the evaluated hash values
in the two modes will be caught by the adversary.

– Obstacle 2: There is no LWE-based QA-HPS with public verifica-
tion. In the HLG framework, in order to construct MUc-CMA secure SIG,
the QA-HPS is required to support public verification of hash values given an
extra verification key. Such QA-HPS is termed as publicly-verifiable QA-HPS
(PV-QA-HPS) in [27]. PV-QA-HPS is necessary for the public verification
of their SIG [27], but it only has instantiations over pairing groups, as it
relies on the pairing operations to accomplish the public verifiability of hash
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values. In the LWE setting, there is no counterpart to pairing operations, so
it is hard to obtain PV-QA-HPS and the HLG framework does not apply.

To circumvent the above obstacles, we propose the concept of probabilistic
QA-HPS and new approaches to tight MUc security with the help of pr-QA-HPS.

(1) Probabilistic QA-HPS (pr-QA-HPS) from LWE. Recall that QA-
HPS = (α(·),Pub,Priv) for NP-language L ⊆ X is associated with a subset mem-

bership problem (SMP) so that {c←$ L}
c
≈ {c←$ X}. Its projection function

α(·) maps a secret key sk to a projection key pk = α(sk), its public evaluation
algorithm Pub(pk, c, w) computes the hash value Λsk(c) for c ∈ L with witness w,
and its private evaluation algorithm Priv(sk, c) computes the hash value Λsk(c)
for c ∈ X . The (exact) correctness asks that Pub(pk, c, w) = Priv(sk, c) = Λsk(c)
for all c ∈ L with witness w.

Now we consider the LWE case. All the LWE samples for matrix A ∈ Zn×m
q

and error bound B constitute an NP-language

LA := {c = A⊤s+ e | s ∈ Zn
q , e ∈ [−B,B]m}. (1)

Then the LWE problem just serves as the SMP for LA. Now we define sk =
k ∈ {0, 1}m, pk = p = Ak and the hash value of instance c ∈ Zm

q is Λk(c) :=

c⊤k ∈ Zq. However, with pk = p and witness (s, e), public evaluation can
only obtain a value like s⊤p = s⊤(Ak), which is hardly equal but close to
Λk(c) = c⊤k = (s⊤A+ e⊤)k.

To circumvent the problem of lacking exact correctness, we put forward a
new variant of QA-HPS, called probabilistic QA-HPS (pr-QA-HPS). In stark
contrast to the traditional HPS [19] and variants like approximate HPS [31] or
QA-HPS [28], whose public and private modes are deterministic in their inputs,
our pr-QA-HPS has probabilistic public and private modes (denoted by prPub
and prPriv, respectively), the outputs of which are probabilistic distributions
over the hash value space. Instead of requiring exact correctness, we require the
statistical indistinguishability of the two probabilistic evaluation modes, even in
the presence of the secret key. We formalize this as the property of evaluation
indistinguishability. See Definition 7 in Sect. 3 for the formal definition.

The property of evaluation indistinguishability enables the switch of evalu-
ation mode from one to the other in a statistically indistinguishable way, even
in the view of adversaries who can implement corruption attacks and obtain the
secret key, thus serving well for our MUc security proof, as shown later.

Below we give an overview of our LWE-based pr-QA-HPS. Let B and B′ be
error bounds satisfying B′ ≥ mB · 2ω(log λ) with λ the security parameter.

– The secret key is sk = k ∈ {0, 1}m, and for language LA = {c = A⊤s+e | s ∈
Zn
q , e ∈ [−B,B]m}, the projection key is pk = p = Ak ∈ Zn

q .

– The hash value of an instance c ∈ Zm
q is defined by Λk(c) := c⊤k ∈ Zq.

– For an instance c = A⊤s + e in the language LA, the probabilistic public
evaluation mode prPub generates a hash value by first sampling a random
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value e′ ←$ [−B′, B′] uniformly, then computing s⊤p+e′ using the projection
key pk = p and the witness s for c ∈ LA. Namely,

s⊤p+ e′ ←$ prPub(p, c, s) with e′ ←$ [−B′, B′]. (2)

– For an instance c ∈ Zm
q (no matter in LA or not), the probabilistic private

evaluation mode prPriv generates a hash value by first sampling a random
value e′ ←$ [−B′, B′] uniformly, then computing c⊤k + e′ using the secret
key sk = k. Namely,

c⊤k+ e′ ←$ prPriv(k, c) with e′ ←$ [−B′, B′]. (3)

That is to say, the HPS hash function Λk is still deterministic, while there are
two probabilistic ways to evaluate it. Our LWE-based pr-QA-HPS has evaluation
indistinguishability, since the bigger noise e′ smudges the small error to make
the statistical distance between the two probabilistic modes negligibly small:

∆(s⊤p+ e′, c⊤k+ e′) = ∆(���
s⊤Ak+ e′,���

s⊤Ak+ e⊤k+ e′) ≤ mB/B′ ≤ 2−ω(log λ).

(2) New Framework for Constructing SIG with pr-QA-HPS (from
LWE). In the HLG framework for SIG, QA-HPS is required to support pub-
lic verification of hash values with an extra verification key (i.e., the so-called
publicly-verifiable QA-HPS), since a QA-HPS hash value is part of the signa-
ture. However, in order to instantiate such QA-HPS, they rely on the pairing
operations, which have no counterpart in the LWE setting.

In our case, it seems very hard to define an extra verification key vk for our
aforementioned LWE-based pr-QA-HPS, so that the correctness of hash values
in (2) or (3) can be publicly checked with vk.1

To circumvent the problem, we propose a new framework for SIG. Instead
of requiring the public verifiability of hash values from QA-HPS, we resort to
tag-based quasi-adaptive non-interactive zero-knowledge argument (QA-NIZK)
[30] and augment the HPS hash value verification to QA-NIZK. Meanwhile,
we also make use of dual-mode commitment, which has two computationally
indistinguishable modes (i.e., a binding mode and a hiding mode), to bind the
signing key and the verification key of SIG.

Below is our new framework for SIG from pr-QA-HPS = (α(·), prPub, prPriv),
dual-mode commitment Com and QA-NIZK = (Prove,Vrfy), where QA-NIZK is
for the language LQANIZK :={
(c, vk, d)

∣∣∣ ∃(k, r, e′ ∈ [−B′, B′]), s.t.c ∈ LA ∧ vk = Com(k; r)∧ d = c⊤k+ e′
}
.

(4)

– The signing key sigk = (k, r) contains the secret key k of pr-QA-HPS and
random coins r, and the verification key is the commitment vk = Com(k; r).

1 Of course, we cannot simply set sk to vk, since vk is public and the properties of
(pr-)QA-HPS should not be harmed in the presence of vk.
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– The signature for message m is given by σ :=

( c←$ LA, d←$ prPriv(k, c), π ←$ Prove(tag = m, (c, vk, d), (k, r, e′)) ).

– The verification of (m,σ = (c, d, π)) is just the QA-NIZK verification.

Now we roughly sketch the proving idea for the strong MUc-CMA security
of our SIG. We aim to show that the fresh message-signature pair (m∗, σ∗ =
(c∗, d∗, π∗)) forged by the adversary hardly passes the verification of QA-NIZK,
even if the adversary can query messages for signatures via a signing oracle and
corrupt the signing keys of some users.

• To generate signature σ = (c, d, π) for message m, the signing oracle invokes
the simulator of QA-NIZK using a simulation trapdoor, instead of invoking
algorithm Prove using the witness (k, r, e′), to generate the proof π. This
change is indistinguishable due to the zero-knowledge of QA-NIZK.

• To generate signature σ = (c, d, π) for messagem, the signing oracle switches
the language from LA to LA0

, where A and A0 are uniformly and indepen-
dently chosen. That is, it samples c ←$ LA0

instead of c←$ LA. Note that
LA is still used to determine the language LQANIZK in (4). By the LWE as-

sumption, (A,A⊤s+ e)
c
≈ (A,u ←$ Zm

q )
c
≈ (A,A⊤0 s+ e), so this change is

indistinguishable.
Consequently, by the evaluation indistinguishability of pr-QA-HPS, the gen-
eration of d←$ prPriv(k, c) can be changed to d←$ prPub(p0 = A0k, c, s),
where s is the witness for c = A⊤0 s + e ∈ LA0 . This holds even if the
adversary corrupts the user and obtains its signing key k.

• The binding property of commitment makes sure that the unbounded simulation-
soundness (USS) of QA-NIZK applies to the forged signature σ∗ = (c∗, d∗, π∗).
So a successful forgery for a target user must satisfy that c∗ ∈ LA and
d∗ lies close to c∗⊤k = (s∗⊤A + e∗⊤)k, where (s∗, e∗) is the witness for
c∗ = A⊤s∗ + e∗ ∈ LA and k is the signing key of the target user.

• The dual-mode commitment is switched to the hiding mode, then vk does
not leak information about the secret key k. Now all information about k
learned by the adversary is bounded by A0k, if the adversary never corrupts
the target user to obtain its signing key k. When m = 2n log q + ω(log λ),
there is still n log q + ω(log λ) bits of information left in k. Taking A as an
extractor, then Ak is statistically close to the uniform distribution (this is
characterized as the ⟨LA0 ,LA⟩-one-time-extracting property of pr-QA-HPS).
As a result, the adversary can hardly forge a d∗ such that d∗ lies close to
c∗⊤k = s∗⊤Ak+ e∗⊤k.2 Then strong MUc-CMA security follows.

Overall, the strong MUc-CMA security proof is accomplished by the evaluation
indistinguishability & ⟨LA0

,LA⟩-one-time-extracting property of pr-QA-HPS,
SMP, zero-knowledge & USS of QA-NIZK, and indistinguishability of binding
and hiding modes of commitment. Due to the nice properties of pr-QA-HPS,

2 The bad case that s∗ = 0 has been excluded in the language LA, see Footnote 6 for
more details. We forgo making this explicit for the sake of simplicity.
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we stress that all reduction algorithms can generate the signing keys of all users
themselves, and hence can deal with adaptive corruptions by the adversary.

(3) Extending the HLG Framework for Constructing PKE with pr-
QA-HPS (from LWE). The HLG framework for PKE needs the exact correct-
ness of QA-HPS. To circumvent the obstacle in the LWE setting, we extend their
framework by replacing QA-HPS with our pr-QA-HPS and augmenting error-
correction code ECC = (Encode,Decode) to deal with the LWE errors. Below is
our extended framework.

– The secret key of PKE is just the secret key sk = k of pr-QA-HPS, and the
public key is the projection key pk = p = Ak.

– The encryption of message m results in the ciphertext ct :=

( c ←$ LA, d←$ prPub(p, c, s) + Encode(m), π ←$ Prove(tag, c, (s, e)) ),

where tag is a collision-resistant hashing of (pk, d) and QA-NIZK = (Prove,Vrfy)
is for the language LA in (1).

– The decryption of ct = (c, d, π) needs a successful verification of π by Vrfy
and then the computation of m := Decode(d− prPriv(k, c)).

Now we sketch the proving idea for theMUMCc-CCA security of our PKE. We
aim to show that the multiple challenge ciphertexts (may under different public
keys) {ct∗ = (c∗, d∗, π∗)} for plaintexts {m0} are indistinguishable from those
for {m1}, even if the adversary has access to a decryption oracle and can corrupt
the secret keys of some users (but not those for the challenge ciphertexts).

• To generate challenge ciphertexts {ct∗ = (c∗, d∗, π∗)} for plaintexts {mb}
with b ∈ {0, 1}, the encryption oracle switches public evaluation prPub(p, c∗, s∗)
to the private one prPriv(k, c∗) for the computation of d∗, so

d∗ ←$ prPriv(k, c∗) + Encode(mb) = c∗⊤k+ e′ + Encode(mb). (5)

Clearly pr-QA-HPS ensures the evaluation indistinguishability. Then the
witness for c∗ ∈ LA is not needed any more, and the proof π∗ can be
computed by the simulator of QA-NIZK, instead of algorithm Prove. This
change is indistinguishable due to the zero-knowledge of QA-NIZK.
• To generate challenge ciphertexts {ct∗ = (c∗, d∗, π∗)}, the encryption oracle
switches the language from LA to LA0 . That is, it samples c∗ ←$ LA0 in-

stead of c∗ ←$ LA. By the LWE assumption, {A⊤s∗ + e∗}
c
≈ {u ←$ Zm

q }
c
≈

{A⊤0 s∗ + e∗}, so this change is indistinguishable.
Consequently, for c∗ = A⊤0 s

∗ + e∗ ∈ LA0
, (5) can be changed to

d∗ ←$ prPub(p0 = A0k, c
∗, s∗) + Encode(mb) = s∗⊤A0k+ e′ + Encode(mb)

due to the evaluation indistinguishability of pr-QA-HPS.
• To decrypt a ciphertext ct = (c, d, π), the decryption oracle rejects ct if c /∈
LA. This change is indistinguishable, since π hardly passes the verification
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of QA-NIZK when c /∈ LA, thanks to the USS of QA-NIZK. Then due to the
evaluation indistinguishability of pr-QA-HPS, the decryption of ct = (c, d, π)
with c ∈ LA can be done with prPub so that

m := Decode(d− prPub(p, c, s)) = Decode(d− s⊤Ak− e′). (6)

• Now for any user i, let its secret key be k(i). The public key and decryption
oracle only leak Ak(i) via pk(i) = p(i) = Ak(i) and (6). When m = 2n log q+
ω(log λ), there is still n log q+ω(log λ) bits of information left in k(i). Taking
A0 as an extractor, then A0k

(i) is uniform (this is characterized by the
⟨LA,LA0

⟩-key switching property of pr-QA-HPS). So when computing ct∗,
we have

(c∗⊤ = s∗⊤A0 + e∗⊤, s∗⊤A0k
(i) + e′)

s
≈ s∗⊤(A0|a(i)) + (e∗⊤|e′)

c
≈ u(i),

where a(i) ←$ Zn
q , u

(i) ←$ Zm+1
q , and the last step is due to the LWE as-

sumption. Therefore, we can use a random element, instead of prPub(p0, c
∗, s∗),

to perfectly hide mb in d∗ (this is characterized by the LA0
-multi-key multi-

extracting property of pr-QA-HPS), and the MUMCc-CCA security follows.

Overall, the MUMCc-CCA security proof is accomplished by the evaluation in-
distinguishability & ⟨LA,LA0⟩-key switching & LA0-multi-key multi-extracting
property of pr-QA-HPS, SMP, zero-knowledge & USS of QA-NIZK. Due to the
nice properties of pr-QA-HPS, all reduction algorithms can generate the secret
keys of all users themselves, and hence can deal with adaptive corruptions.

(4) Almost Tight MUc Security from Reduction for Multi-Secret LWE.
In the MUc security model for SIG/PKE, there are multiple signing queries/mul-
tiple challenge ciphertexts. Therefore, we need multi-fold SMP requiring that

(A,SA+E)
c
≈ (A,U) (7)

with A ←$ Zn×m
q , S←$ ZQ×n

q and U ←$ ZQ×m
q , which is in fact the multi-secret

LWE. We show that the LWE assumption almost tightly implies multi-secret
LWE, i.e., (7). The idea is inspired by [2]. Firstly, A can be divided into the first

column A1 ∈ Zn
q and the rest, which is denoted by A2 ∈ Zn×(m−1)

q . Then A2 can

be sampled with a lossy samplerA2 := CB+F, whereC←$ Zn×ℓ
q ,B←$ Zℓ×(m−1)

q ,

F ∈ Zn×(m−1)
q follows the error distribution and ℓ < n. This change is indistin-

guishable based on the LWE assumption, with a reduction loss n by a standard
hybrid argument. With a lossy A2, SA2 does not leak too much information
about S. Then the uniformly random A1 functions as an extractor so that SA1

is uniformly distributed. Consequently, the first column of SA + E can be re-
placed with a uniform column. Column by column, SA + E can be replaced
with a uniform matrix, and thus (7) follows. Overall, there are totally m steps
and each step loses a factor n, so the overall loss factor is O(mn). Thus it is an
almost tight reduction from LWE to multi-secret LWE.

In Sect. 5, we give a fine-grained almost tight reduction, with loss factor
further decreased to O(cn) (c < m), which can be as small as O(λ2).
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Instantiation of Our Frameworks. In addition to our LWE-based pr-QA-
HPS described earlier, we also need tightly secure dual-mode commitment and
QA-NIZK from LWE to obtain tightly MUc secure SIG and PKE schemes via
our frameworks. For the dual-mode commitment scheme, we instantiate it by
adapting the Regev’s PKE scheme [45]. As for QA-NIZK, we instantiate it based
on the recent advances in LWE-based NIZK in the standard model [16, 43, 34].
In particular, we follow one of the most efficient paradigms for LWE-based NIZK
to date, which is due to Libert et al. [34], and construct tightly-secure QA-NIZK
based on LWE directly for the languages defined in (4) for SIG and (1) for PKE
respectively, bypassing a heavy reduction to an NP-complete problem [16, 43].
To this end, we first construct trapdoor Σ-protocols based on LWE, then compile
them via the tightness-preserving transformation proposed by Libert et al. [34]
to obtain tightly-secure QA-NIZKs. See Subsect. 6.4 for more details.

To deal with the LWE errors, all the building blocks pr-QA-HPS, dual-mode
commitment and QA-NIZK must support gap language (i.e., a pair of languages

L ⊆ L̃). For simplicity, we do not make this explicit in our overview and refer
to the main body for more details.

On Efficiency of Our Schemes. Finally, we discuss the efficiency of our
LWE-based SIG and PKE schemes with tight MUc security. For our SIG, the
verification key is a single matrix3, the secret key consists of a bit-string plus a
matrix, and the signature is made up of a single vector and a QA-NIZK proof.
For our PKE, the public key is a single vector, the secret key is a single bit-string,
and the ciphertext is made up of a single vector and a QA-NIZK proof.

Although we instantiate LWE-based QA-NIZK following one of the most
efficient paradigm to date by Libert et al. [34], it is not quite practical at the
moment. Consequently, our tightly MUc secure SIG and PKE schemes may not
be as efficient as the existing LWE-based SIG (e.g., [14, 38, 12, 22]) and PKE
schemes (e.g., [44, 41, 38]) in the standard model, almost all of which do not have
tight reductions even in the single-user setting. However, we stress that the main
purpose of this work is taking the first theoretical step to study whether tightly
MUc security from LWE in the standard model is possible and how to achieve
it. We believe that our ideas may open the door to further improvements, e.g.,
by improving the efficiency of LWE-based QA-NIZK.

Furthermore, similar to [27], we note that we can obtain more cryptographic
primitives with tight MUc security from our SIG and PKE schemes, including
signcryption (SC), message authentication code (MAC) and authenticated en-
cryption (AE) schemes.

2 Preliminaries

Notations. Let λ ∈ N denote the security parameter throughout the paper,
and all algorithms, distributions, functions and adversaries take 1λ as an implicit

3 Here we do not count the public parameters in the verification key, as it can be
shared among all users. The same applies to the public key of PKE.
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input. Let ∅ denote the empty set. If x is defined by y or the value of y is
assigned to x, we write x := y. For i ∈ N, define [i] := {1, 2, ..., i}. For a set X ,
denote by x ←$ X the procedure of sampling x from X uniformly at random.
If X is distribution, x ←$ X means that x is sampled according to X . We use
y ←$ A(x) to define the random variable y obtained by executing algorithm A
on input x. We use y ∈ A(x) to indicate that y lies in the support of A(x). If A
is deterministic we write y ← A(x). We also use y ← A(x; r) to make explicit
the random coins r used in the probabilistic computation. Denote by T(A) the
running time of A. “PPT” abbreviates probabilistic polynomial-time. Denote by
poly some polynomial function and negl some negligible function.

For distributions X, Y , Z, let ∆(X,Y ) := 1
2 ·

∑
x |Pr[X = x] − Pr[Y = x]|

denote the statistical distance between X and Y , ∆(X, Y |Z) a shorthand for

∆((X,Z), (Y, Z)), and H̃∞(X |Y ) := − log
(
Ey←$Y

[
maxx Pr[X = x |Y = y]

])
the average min-entropy of X conditioned on Y . If ∆(X,Y ) ≤ negl(λ), we say

that X and Y are statistically indistinguishable (close), and denote it by X
s
≈ Y .

If |Pr[D(X) = 1] − Pr[D(Y ) = 1]| ≤ negl(λ) for all PPT distinguishers D,
we say that X and Y are computationally indistinguishable, and denote it by

X
c
≈ Y . For a metric space M with metric dist, we use Ballε

(
m
)
:= {m′ ∈

M | dist(m,m′) ≤ ε} to denote the ball centered at m ∈ M of radius ε > 0.
We use lower-case bold letters (like v) to denote column vectors and upper-case
bold letters (like A) to denote matrices. For a vector v, we let ∥v∥ (resp., ∥v∥∞)
denote its ℓ2 (resp., infinity) norm. For a matrix A, we define ∥A∥ (resp., ∥A∥∞)
as the largest ℓ2 (resp., infinity) norm ofA’s rows. A distribution χ is B-bounded
if its support is limited to [−B,B]. Let Zq be the ring of integers modulo q, and
its elements are represented by the integers in (−q/2, q/2].

Lemma 1 ([21]). Let X,Y, Z be three (possibly correlated) random variables.

If Z has at most 2λ possible values, then H̃∞(X |(Y, Z)) ≥ H̃∞(X |Y )− λ.

In Appendix A, we present additional preliminaries. More precisely, we present
the syntax of digital signature (SIG) and its strong MUc-CMA security in Ap-
pendix A.1, the syntax of public-key encryption (PKE) and its MUMCc-CCA se-
curity in Appendix A.2, the syntax of tag-based quasi-adaptive non-interactive
zero-knowledge argument (QA-NIZK) for gap language and its zero-knowledge
and unbounded simulation-soundness (USS) in Appendix A.3, the definition of
collision-resistant hash functions in Appendix A.4, and the definition of error-
correcting codes in Appendix A.5.

2.1 Gap Language Distribution

In this work, we consider gap languages (i.e., a pair of NP-languages L ⊆ L̃) and
formalize a collection of gap languages as a gap language distribution.

Definition 1 (Gap Language Distribution). A gap language distribution
L is a probability distribution that outputs a language parameter ρ as well as

11



a trapdoor tdρ in polynomial time. The language parameter ρ publicly defines a

gap language GLρ = (Lρ, L̃ρ) satisfying Lρ ⊆ L̃ρ ⊆ X , with X the universe.
Moreover, L is associated with three PPT algorithms (SampleL,SampleX ,CheckL̃):

SampleL(ρ) samples an instance x from Lρ together with a witness w; SampleX
samples an instance x from X ; CheckL̃(ρ, tdρ, x) is a deterministic algorithm that

outputs a decision bit about whether x is in L̃ρ, with the help of tdρ. We require
that for all (ρ, tdρ) ∈ L and x ∈ X , CheckL̃(ρ, tdρ, x) = 1 holds if and only if

x ∈ L̃ρ. For simplicity, we will slightly abuse notations “x←$ Lρ” and “x ←$ X”
to denote sampling x according to SampleL(ρ) and SampleX , respectively.

A gap language distribution L is associated with a subset membership prob-
lem (SMP), which asks whether an element is randomly chosen from Lρ or X .
SMP can be extended to multi-fold SMP by considering multiple elements.

Definition 2 (SMP). The subset membership problem (SMP) related to L
is hard, if for any PPT adversary A, it holds that Advsmp

L ,A(λ) := |Pr[A(ρ, x) =
1]− Pr[A(ρ, x′) = 1]| ≤ negl(λ), where (ρ, tdρ)←$ L , x ←$ Lρ and x′ ←$ X .

Definition 3 (Multi-fold SMP). The multi-fold SMP related to L is hard,
if for any PPT adversary A and any polynomial Q = poly(λ), it holds that
Advmsmp

L ,A,Q(λ) := |Pr[A(ρ, {xj}j∈[Q]) = 1] − Pr[A(ρ, {x′j}j∈[Q]) = 1]| ≤ negl(λ),
where (ρ, tdρ)←$ L , x1, ..., xQ ←$ Lρ and x′1, ..., x

′
Q ←$ X .

Multi-fold SMP can generally be reduced to SMP with a security loss of
the number of folds. In this work, we will instantiate gap language distributions
based on LWE and show an almost tight reduction from SMP to multi-fold SMP.

2.2 Commitment Scheme

A dual-mode commitment scheme has two indistinguishable parameter genera-
tion modes, i.e., a binding mode and a hiding mode. Below we propose a new
variant called dual-mode gap commitment scheme, by requiring the hiding prop-
erty hold for messages in a message spaceM but the binding property hold for
messages in a possibly larger message space M̃.

Definition 4 (Dual-Mode Gap Commitment Scheme). A dual-mode gap
commitment scheme CMT = (BSetup,HSetup,Com) consists of PPT algorithms:

– ppCMT ←$ BSetup/HSetup: The binding-mode/hiding-mode setup algorithm
outputs a public parameter ppCMT, which implicitly defines two message

spacesM⊆ M̃ and two randomness spaces R ⊆ R̃.
– com← Com(ppCMT,m; r): Taking as input ppCMT, a message m ∈ M̃ and a

randomness r ∈ R̃, the committing algorithm outputs a commitment com.

Moreover, there exist negligible functions εbinding and εhiding (in λ), such that the
following properties hold:
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• Parameter Indistinguishability: For any PPT A, it holds that

Advpara-indCMT,A(λ) :=
∣∣Pr[A(ppCMT) = 1 | ppCMT ←$ BSetup]

−Pr[A(ppCMT) = 1 | ppCMT ←$ HSetup]
∣∣ ≤ negl(λ).

• εbinding-Statistical Binding for M̃ under BSetup: It holds that

Pr

[
ppCMT ←$ BSetup :

∃ m ̸= m′ ∈ M̃, r, r′ ∈ R̃,
s.t. Com(ppCMT,m; r) = Com(ppCMT,m

′; r′)

]
≤ εbinding.

• εhiding-Statistical Hiding for M under HSetup: It holds that

max
m0,m1∈M

∆
(
(ppCMT,Com(ppCMT,m0; r)), (ppCMT,Com(ppCMT,m1; r))

)
≤ εhiding,

where the probability is over ppCMT ←$ HSetup and r ←$ R.

2.3 Lattice Backgrounds

For σ > 0 and c ∈ Rn, we define the Gaussian function on Rn centered at c
with parameter σ by ρσ,c(x) := e−π∥x−c∥

2/σ2

. The discrete Gaussian distribu-
tion DΛ,σ,c over an n-dimensional lattice Λ ⊆ Rn is defined by DΛ,σ,c(x) :=
ρσ,c(x)/ρσ,c(Λ) for any lattice vector x ∈ Λ, where ρσ,c(Λ) :=

∑
z∈Λ ρσ,c(z).

The subscript c is taken to be 0 when omitted.

We will use the following variant of the leftover hash lemma.

Lemma 2 (Particular case of [37, Lemma 2.3]). Let n,m, q ∈ N be
integers and ϵ ∈ (0, 1). Suppose s is chosen from some distribution over Zm

q and
A←$ Zn×m

q , u ←$ Zn
q are chosen independently of s from uniform distribution.

Furthermore let Y be a random-variable (possibly) correlated with s.

– If q is a prime, and H̃∞(s mod q |Y ) ≥ n log q + 2 log
(
1
ϵ

)
. Then we have:

∆
(
(A,As), (A,u) |Y

)
≤ ϵ.

– If q is a composite number, and H̃∞(s mod p |Y ) ≥ 2n log q + 2 log
(
1
ϵ

)
for

any q’s prime factor p. Then we have: ∆
(
(A,As), (A,u) |Y

)
≤ ϵ.

Definition 5 (LWE Assumption [45]). Let n,m, q ∈ N, and χ be a distribu-
tion over Zq. The LWEn,q,χ,m-assumption holds, if for any PPT adversary A, it
holds that AdvLWE

[n,q,χ,m],A(λ) :=
∣∣Pr[A(A, s⊤A+ e⊤) = 1]−Pr[A(A,u⊤) = 1]

∣∣ ≤
negl(λ), where A ←$ Zn×m

q , s ←$ Zn
q , e←$ χm and u ←$ Zm

q .

Definition 6 (Multi-secret LWE Assumption). Let n,m, q,Q ∈ N, and χ
be a distribution over Zq. The Q-LWEn,q,χ,m-assumption holds, if for any PPT

A it holds that AdvQ-LWE
[n,q,χ,m],A(λ) :=

∣∣Pr[A(A,SA + E) = 1] − Pr[A(A,U) =

1]
∣∣ ≤ negl(λ), where A←$ Zn×m

q , S ←$ ZQ×n
q , E←$ χQ×m and U ←$ ZQ×m

q .
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A simple hybrid argument can show that AdvQ-LWE
[n,q,χ,m](λ) ≤ Q·AdvLWE

[n,q,χ,m](λ).

However, the security loss factor depends on the number of the secrets. In this
paper, we will show an almost tight security reduction from LWE to multi-secret
Q-LWE (see Theorem 3 in Sect. 5).

In [1, 38], an algorithm named TrapGen is proposed to sample a “nearly”
uniform random matrix A along with a low-norm trapdoor matrix TA such
that A · TA = 0 (cf. Lemma 3). Meanwhile, another algorithm called Invert is
proposed to make use of TA to invert an LWE sample (A, s⊤A+ e⊤) to obtain
s and e (cf. Lemma 4).

Lemma 3 ([1, 38]). There exists a PPT algorithm TrapGen that takes as input
positive integers n, q (q ≥ 2) and a sufficiently large m = O(n log q), outputs a
matrix A ∈ Zn×m

q and a trapdoor matrix TA ∈ Zm×m
q such that A is statistically

close to the uniform distribution, A ·TA = 0, and ∥TA∥ = O(
√
n log q).

Lemma 4 ([38, Theorem 5.4]). There exists a deterministic polynomial-time
algorithm Invert that takes as inputs the trapdoor information TA

4 and a vector
s⊤A+ e⊤ with s ∈ Zn

q and ∥e∥ ≤ q/(10
√
m), and outputs s and e.

We recall the tail bound about the discrete Gaussian distributions over Zm.

Lemma 5 (Tail Bound [36]). For any t > 0, we have Prx ←$ DZ,σ

[
|x| ≥

t · σ
]
≤ 2e−

t2

2 and Prx ←$ DZm,σ

[
∥x∥ ≥ ∥x∥∞ ≥ t · σ

√
m
]
≤ tm · em

2 (1−t2).

In particular, for t ≥ ω(
√
log λ), the probability that |x| ≥ t · σ and ∥x∥ ≥

∥x∥∞ ≥ t · σ
√
m is negligible.

The next smudging lemma shows that a uniform distribution over a suffi-
ciently large interval [−B′, B′] can swallow any distribution over a small interval
[−B,B] and yield a nearly uniform distribution over [−B′, B′].

Lemma 6 (Smudging Lemma, [5, Lemma 1]). Let B,B′ be positive inte-
gers, and e ∈ [−B,B] a fixed integer. Then for a uniformly chosen e′ ←$ [−B′, B′],
it holds that ∆(e+ e′, e′) = B/B′.

3 Probabilistic QA-HPS

Hash proof system (HPS) was proposed by Cramer and Shoup [19], and turned
out to be a powerful tool in a wide range of applications. Han et al. [28, 27]
generalized HPS in a quasi-adaptive setting, termed as Quasi-Adaptive HPS
(QA-HPS), by allowing the projection key to depend on the specific language
Lρ for which hash values are computed. (For completeness, the formal definition
of QA-HPS is recalled in Appendix A.6.)

In this section, we propose a new primitive called Probabilistic QA-HPS
(pr-QA-HPS), by further generalizing QA-HPS in two aspects. Firstly, pr-QA-HPS

4 More precisely, the trapdoor information is not TA itself, but some sensitive infor-
mation used to generate TA. Here we abuse them for simplicity.
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has probabilistic public and private evaluation algorithms (denoted by prPub and
prPriv) that may toss coins. In other words, the outputs of prPub and prPriv are
probabilistic distributions over the hash value space. Regarding correctness, in-
stead of requiring exact correctness as for (QA-)HPS, we require an approximate
correctness for pr-QA-HPS. Moreover, we require a statistical indistinguishabil-
ity of the two probabilistic evaluation algorithms. Secondly, pr-QA-HPS is de-
fined for a gap language distribution. Some properties of pr-QA-HPS, e.g., the
evaluation indistinguishability in Definition 7 and the one-time extracting in
Definition 11, require the underlying language distribution to be a gap one.

Firstly, we present the syntax of probabilistic QA-HPS.

Definition 7 (Probabilistic QA-HPS). A probabilistic QA-HPS (pr-QA-
HPS) scheme prQAHPS = (SetupHPS, α(·), prPub, prPriv) for a gap language dis-
tribution L consists of four PPT algorithms:

– ppHPS ←$ SetupHPS: The setup algorithm outputs a public parameter ppHPS,
which serves as an implicit input of other algorithms. ppHPS implicitly de-
fines a hashing key space SK, a hash value space HV, and a family of hash
functions Λ(·) : X −→ HV indexed by hashing keys sk ∈ SK, where X is the
universe for languages output by L .

We require that Λ(·) is efficiently computable and there are PPT algorithms
for sampling sk ←$ SK uniformly and sampling hv ←$ HV uniformly. We
also require the hash value space HV to be a metric space.

– pkρ ← αρ(sk): On input a hashing key sk ∈ SK, the deterministic projection
algorithm indexed by language parameter ρ outputs a projection key pkρ.

– hv ←$ prPub(pkρ, x, w): Taking as input a projection key pkρ = αρ(sk) spec-

ified by ρ, an instance x ∈ L̃ρ and a witness w for x ∈ L̃ρ, the probabilistic
public evaluation algorithm outputs a hash value hv ∈ HV.

– hv ←$ prPriv(sk, x): On input a hashing key sk ∈ SK and an instance x ∈ X ,
the probabilistic private evaluation algorithm outputs a hash value hv ∈ HV.

Moreover, there exist negligible functions εprPub, εprPriv and εevaInd (in λ), such that
the following properties hold:

• (εprPub, εprPriv)-Approximate Correctness for Lρ: For all (ρ, tdρ) ∈ L ,
ppHPS ∈ SetupHPS, sk ∈ SK, x ∈ Lρ with witness w, and pkρ := αρ(sk), it

holds that Pr[hv ←$ prPub(pkρ, x, w) : hv ∈ BallεprPub

(
Λsk(x)

)
] = 1

and Pr[hv ←$ prPriv(sk, x) : hv ∈ BallεprPriv

(
Λsk(x)

)
] = 1.

Here hv ∈ BallεprPub

(
Λsk(x)

)
(resp., hv ∈ BallεprPriv

(
Λsk(x)

)
) means that hv is

within distance at most εprPub (resp., εprPriv) of the real hash value Λsk(x).

• εevaInd-Evaluation Indistinguishability for L̃ρ: For all (ρ, tdρ) ∈ L , ppHPS ∈
SetupHPS, sk ∈ SK, x ∈ L̃ρ with witness w, and pkρ := αρ(sk), it holds that

∆
(
prPub(pkρ, x, w), prPriv(sk, x)

)
≤ εevaInd,

where the probability is only over the inner coin tosses of prPub and prPriv.
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Note that the approximate correctness is required to hold for instances in Lρ,

while the evaluation indistinguishability is required to hold for instances in L̃ρ.
Moreover, we can naturally define pr-QA-HPS for two gap language distributions
L and L0, by requiring the above two properties to hold not only for language
parameters ρ output by L , but also for language parameters ρ0 output by L0.

Next, we recall and adapt some useful properties defined in [28, 27] for
QA-HPS to our pr-QA-HPS. We start by recalling a statistical property called
⟨L ,L0⟩-key-switching from [28], parameterized by two gap language distribu-
tions L and L0. Informally speaking, it stipulates that in the presence of a
projection key αρ(sk) w.r.t. a language parameter ρ output by L , the projec-
tion key αρ0

(sk) w.r.t. another language parameter ρ0 output by L0 can be
switched to αρ0

(sk′) for an independent sk′.

Definition 8 (⟨L ,L0⟩-Key-Switching). Let L and L0 be two gap language
distributions. A pr-QA-HPS scheme prQAHPS supports ⟨L ,L0⟩-key-switching,
if for any (possibly unbounded) adversary A, it holds that

ϵ
⟨L,L0⟩-ks
prQAHPS,A :=

∣∣Pr[A(ppHPS, ρ, ρ0, αρ(sk), αρ0
(sk)) = 1]

−Pr[A(ppHPS, ρ, ρ0, αρ(sk), αρ0
(sk′)) = 1]

∣∣ ≤ negl(λ),

where ppHPS ←$ SetupHPS, (ρ, tdρ) ←$ L , (ρ0, tdρ0
)←$ L0, and sk, sk′ ←$ SK.

We recall another statistical property from [27], called projection key diversity
(PK-diversity), which expresses statistical collision resistance of projection keys
under different hashing keys.

Definition 9 (PK-Diversity). A pr-QA-HPS scheme prQAHPS for L has

projection key diversity (PK-diversity), if ϵpk-divprQAHPS := Pr[αρ(sk) = αρ(sk
′)] ≤

negl(λ), where (ρ, tdρ)←$ L , ppHPS ←$ SetupHPS and sk, sk′ ←$ SK.

In [28, 27], a computational property called L0-multi-key-multi-extracting is
defined for QA-HPS, which demands the pseudorandomness of multiple hash
values {Λski

(xj)}i,j for multiple instances {xj ←$ Lρ0
}j (where ρ0 ∈ L0) under

multiple keys {ski ←$ SK}i.
Below we adapt the property to pr-QA-HPS, by requiring the pseudorandom-

ness of {prPriv(ski, xi,j)}i,j for multiple instances {xi,j ←$ Lρ0}i,j under multiple
keys {ski ←$ SK}i.

Definition 10 (L0-Multi-Key-Multi-Extracting). A pr-QA-HPS scheme
prQAHPS supports L0-multi-key-multi-extracting, if for any PPT adversary A,
any polynomial N and any polynomial Q, it holds that

AdvL0-mk-mext
prQAHPS,A,N,Q(λ) :=

∣∣Pr[A(ppHPS, ρ0, {xi,j , prPriv(ski, xi,j)}i∈[N ],j∈[Q]) = 1]

−Pr[A(ppHPS, ρ0, {xi,j , hvi,j}i∈[N ],j∈[Q]) = 1]
∣∣ ≤ negl(λ),

where ppHPS ←$ SetupHPS, (ρ0, tdρ0)←$ L0, sk1, ..., skN ←$ SK, x1,1, ..., xN,Q

←$ Lρ0
and hv1,1, ..., hvN,Q ←$ HV.
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In [27], a statistical property called ⟨L0,L ⟩-one-time(OT)-extracting is de-
fined for QA-HPS. Informally speaking, it demands high min-entropy of Λsk(x)
for any x ∈ Lρ with ρ output by L , when sk is uniformly chosen from SK,
even in the presence of a projection key αρ0

(sk) w.r.t. ρ0 output by L0. This
min-entropy makes sure that any (unbounded) adversary is unable to guess the
correct hash value Λsk(x).

Below we generalize it to εext-⟨L0,L ⟩-OT-Extracting for pr-QA-HPS, where

εext ≥ 0, by stipulating the hardness even for any x ∈ L̃ρ and even for finding a
hash value hv close to Λsk(x), i.e., finding hv ∈ Ballεext

(
Λsk(x)

)
.

Definition 11 (εext-⟨L0,L ⟩-OT-Extracting). Let L0 and L be a pair of
language distributions. A pr-QA-HPS scheme prQAHPS supports εext-⟨L0,L ⟩-
OT-extracting, if for any (possibly unbounded) adversary A, it holds that ϵεext-⟨L0,L⟩-otext

prQAHPS,A

:= Pr

ppHPS ←$ SetupHPS, (ρ0, tdρ0
) ←$ L0,

(ρ, tdρ)←$ L , sk ←$ SK,
(x∗, hv∗) ←$ A(ppHPS, ρ0, ρ, αρ0(sk))

:
x∗ ∈ L̃ρ ∧

hv∗ ∈ Ballεext

(
Λsk(x

∗)
)
≤ negl(λ).

4 Generic Constructions of SIG and PKE with Tight
MUc Security from Probabilistic QA-HPS

Recently, Han et al. [27] proposed generic constructions of digital signature (SIG)
and public-key encryption (PKE) with tight MUc security from QA-HPS and
QA-NIZK. In this section, we propose a new generic SIG construction and extend
their PKE construction, by using our probabilistic QA-HPS formalized in Sect.
3 as a central building block instead of QA-HPS, allowing instantiations from
the LWE assumptions as shown later.

More precisely, we present our constructions of SIG with tight strongMUc-CMA
security in Subsect. 4.1 and PKE with tightMUMCc-CCA security in Subsect. 4.2.

4.1 Generic Construction of SIG with Tight Strong MUc-CMA Security

We present our generic construction of strongly MUc-CMA secure SIG. Let M
be an arbitrary message space. The underlying building blocks are as follows.

• Two gap language distributions L and L0, both of which have hard SMPs.
• A probabilistic prQAHPS = (SetupHPS, α(·), prPub, prPriv) for both L and L0

with hashing key space SK, satisfying (εprPub, εprPriv)-approximate correctness
and εext-⟨L0,L ⟩-OT-extracting with εprPriv ≤ εext.

• A dual-mode gap commitment scheme CMT = (BSetup,HSetup,Com) with

message spacesMCMT := SK ⊆ S̃K and randomness spaces R ⊆ R̃.
• A tag-based QANIZK = (CRSGen,Prove,VrfyNIZK,SimGen,Sim) for the gap

language GL(QANIZK)
ρ′ = (L(QANIZK)

ρ′ , L̃(QANIZK)
ρ′ ) defined in Fig. 1, with tag

space T . It is clear to see that L(QANIZK)
ρ′ ⊆ L̃(QANIZK)

ρ′ since Lρ ⊆ L̃ρ, SK ⊆
S̃K, R ⊆ R̃ and εprPriv ≤ εext. (See Appendix A.3 for the definition.)
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• A family of collision-resistant hash functions H = {H :M−→ T }.

Our generic construction of SIG = (SetupSIG,Gen,Sign,VrfySIG) is shown in Fig.
1. It is easy to see that the correctness of SIG follows from the (εprPub, εprPriv)-
approximate correctness of prQAHPS and the completeness of QANIZK, since d
generated by d←$ prPriv(sk, x) always satisfies d ∈ BallεprPriv

(
Λsk(x)

)
.

ppSIG ←$ SetupSIG:

(ρ, tdρ)←$ L , ppHPS ←$ SetupHPS, ppCMT ←$ BSetup.

ρ′ := (ρ, ppHPS, ppCMT) defines a gap language GL(QANIZK)
ρ′ = (L(QANIZK)

ρ′ , L̃(QANIZK)
ρ′ ), where

L(QANIZK)
ρ′ :=

(x, vk, d)

∣∣∣∣∣∣ ∃ (w, sk ∈ SK, r ∈ R), s.t.
x ∈ Lρ with witness w
∧ vk = Com(ppCMT, sk; r)
∧ d ∈ BallεprPriv

(
Λsk(x)

)
 ,

L̃(QANIZK)
ρ′ :=

(x, vk, d)

∣∣∣∣∣∣ ∃ (w, sk ∈ S̃K, r ∈ R̃), s.t.
x ∈ L̃ρ with witness w
∧ vk = Com(ppCMT, sk; r)
∧ d ∈ Ballεext

(
Λsk(x)

)
 .

crs ←$ CRSGen(ρ′). H ←$ H.
Return ppSIG := (ρ, ppHPS, ppCMT, crs, H).

(vk, sigk)←$ Gen(ppSIG):

sk ←$ SK, r ←$ R.
vk := Com(ppCMT, sk; r).
Return (vk, sigk := (sk, r)).

σ ←$ Sign(sigk = (sk, r),m):

x ←$ Lρ with witness w.
d←$ prPriv(sk, x).
vk := Com(ppCMT, sk; r).
τ := H(m) ∈ T .
π ←$ Prove(crs, τ, (x, vk, d), (w, sk, r)).
Return σ := (x, d, π).

0/1← VrfySIG(vk,m, σ):

Parse σ = (x, d, π).
τ := H(m) ∈ T .
If VrfyNIZK(crs, τ, (x, vk, d), π) = 1:

Return 1.
Else: Return 0.

Fig. 1. Generic construction of SIG = (SetupSIG,Gen,Sign,VrfySIG) from prQAHPS,
CMT, tag-based QANIZK and H. The message space isM.

Next, we show the strongMUc-CMA security of SIG via the following theorem.

Theorem 1 (Strong MUc-CMA Security of SIG). Assume that (i) L and L0

have hard SMPs, (ii) prQAHPS is a probabilistic QA-HPS for both L and L0,
having (εprPub, εprPriv)-approximate correctness, εevaInd-evaluation indistinguishabil-
ity, and supporting εext-⟨L0,L ⟩-OT-extracting, where εext ≥ εprPriv, (iii) CMT
is a dual-mode gap commitment scheme that is εbinding-statistical binding and
εhiding-statistical hiding, (iv) QANIZK is a tag-based QA-NIZK for the gap lan-

guage GL(QANIZK)
ρ′ defined in Fig. 1, satisfying both zero-knowledge and unbounded

simulation-soundness, (iv) H is collision-resistant. Then the proposed SIG scheme
in Fig. 1 is strongly MUc-CMA secure.

Concretely, for any number N of users and any adversary A making at most
Qs times of OSign queries, there exist adversaries B1, · · · ,B7, s.t. T(B1) ≈ · · · ≈
T(B6) ≈ T(A) + (N +Qs) · poly(λ), with poly(λ) independent of T(A), and

Advstr-cma-c
SIG,A,N (λ) ≤ AdvzkQANIZK,B1

(λ) + AdvcrH,B2
(λ) + Advmsmp

L ,B3,Qs
(λ) + Advmsmp

L0,B4,Qs
(λ)

+ AdvussQANIZK,B5
(λ) + Advpara-indCMT,B6

(λ) + statist. loss,

where statist. loss = 2 · εbinding +Qs · εevaInd +N · ϵεext-⟨L0,L⟩-otext
prQAHPS,B7

+ εhiding +
N(N−1)

2 /|SK|.
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We refer to Sect. 1 for an overview of the proof, and postpone the formal
proof to Appendix B. Here we provide the game sequence G0-G7 used in the
formal proof in Table 1. According to Theorem 1, SIG has tight strong MUc-CMA
security as long as both the multi-fold SMPs related to L and L0 have tight
reductions (e.g., to the LWE assumptions), and CMT and QANIZK are tightly
secure.

Table 1. Brief Description of Games G0-G7 for the strong MUc-CMA security proof
of SIG. Here column “OSign” suggests how a signature σ = (x, d, π ) is generated: sub-
column “x from” refers to the language from which x is chosen; sub-column “d using”
indicates the keys that are used in the computation of d; sub-column “π via” indicates
the way (Prove or Sim) that π is computed. Column “OCor” shows the key returned by
OCor. Column “Win’s additional check for forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗))” describes
the additional check that A’s forgery wins, besides the routine check i∗ /∈ QCor ∧
(i∗,m∗, σ∗) /∈ QSign ∧ VrfyNIZK(crs, τ

∗, (x∗, vki∗ , d
∗), π∗) = 1, where τ∗ := H(m∗).

OSign(i,m)
OCor(i)

Win’s additional check for forgery

(i∗,m∗, σ∗ = (x∗, d∗, π∗))
Remark/Assumption

x from d using π via

G0 Lρ ski Prove ski The strong MUc-CMA experiment

G1 Lρ ski Prove ski

Abort if verification keys collide:

by statistical binding of CMT under BSetup
& secret keys hardly collide

G2 Lρ ski Sim ski By zero-knowledge of QANIZK

G3 Lρ ski Sim ski (τ∗, (x∗, vki∗ , d
∗), π∗) /∈ QSim By collision-resistance of H

G4 Lρ0 ski Sim ski (τ∗, (x∗, vki∗ , d
∗), π∗) /∈ QSim By multi-fold SMP of L and L0

G5 Lρ0 ski Sim ski
(τ∗, (x∗, vki∗ , d

∗), π∗) /∈ QSim,

x∗ ∈ L̃ρ, d∗ ∈ Ballεext

(
Λski∗ (x

∗)
) By USS of QANIZK

& statistical binding of CMT under BSetup

G6 Lρ0
αρ0

(ski) Sim ski
(τ∗, (x∗, vki∗ , d

∗), π∗) /∈ QSim,

x∗ ∈ L̃ρ, d∗ ∈ Ballεext

(
Λski∗ (x

∗)
) By evaluation indistinguishability of prQAHPS

G7 Lρ0
αρ0

(ski) Sim ski
(τ∗, (x∗, vki∗ , d

∗), π∗) /∈ QSim,

x∗ ∈ L̃ρ, d∗ ∈ Ballεext

(
Λski∗ (x

∗)
)

Change to ppCMT ←$ HSetup:

by parameter indistinguishability of CMT

Pr[Win] = negl in G7:
by εext-⟨L0,L ⟩-OT-extracting of prQAHPS
& statistical hiding of CMT under HSetup

4.2 Generic Construction of PKE with Tight MUMCc-CCA Security

We present our generic construction of MUMCc-CCA secure PKE. LetM be an
arbitrary message space. The underlying building blocks are as follows.

• Two gap language distributions L and L0, both of which have hard SMPs.
• A probabilistic prQAHPS = (SetupHPS, α(·), prPub, prPriv) for both L and

L0 with hashing key space SK, projection key space PK and hash value
space HV, satisfying (εprPub, εprPriv)-approximate correctness. We require HV
to be an (additive) group.

• A tag-based QANIZK = (CRSGen,Prove,VrfyNIZK,SimGen,Sim) for the gap

language GLρ = (Lρ, L̃ρ) generated by L , with tag space T .
• A family of collision-resistant hash functions H = {H : PK ×HV −→ T }.
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• An error-correcting code ECC = (Encode,Decode) fromM to HV, which is
able to correct (εprPub + εprPriv) errors efficiently. (See Appendix A.5 for the
definition.)

Our generic construction of PKE = (SetupPKE,Gen,Enc,Dec) is shown in Fig. 2.
It is easy to check that the correctness of PKE follows from the (εprPub, εprPriv)-
approximate correctness of prQAHPS, the (εprPub +εprPriv)-correctness of ECC and
the completeness of QANIZK: (1) by the (εprPub, εprPriv)-approximate correctness
of prQAHPS, the hv generated by hv ←$ prPub(pk, x, w) in Enc and the hv′

generated by hv′ ←$ prPriv(sk, x) in Dec are within distance at most (εprPub +
εprPriv), i.e., hv

′ ∈ BallεprPub+εprPriv

(
hv

)
, (2) then d− hv′ = hv − hv′ + Encode(m) ∈

BallεprPub+εprPriv

(
Encode(m)

)
, and by the (εprPub+εprPriv)-correctness of ECC, it follows

that Decode(d− hv′) = Decode(hv − hv′ + Encode(m)) = m.

ppPKE ←$ SetupPKE:

(ρ, tdρ)←$ L .
ppHPS ←$ SetupHPS.
crs ←$ CRSGen(ρ).
H ←$ H.
Return ppPKE :=
(ρ, ppNIZK, crs, H).

(pk, sk)←$ Gen(ppPKE):

sk ←$ SK, pk := αρ(sk).
Return (pk, sk).

c←$ Enc(pk,m):

x ←$ Lρ with witness w.
hv ←$ prPub(pk, x, w).
d := hv + Encode(m).
τ := H(pk, d) ∈ T .
π ←$ Prove(crs, τ, x, w).
Return c := (x, d, π).

m′/⊥ ← Dec(sk, c):

Parse c = (x, d, π).
pk := αρ(sk).
τ := H(pk, d) ∈ T .
If VrfyNIZK(crs, τ, x, π) = 1:

hv′ ←$ prPriv(sk, x).
m′ := Decode(d− hv′).
Return m′.

Else: Return ⊥.

Fig. 2. Generic construction of PKE = (SetupPKE,Gen,Enc,Dec) from prQAHPS, tag-
based QANIZK, H and ECC. The message space isM.

Next, we show the MUMCc-CCA security of PKE via the following theorem.

Theorem 2 (MUMCc-CCA Security of PKE). Assume that (i) L and L0

have hard SMPs, (ii) prQAHPS is a probabilistic QA-HPS for both L and L0,
having εevaInd-evaluation indistinguishability, PK-diversity, and supporting both
⟨L ,L0⟩-key-switching and L0-multi-key-multi-extracting, (iii) QANIZK is a tag-

based QA-NIZK for the gap language GLρ = (Lρ, L̃ρ) generated by L , satisfying
both zero-knowledge and unbounded simulation-soundness, (iv) H is collision-
resistant. Then the proposed PKE scheme in Fig. 2 is MUMCc-CCA secure.

Concretely, for any number N of users and any adversary A who makes
at most Qe times of OEnc queries and Qd times of ODec queries, there exist
adversaries B1, · · · ,B7, such that T(B1) ≈ · · · ≈ T(B6) ≈ T(A) + (N + Qe +
Qd) · poly(λ), with poly(λ) independent of T(A), and

Advcca-cPKE,A,N (λ) ≤ AdvzkQANIZK,B1
(λ) + AdvcrH,B2

(λ) + Advmsmp
L ,B3,Qe

(λ) + Advmsmp
L0,B4,Qe

(λ)

+ AdvussQANIZK,B5
(λ) + AdvL0-mk-mext

prQAHPS,B6,N,Qe
(λ) + statist. loss,

where statist. loss = N(N−1)
2 · ϵpk-divprQAHPS + (3Qe + 2Qd) · εevaInd +N · ϵ⟨L,L0⟩-ks

prQAHPS,B7
.
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We refer to Sect. 1 for an overview of the proof, and postpone the formal
proof to Appendix C. Here we provide the game sequence G0-G9 used in the
formal proof in Table 2. According to Theorem 2, PKE has tight MUMCc-CCA
security as long as both the multi-fold SMPs related to L and L0 have tight
reductions, prQAHPS has tight L0-multi-key-multi-extracting, and QANIZK is
tightly secure.

Table 2. Brief Description of Games G0-G9 for the MUMCc-CCA security proof of
PKE. Here column “OEnc” suggests how a challenge ciphertext c∗ = (x∗, d∗, π∗ ) is
generated: sub-column “x∗ from” refers to the language from which x∗ is chosen; sub-
column “hv∗ using” indicates the keys that are used in the computation of hv∗; sub-
column “π∗ via” indicates the way (Prove or Sim) that π∗ is computed. Column “ODec”
suggests how a decryption query (i, c = (x, d, π )) is answered: sub-column “additional
check” describes the additional check made by ODec besides the routine check (i, c) /∈
QEnc ∧ VrfyNIZK(crs, τ, x, π) = 1, where τ := H(pki, d); ODec outputs ⊥ if the check
fails; sub-column “hv′ using” indicates the keys that are used in the computation of
hv′. Column “OCor” shows the key returned by OCor. Recall that it is not allowed to
query OEnc and OCor for a same user index i.

OEnc(i
∗,m0,m1) ODec(i, c) OCor(i) Remark/Assumption

x∗ from hv∗ using π∗ via additional check hv′ using

G0 Lρ pki∗ Prove ski ski The MUMCc-CCA security experiment

G1 Lρ pki∗ Prove ski ski
Abort if public keys collide:

by PK-diversity of prQAHPS

G2 Lρ ski∗ Sim ski ski
By evaluation indistinguishability of prQAHPS

& zero-knowledge of QANIZK

G3 Lρ ski∗ Sim (τ, x, π) /∈ QSim ski ski By collision-resistance of H

G4 Lρ0 ski∗ Sim (τ, x, π) /∈ QSim ski ski By multi-fold SMP of L & L0

G5 Lρ0 ski∗ Sim (τ, x, π) /∈ QSim, x ∈ L̃ρ ski ski By USS of QANIZK

G6 Lρ0
αρ0

(ski∗) Sim (τ, x, π) /∈ QSim, x ∈ L̃ρ αρ(ski) ski By evaluation indistinguishability of prQAHPS

{G7.η}η∈[N ] Lρ0

 αρ0
(sk′i∗) , if i

∗ ≤ η

αρ0
(ski∗), if i∗ > η

Sim (τ, x, π) /∈ QSim, x ∈ L̃ρ αρ(ski) ski By ⟨L ,L0⟩-key-switching of prQAHPS

G7.N Lρ0
αρ0

(sk′i∗) Sim (τ, x, π) /∈ QSim, x ∈ L̃ρ αρ(ski) ski –

G8 Lρ0 sk′i∗ Sim (τ, x, π) /∈ QSim, x ∈ L̃ρ ski ski By evaluation indistinguishability of prQAHPS

G9 Lρ0 = rand Sim (τ, x, π) /∈ QSim, x ∈ L̃ρ ski ski
By L0-multi-key-multi-extracting of prQAHPS

Pr[Win] = 1
2 in G9

5 Tighter Reduction from LWE to Multi-Secret LWE

In this section, we will show an almost tight reduction from LWE to multi-secret
LWE, which supports the almost tight security of our LWE-based instantiations
as shown later in Sect. 6. We note that similar results could be derived from [2].
Nevertheless, our proof is simpler, more flexible and results in tighter reduction
compared with [2].

We first recall a useful lemma presenting the spectral norm upper bound of
discrete Gaussian matrices. Then we recall the definitions of continuous Gaus-
sian distribution Dσ and multi-secret LWE with continuous Gaussian distribu-
tion Dσ, which will serve as an intermediate assumption in our reduction to
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obtain better parameters by applying the noise lossiness approach in [15] (i.e.,
Lemma 11 and Lemma 13 in Appendix D.1). We also recall the randomized
rounding technique due to Peikert [42]. Finally we show Theorem 3 that ad-
dresses the almost tight reduction from LWE to Multi-secret LWE for prime
modulus. We also extend the result for composite modulus in Appendix D.3.

Lemma 7 ([38, Lemma 2.8, 2.9]). Let F ←$ Dn×m
Z,γ and m ≥ n. Then with

all but 2−m probability it holds that the spectral norm σF of F satisfies σF ≤
γ · C ·

√
m where C is a global constant.

Definition 12 (Multi-secret LWE Assumption with Continuous Gaus-
sian [15]). For σ > 0, the continuous Gaussian distribution Dσ over R centered
at 0 is defined by the probability density function Dσ(x) := ρσ(x)/ρσ(R) for any

x ∈ R, where ρσ(x) := e−πx
2/σ2

and ρσ(R) :=
∫
R ρσ(z)dz = σ.

Let n,m, q,Q ∈ N. The Q-LWEn,q,Dσ,m-assumption holds, if for any PPT A
it holds that AdvQ-LWE

[n,q,Dσ,m],A(λ) :=
∣∣Pr[A(A,SA+E) = 1]− Pr[A(A,U+E) =

1]
∣∣ ≤ negl(λ), where A←$ Zn×m

q , S ←$ ZQ×n
q , E←$ DQ×m

σ and U ←$ ZQ×m
q .

Lemma 8 (Particular case of [42, Theorem 3.1]). Let σ > 0 and r ≥
√
λ.

For e ←$ Dσ and v ←$ DZ−e,r, the distribution of e + v is statistically close to
DZ,
√
σ2+r2 , with statistical distance at most 2−λ.

Theorem 3 (LWE ⇒ Multi-secret LWE with Prime Modulus). Let
n,m, ℓ, q ∈ N, and q be a prime. Let σ, σ0, σ1, r, γ > 0 such that σ =

√
σ0

2 + r2,

σ0 > γ·C ·
√
m·σ1,

q
σ1
≥

√
ln(4n)

π and r ≥
√
λ, where C is the global constant from

Lemma 7. For any adversary A, there exists an adversary B, such that T(B) ≈
T(A)+Q ·poly(λ) with poly(λ) independent of T(A), and AdvQ-LWE

[n,q,DZ,σ,m],A(λ) ≤
2cn · AdvLWE

[ℓ,q,DZ,γ ,m],B(λ) +
Q(m+c+1)

2λ
, where c is an integer such that

m′ = ⌊mc ⌋ and n ≥ (m′ log q + ℓ log q + 2λ+ 1)/ log(σ1). (8)

Proof sketch. We will use the multi-secret LWE with continuous Gaussian Dσ0

defined in Definition 12 as an intermediate assumption, and show that there
exists an adversary B′ such that T(B) ≈ T(B′)+Q·poly′(λ) ≈ T(A)+Q·poly(λ)
and

AdvQ-LWE
[n,q,DZ,σ,m],A(λ) ≤ AdvQ-LWE

[n,q,Dσ0 ,m],B′(λ) +
Qm
2λ

, (9)

AdvQ-LWE
[n,q,Dσ0

,m],B′(λ) ≤ 2cn · AdvLWE
[ℓ,q,DZ,γ ,m],B(λ) +

Q(c+1)
2λ

. (10)

Then Theorem 3 follows directly from (9) and (10).
To prove (9), we construct B′ to break the Q-LWEn,q,Dσ0

,m-assumption by
invoking A. Given a challenge (A,B), B′ wants to distinguish B = SA+E from
B = U+E, where A←$ Zn×m

q , S ←$ ZQ×n
q , E←$ DQ×m

σ0
and U ←$ ZQ×m

q . To
decide which case it is, B′ parses B = (bi,j)i∈[Q],j∈[m], samples vi,j ←$ DZ−bi,j ,r
for all i ∈ [Q], j ∈ [m], sets B′ := (bi,j + vi,j)i∈[Q],j∈[m], feeds (A,B′) to A, and
returns whatever A outputs. We analyze the advantage of B′.
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In the case B = SA+E. We parse SA = (ti,j)i∈[Q],j∈[m] andE = (ei,j)i∈[Q],j∈[m].
Then we have bi,j = ti,j + ei,j and B′ = (ti,j + ei,j + vi,j)i∈[Q],j∈[m] =
SA + (ei,j + vi,j)i∈[Q],j∈[m]. Since ti,j ∈ Z, vi,j follows the distribution
DZ−bi,j ,r = DZ−ti,j−ei,j ,r = DZ−ei,j ,r. Then together with the fact that
ei,j follows Dσ0 , by Lemma 8, the distribution of ei,j + vi,j is within statis-
tical distance 2−λ of DZ,σ = DZ,

√
σ0

2+r2 . Let E′ := (ei,j + vi,j)i∈[Q],j∈[m].
Then B′ = SA+E′ with E′ = (ei,j + vi,j)i∈[Q],j∈[m] following a distribution

statistically close to DQ×m
Z,σ , with statistical distance at most Qm/2λ.

In the case B = U+E. Similar to the above analysis, we can get that B′ =
U + E′ with E′ = (ei,j + vi,j)i∈[Q],j∈[m] distributed over ZQ×m

q . Since U is

uniformly distributed over ZQ×m
q and independent of E′, B′ = U+E′ is also

uniformly distributed over ZQ×m
q .

Thus, B′ successfully distinguishes B = SA+ E from B = U+ E as long as A
can distinguish B′ = SA+E′ (with E′ nearly following DQ×m

Z,σ ) from the uniform
distribution, i.e., breaking the Q-LWEn,q,DZ,σ,m-assumption. This proves (9).

Next we turn to the proof of (10). Here we describe the main ideas behind
the proof, and postpone the formal proof of (10) to Appendix D. We aim to
prove that the Q-LWEn,q,Dσ0 ,m

-assumption holds, i.e.,

(A, SA+E)
c
≈ (A, U+E), (11)

based on the LWEℓ,q,DZ,γ ,m-assumption, and determine the security loss factor.
Here A ←$ Zn×m

q , S ←$ ZQ×n
q , E←$ DQ×m

σ0
and U ←$ ZQ×m

q .

In the first step, we break A ∈ Zn×m
q into (A1|Ā1) ∈ Zn×m′

q × Zn×(m−m′)
q

and E ∈ DQ×m
σ0

into (E1|Ē1) ∈ DQ×m′

σ0
× D

Q×(m−m′)
σ0 , where the block A1

contains the first m′ columns of A. Then we change Ā1 into a lossy one Ã1 =

CB + F, where C ←$ Zn×ℓ
q ,B←$ Zℓ×(m−m′)

q and F ∈ Zn×(m−m′)
q follows the

error distribution D
n×(m−m′)
Z,γ . This change is indistinguishable due to the n-

secret LWEℓ,q,DZ,γ ,m−m′ -assumption. Therefore,

(A,SA+E) = ((A1|Ā1), (SA1+E1|SĀ1+Ē1))
c
≈ ((A1|Ã1), (SA1+E1|SÃ1+Ē1))

but it incurs a loss factor of n since hybrid arguments yield Advn-LWE
[ℓ,q,DZ,γ ,m−m′](λ) ≤

n ·AdvLWE
[ℓ,q,DZ,γ ,m−m′](λ) ≤ n ·AdvLWE

[ℓ,q,DZ,γ ,m](λ). Now given a lossy Ã1, the infor-

mation of S leaked by SÃ1 is bounded. By takingA1 as extractor, we can extract

the remaining entropy of S, and result in SA1
s
≈ U1, where U1 ←$ ZQ×m′

q . So
we have

((A1|Ã1), (SA1 +E1|SÃ1 + Ē1))
s
≈ ((A1|Ã1), (U1 +E1|SÃ1 + Ē1)).

Next, we change the lossy Ã1 back to uniform Ā1, and have

((A1|Ã1), (U1 +E1|SÃ1 + Ē1))
c
≈ ((A1|Ā1), (U1 +E1|SĀ1 + Ē1)).
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Then we have loss factor n again.
In the second step, we break A = (A1|Ā1) further into (A1|A2|Ā2) ∈

Zn×m′

q × Zn×m′

q × Zn×(m−2m′)
q and E = (E1|Ē1) into (E1|E2|Ē2) ∈ DQ×m′

σ0
×

DQ×m′

σ0
×D

Q×(m−2m′)
σ0 , where the block A2 contains the second m′ columns of

A. Then we change Ā2 to a lossy one Ã2 and have

((A1|Ā1), (U1 +E1|SĀ1 + Ē1)) = ((A1|A2|Ā2), (U1 +E1|SA2 +E2|SĀ2 + Ē2))
c
≈ ((A1|A2|Ã2), (U1 +E1|SA2 +E2|SÃ2 + Ē2))

with a lossy factor n. With a similar argument, the uniform A2 can extract the

remaining entropy of S so that SA2
s
≈ U2, where U2 ←$ ZQ×m′

q . So

((A1|A2|Ã2), (U1 +E1|SA2 +E2|SÃ2 + Ē2))
s
≈ ((A1|A2|Ã2), (U1 +E1|U2 +E2|SÃ2 + Ē2)).

Changing lossy Ã2 back to uniform Ā2 yields

((A1|A2|Ã2), (U1 +E1|U2 +E2|SÃ2 + Ē2))
c
≈ ((A1|A2|Ā2), (U1 +E1|U2 +E2|SĀ2 + Ē2))

with a price of another loss factor n.
Overall, with at most c ≈ m

m′ steps, we can prove (11) with a loss factor of 2cn.
It should be noted that we analyze the entropy of S with the so-called “lossiness
approach” in [15], which results in more flexible parameters. This finishes the
proof sketch of (10), and we refer to Appendix D for the formal proof of (10).

Finally, taking (9) and (10) together, Theorem 3 holds. ⊓⊔

Some Useful Setting of Parameters. Our reduction holds for a wide range
of parameters. Here we describe two settings of parameters in Table 3, both of
which satisfy the constrains in the statements of Theorem 3.

Table 3. Parameter setting for Theorem 3, where C denotes the global constant in
Lemma 7.

Parameters n m ℓ q c σ1 γ σ0 r σ

Setting I 36λ 72λ λ λ6 40
√
λ 12

√
λ 102Cλ1.5

√
205Cλ1.5 103Cλ1.5

Setting II 4λ λ2 λ 22
√
λ 2λ 2

√
λ λ

√
2
2 λ2.52

√
λ
√
2
2 λ2.52

√
λ λ2.52

√
λ

Setting I in Table 3 allows a constant factor c, resulting in a loss factor
as small as O(λ). In many applications, more constrains of parameter setting
are considered. For example, the number of LWE samples m should be set as
O(n log q) when applying the leftover hash lemma (i.e., Lemma 2), and the mod-
ulus q should be set as 2ω(log λ) when we use smudging lemma (i.e., Lemma 6).
Setting II in Table 3 also takes these additional constrains into account. In this
setting, the factor c can be set as O(λ), resulting in a loss factor of O(λ2).
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Remark 1 (Comparison with the almost tight reduction in [2]). If we use tech-
niques in [2], we can also obtain an almost tight reduction from LWE to multi-
secret LWE. However, the loss factor would be O(mn), as shown in the technical
overview in Sect. 1 of our paper.

In contrast, our reduction in the proof of Theorem 3 is fine-grained and
tighter, where the loss factor is O(cn) with c ≤ m. In fact, due to the flexible
setting of σ1, we can always set log(σ1) = O(log q). Then the parameter c can be
set as small as O(mn ) to satisfy the constrain n ≥ O((mc log q+ ℓ log q)/ log(σ1)).
Consequently, the loss factor of our reduction can be as small as O(cn) = O(m),
saving a factor at least O(n) compared with [2]’s reduction loss factor.

For example, in Setting I and Setting II in Table 3, their loss factor should
be O(λ2) and O(λ3) respectively, while ours are O(λ) and O(λ2) respectively.

6 Instantiation from LWE

In this section, we instantiate our generic SIG and PKE constructions proposed
in Sect. 4 from the LWE assumptions. More precisely, we will show how to in-
stantiate the underlying building blocks, including gap language distributions in
Subsect. 6.1, probabilistic QA-HPS in Subsect. 6.2, dual-mode gap commitment
in Subsect. 6.3 and compatible tag-based QA-NIZK in Subsect. 6.4.

For simplicity, all instantiations in this section take LWE-related public pa-
rameters ppLWE = (n,m, ℓ, q, σ, γ, χ,B, B̃, B′, B̃′, ζ, ζ ′) as implicit input, where
n,m, ℓ, q, σ, γ are parameters satisfying the constrains in Theorem 3, χ is the
discrete Gaussian distribution DZ,σ as described in Theorem 3, B, B̃,B′, B̃′ ∈ N
are error bounds such that χ is B-bounded, and ζ, ζ ′ are parameters for Gaus-
sians. (Some instantiations use only part of ppLWE.) According to Lemma 5 (the
tail bound), χ = DZ,σ is

√
λ · σ-bounded, except with exponentially small prob-

ability 2−λ,5 so we can set B =
√
λ · σ. The requirements for these parameters

will be stated in the following theorems, and the concrete choices satisfying all
requirements will be suggested in Table 4 in Subsect. 6.5.

6.1 Gap Language Distributions from LWE

Let ppLWE = (n,m, ℓ, q, σ, γ, χ,B, B̃, · · · ) be the LWE-related public parameters
that serve as implicit input to all algorithms and satisfy B < B̃ < q/(10m)
and χ a B-bounded distribution. Our LWE-based gap language distribution L
samples a language parameter ρ and its trapdoor tdρ as follows.

– L invokes (A,TA)←$ TrapGen(n, q,m) (cf. Lemma 3) and outputs (ρ :=
A ∈ Zn×m

q , tdρ := TA ∈ Zm×m
q ).

According to Lemma 3,A is almost uniform over Zn×m
q and ∥TA∥∞ = O(

√
n log q).

The language parameter ρ = A determines a gap language GLA = (LA, L̃A),

5 We will not mention this exponentially small probability hereafter for simplicity, and
take for granted that χ is B-bounded.
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where LA and L̃A define “noisy linear” subspaces as follows6

LA : =
{
c ∈ Zm

q

∣∣∃ s ∈ Zn
q \ {0}, e ∈ [−B,B]m, s.t. c⊤ = s⊤ ·A+ e⊤

}
,

L̃A : =
{
c ∈ Zm

q

∣∣∃ s ∈ Zn
q \ {0}, e ∈ [−B̃, B̃]m, s.t. c⊤ = s⊤ ·A+ e⊤

}
.

Clearly, LA ⊆ L̃A and both of them are contained in the universal set X := Zm
q .

The associated algorithms (SampleL,SampleX ,CheckL̃) are defined as follows.

– (c, wc)←$ SampleL(ρ = A): It chooses s ←$ Zn
q , e←$ χm, computes c⊤ =

s⊤ ·A+ e⊤, and returns the instance c with its witness wc := (s, e).

– c ←$ SampleX : It outputs a uniformly chosen c ←$ Zm
q .

– 0/1 ← CheckL̃(ρ = A, tdρ = TA, c): It invokes (s, e) ← Invert(TA, c) (cf.

Lemma 4), and outputs 1 if e ∈ [−B̃, B̃]m and 0 otherwise.

Given that e ∈ [−B̃, B̃]m and B̃ < q/(10m), we have ∥e∥ ≤
√
mB̃ ≤ q/(10

√
m).

Then according to Lemma 4, CheckL̃(ρ, tdρ, c) outputs 1 iff c ∈ L̃A.
The subset membership problem (SMP) for L is exactly the LWEn,q,χ,m

problem, and the multi-fold SMP is just the multi-secret LWEn,q,χ,m problem.
Since we set χ = DZ,σ, by the almost tight reduction from LWE to multi-secret
LWE in Sect. 5, i.e., Theorem 3, we have the following lemma.

Lemma 9 (LWEℓ,q,DZ,γ ,m ⇒ Multi-fold SMP for L ). Let χ = DZ,σ in
SampleL. For any adversary A, there exists an adversary B such that T(B) ≈
T(A) + Q · poly(λ) with poly(λ) independent of T(A), and Advmsmp

L ,A,Q(λ) ≤
2cn · AdvLWE

[ℓ,q,DZ,γ ,m],B(λ) +
Q(m+c+1)

2λ
, where χ = DZ,σ and DZ,γ are the discrete

Gaussian distributions as described in Theorem 3, and c is an integer satisfying
(8).

6.2 Probabilistic QA-HPS from LWE

In this subsection, we instantiate probabilistic QA-HPS from the LWE assump-
tion. Let ppLWE = (n,m, ℓ, q, σ, γ, χ,B, B̃, B′, · · · ) be the LWE-related public pa-
rameters that serve as implicit input to all algorithms. Let both L and L0 be the
gap language distribution specified in Subsect. 6.1. Here we use two distributions
L and L0 to indicate the independence of them. We present our LWE-based
scheme prQAHPSLWE = (SetupHPS, α(·), prPub, prPriv) for L in Fig. 3. The hash
value space HV = Zq is a metric space with metric dist(hv, hv′) := |hv−hv′| for
hv, hv′ ∈ Zq. Then Ballε

(
hv

)
:= {hv′ ∈ Zq | |hv − hv′| ≤ ε}.

Firstly we prove that prQAHPSLWE is a pr-QA-HPS scheme in Theorem 4.

Theorem 4. The prQAHPSLWE proposed in Fig. 3 is a pr-QA-HPS scheme that
has (εprPub, εprPriv)-approximate correctness and εevaInd-evaluation indistinguishabil-
ity with εprPub = B′ +mB, εprPriv = B′ and εevaInd = mB̃/B′.

6 For technical reasons (concretely, for the εext-⟨L0,L ⟩-OT-extracting property of the
pr-QA-HPS scheme constructed later), the vector 0 must be excluded from the set
Zn
q that s is chosen from. For simplicity, we forgo making this explicit in the sequel.
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ppHPS ←$ SetupHPS:

Return ppHPS := ppLWE, which implicitly defines

(SK := {0, 1}m, HV := Zq, Λ(·)),
where Λsk(c) := c⊤ · k ∈ Zq

for sk = k ∈ SK and c ∈ X = Zm
q .

pkρ ← αρ(sk), where ρ = A ∈ Zn×m
q :

Parse sk = k ∈ {0, 1}m.
p := A · k ∈ Zn

q .
Return pkρ := p.

hv ←$ prPub(pkρ, c, wc = (s, e)),

where c ∈ L̃ρ for ρ = A: �c⊤ = s⊤ ·A+ e⊤

Parse pkρ = p ∈ Zn
q .

e′ ←$ [−B′, B′].
Return hv := s⊤ · p+ e′ ∈ Zq.

hv ←$ prPriv(sk, c ∈ X ):
Parse sk = k ∈ {0, 1}m.
e′ ←$ [−B′, B′].
Return hv := c⊤ · k+ e′ ∈ Zq.

Fig. 3. The probabilistic QA-HPS scheme prQAHPSLWE from LWE.

See the technical overview in Sect. 1 for a proof sketch of evaluation indis-
tinguishability. We postpone the proof of Theorem 4 to Appendix E.1.

Through the following theorems, we show the ⟨L ,L0⟩-key-switching, PK-
diversity and L0-multi-key-multi-extracting of prQAHPSLWE, as needed for the
MUMCc-CCA security of our PKE in Subsect. 4.2 (cf. Theorem 2), then show
the εext-⟨L0,L ⟩-OT-extracting of prQAHPSLWE, where εext ≥ εprPriv, as needed
for the strong MUc-CMA security of our SIG in Subsect. 4.1 (cf. Theorem 1).

The high-level ideas behind the proofs of these theorems are implicitly con-
tained in the security proof sketches for our SIG and PKE schemes using LWE-
based pr-QA-HPS as a building block in Sect. 1. We postpone the proofs of these
theorems to Appendix E.2, E.3, E.4 and E.5, respectively.

Theorem 5 (⟨L ,L0⟩-Key-Switching of prQAHPSLWE). Let m > 3n log q +
2(λ + 1). The proposed prQAHPSLWE in Fig. 3 supports ⟨L ,L0⟩-key-switching
with ϵ

⟨L,L0⟩-ks
prQAHPS,A ≤ 2−λ for any (possibly unbounded) adversary A.

Theorem 6 (PK-Diversity of prQAHPSLWE). The proposed prQAHPSLWE in

Fig. 3 has PK-diversity with ϵpk-divprQAHPS = 2−m + q−n.

Theorem 7 (Almost Tight L0-Multi-Key-Multi-Extracting of prQAHPSLWE).
Let m > 2n log q+2λ. If the LWEℓ,q,DZ,γ ,m assumptions hold, then the proposed
prQAHPSLWE in Fig. 3 supports L0-multi-key-multi-extracting. Concretely, for
any adversary A, any N and any Q, there exist adversaries B1 and B2, such that
T(B1) ≈ T(B2) ≈ T(A) +NQ · poly(λ) with poly(λ) independent of T(A), and
AdvL0-mk-mext

prQAHPS,A,N,Q(λ) ≤ 2cn · AdvLWE
[ℓ,q,DZ,γ ,m],B1

(λ) + 2cn · AdvLWE
[ℓ,q,DZ,γ ,m],B2

(λ) +
2NQ(m+c+2)+N

2λ
+NQ · (m+ 1)B/B′, where c is an integer satisfying (8).

Theorem 8 (εext-⟨L0,L ⟩-OT-Extracting of prQAHPSLWE). Let εext ≥ εprPriv,
m > 3n log q+2λ and q be a prime. The proposed prQAHPSLWE in Fig. 3 supports

εext-⟨L0,L ⟩-OT-extracting with ϵ
εext-⟨L0,L⟩-otext
prQAHPS,A ≤ 2−λ+mB̃/B′+(2εext+2B′+

1)/q for any (possibly unbounded) adversary A.

6.3 Commitment Scheme from LWE

Let ppLWE = (n,m, ℓ, q, σ, γ, χ,B, B̃, · · · ) be the LWE-related public parameters
that serve as implicit input to all algorithms. We present our LWE-based dual-
mode gap commitment scheme CMTLWE = (BSetup,HSetup,Com) in Fig. 4, with
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two message spacesM = {0, 1}m ⊆ M̃ = [−B̃, B̃]m and two randomness spaces

R = {0, 1}m×m ⊆ R̃ = [−B̃, B̃]m×m. The scheme uses a modulus q2.

ppCMT ←$ BSetup: �Binding mode

X ←$ Zn×m
q2

.

s ←$ Zn
q2 , e ←$ χm.

b⊤ := s⊤X+ e⊤ mod q2.

X :=
(

X
b⊤

)
∈ Z(n+1)×m

q2
.

Return ppCMT := X.

ppCMT ←$ HSetup: �Hiding mode

X ←$ Z(n+1)×m

q2
.

Return ppCMT := X.

com← Com(ppCMT = X,m;R): �m ∈ [−B̃, B̃]m, R ∈ [−B̃, B̃]m×m

com := X ·R+
(

0
q·m⊤

)
∈ Z(n+1)×m

q2
. �Here 0 is an n×m zero matrix

Return com.

Fig. 4. The dual-mode gap commitment scheme CMTLWE from LWE.

This commitment scheme is essentially adapted from the Regev’s PKE scheme
[45]. Here, the public parameter in the binding mode is just the public key of
Regev’s scheme, while the committing algorithm is just Regev encryption algo-
rithm. The decryption correctness of Regev’s PKE guarantees the property of
statistical binding. According to the LWE assumption, the public key of Regev’s
scheme is computationally indistinguishable from a uniform matrix, which serves
as the public parameter in the hiding mode. The statistical hiding property in
the hiding mode relies on the fact that a uniform matrix is a good extractor (cf.
Lemma 2). Formally, we have Theorem 9 with proof appeared in Appendix F.

Theorem 9. Let q > 2mBB̃ and m > 4(n+1) log q+2(λ+1). If the LWEn,q2,χ,m

assumption holds, then the proposed CMTLWE in Fig. 4 is a dual-mode gap com-
mitment scheme that has εbinding-statistical binding and εhiding-statistical hiding
with εbinding = 0 and εhiding = m · 2−λ. Moreover, for any adversary A, there exists

an adversary B s.t. T(B) ≈ T(A) and Advpara-indCMT,A(λ) ≤ AdvLWE
[n,q2,χ,m],B(λ).

6.4 QA-NIZK from LWE

In this subsection, we instantiate tag-based QA-NIZK for gap language based
on the LWE assumptions. We will follow the generic transformation proposed
by Libert et al. in [34, Subsect. 4.2] that compiles any trapdoor Σ-protocol for
gap language into tag-based QA-NIZK for the same gap language, and more-
over, the transformation is tightness-preserving, i.e., the resulting tag-based QA-
NIZK has tight zero-knowledge and tight USS as long as the building blocks are
tightly secure. The formal definitions of the building blocks including trapdoor
Σ-protocol are provided in Appendix G.1. Therefore, all we need to do is to
instantiate trapdoor Σ-protocol for gap language from LWE.

The Gap Language for QA-NIZK. Note that the gap languages needed
in our generic SIG and PKE constructions are different. More precisely, for

the SIG construction in Subsect. 4.1, the gap language is the GL(QANIZK)
ρ′ =

(L(QANIZK)
ρ′ , L̃(QANIZK)

ρ′ ) defined in Fig. 1, which is determined by the gap language
distribution L , the pr-QA-HPS scheme prQAHPS and the commitment scheme
CMT, while for the PKE construction in Subsect. 4.2, the gap language is exactly
the GLρ = (Lρ, L̃ρ) generated by L , as defined in Subsect. 6.1.
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We make the gap language GL(QANIZK)
ρ′ = (L(QANIZK)

ρ′ , L̃(QANIZK)
ρ′ ) concrete by

instantiating it with our LWE-based L in Subsect. 6.1, prQAHPSLWE in Sub-
sect. 6.2 and CMTLWE in Subsect. 6.3. Let ppLWE = (n,m, ℓ, q, σ, γ, χ,B, B̃, B′, B̃′, · · · )
be the LWE-related public parameters that serve as implicit input to all algo-
rithms, where B < B̃ and B′ < B̃′. More precisely, let ρ = A ∈ Zn×m

q be a

language parameter output by L , and let ppCMT = X ∈ Z(n+1)×m
q2 be a param-

eter generated by BSetup. Then according to Fig. 1, we have ρ′ = (A,X) and

the gap language GL(QANIZK)
ρ′ = (L(QANIZK)

ρ′ , L̃(QANIZK)
ρ′ ) is instantiated as follows:

L(QANIZK)
ρ′ =

(c, vk, d)

∣∣∣∣∣∣
∃ (s ∈ Zn

q , e ∈ [−B,B]m,
R ∈ {0, 1}m×m,k ∈ {0, 1}m,

e′ ∈ [−B′, B′])
s.t.

c⊤ = s⊤ ·A+ e⊤

∧ vk = X ·R+
(

0
q·k⊤

)
∧ d = c⊤ · k+ e′

 , (12)

L̃(QANIZK)
ρ′ =

(c, vk, d)

∣∣∣∣∣∣
∃ (s ∈ Zn

q , e ∈ [−B̃, B̃]m,

R ∈ [−B̃, B̃]m×m,k ∈ [−B̃, B̃]m,

e′ ∈ [−B̃′, B̃′])
s.t.

c⊤ = s⊤ ·A+ e⊤

∧ vk = X ·R+
(

0
q·k⊤

)
∧ d = c⊤ · k+ e′

 . (13)

The Trapdoor Σ-protocol from LWE. Observe that no matter the gap

language GL(QANIZK)
ρ′ = (L(QANIZK)

ρ′ , L̃(QANIZK)
ρ′ ) defined in (12) and (13) or the

gap language GLρ = (Lρ, L̃ρ) defined in Subsect. 6.1, both of them are defined
with linear equations, i.e., the instance is linear in the witness, and parts of
the witness are bounded. To build trapdoor Σ-protocol for these gap languages,
we are inspired by the trapdoor Σ-protocol for ACPS ciphertexts [4] with tight
security constructed by Libert et al. in [34, Sect. 5], where the gap languages
defined by ACPS ciphertexts enjoy similar properties described as above.

Roughly speaking, our trapdoor Σ-protocol for GL(QANIZK)
ρ′ works as fol-

lows. To prove (c, vk, d) ∈ L(QANIZK)
ρ′ with the help of a witness (s, e,R,k, e′),

the prover first generates a fresh instance (c0, vk0, d0) by sampling witness
(s0, e0,R0,k0, e

′
0) appropriately and sends it to the verifier, then the verifier

chooses a challenge ch ∈ {0, 1} uniformly at random. According to the linear
properties, the “mixed” (s0+ ch · s, e0+ ch ·e,R0+ ch ·R,k0+ ch ·k, e′0+ ch · e′)
is also a witness for the “mixed” instance (c0 + ch · c, vk0 + ch · vk, d0 + ch · d) to
satisfy the equations in (12) and (13). Therefore, the prover sends the “mixed”
witness to the verifier, and the verifier checks the equations in (12) and (13)
for the “mixed” instance and witness and also checks whether the corresponding
parts of the “mixed” witness (namely e0+ch ·e,R0+ch ·R,k0+ch ·k, e′0+ch ·e′)
are bounded.

The trapdoor Σ-protocol for the gap language GLρ = (Lρ, L̃ρ) is a simplified

version of that for GL(QANIZK)
ρ′ = (L(QANIZK)

ρ′ , L̃(QANIZK)
ρ′ ), since GLρ is much simper.

We put the formal descriptions of the LWE-based trapdoor Σ-protocols and
their security proof in Appendix G.3.

The QA-NIZK from LWE. Finally, by compiling the LWE-based trapdoor
Σ-protocols via the generic transformation proposed by Libert et al. in [34,
Subsect. 4.2], we are able to obtain tag-based QA-NIZK schemes for the gap
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language GL(QANIZK)
ρ′ = (L(QANIZK)

ρ′ , L̃(QANIZK)
ρ′ ) and GLρ = (Lρ, L̃ρ) from the LWE

assumptions, serving as building blocks for our SIG and PKE constructions.
For completeness, in Appendix G.4, we first recall the generic transformation

in [34, Subsect. 4.2], then describe how to compile our LWE-based trapdoor Σ-
protocols into tag-based QA-NIZK schemes for gap languages. Especially, we
obtain the following corollary in Appendix G.4.

Corollary 1 (Almost Tight Security of LWE-based QA-NIZK) We ob-

tain a tag-based QA-NIZK scheme for the gap language GL(QANIZK)
ρ′ = (L(QANIZK)

ρ′ ,

L̃(QANIZK)
ρ′ ) specified by (12) and (13) and a tag-based QA-NIZK scheme for the

gap language GLρ = (Lρ, L̃ρ) specified in Subsect. 6.1, both of which have almost
tight zero-knowledge and USS based on the LWE assumption.

Concretely, the advantage of zero-knowledge for any (even all powerful) ad-
versary A′ is given by AdvzkQANIZK,A′(λ) ≤ 2−Ω(λ). Meanwhile, the advantage of
USS for any PPT adversary A is given by

AdvussQANIZK,A(λ) ≤ AdvSIS[n,q,m,β],B1
(λ) + 2λ2 · AdvLWE

[λ,q,χ,m],B2
(λ) + 2−Ω(λ),

where PPT algorithms B1 and B2 run in about the same time as A.

6.5 Setting the Parameters

We give a suggestion for parameters ppLWE = (n,m, ℓ, q, σ, γ, χ,B, B̃, B′, B̃′, ζ, ζ ′)
in Table 4, so that all conditions of the theorems in the section can be met. More-
over, our parameter suggestion in Table 4 corresponds to the parameter Setting
II in Table 3, thus the conditions in Theorem 3 (almost tight reduction from LWE
to multi-secret LWE) are also satisfied. By instantiating our generic construc-
tions in Sect. 4 with the LWE-based building blocks proposed in this section, we
obtain LWE-based SIG and PKE schemes with almost tight strong MUc-CMA
and MUMCc-CCA security, respectively. Under the parameters in Table 4, the
security loss factor of our schemes is O(λ2).

Table 4. Parameter setting, where λ denotes the security parameter.

Parameters n m ℓ q σ γ χ

Setting 4λ λ2 λ 22
√
λ λ2.5 · 2

√
λ λ DZ,λ2.5·2

√
λ

Parameters B B̃ B′ B̃′ ζ ζ ′

Setting λ3 · 2
√
λ λ6 · 2

√
λ 21.5

√
λ λ · 21.5

√
λ λ4.5 · 2

√
λ
√
λ · 21.5

√
λ
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[12] Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Practical sig-
natures from standard assumptions. In: EUROCRYPT 2013, pp. 461–485

[13] Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: CRYPTO 2013, pp. 410–428

[14] Boyen, X.: Lattice mixing and vanishing trapdoors: A framework for fully secure
short signatures and more. In: PKC 2010, pp. 499–517

[15] Brakerski, Z., Döttling, N.: Hardness of LWE on general entropic distributions.
In: EUROCRYPT 2020, pp. 551–575

[16] Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D., Wichs, D.: Fiat-Shamir: from practice to theory. In: STOC 2019, pp. 1082–
1090

[17] Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: EUROCRYPT 2001, pp. 453–474

31



[18] Canetti, R., Lombardi, A., Wichs, D.: Non-interactive zero knowledge and corre-
lation intractability from circular-secure FHE. Cryptology ePrint Archive, Report
2018/1248 (2018), https://eprint.iacr.org/2018/1248

[19] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: EUROCRYPT 2002, pp. 45–64

[20] Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with
tight multi-user security. In: PKC 2021, pp. 1–31

[21] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008)

[22] Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model.
In: CRYPTO 2014, pp. 335–352

[23] Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: EUROCRYPT 2016, pp. 1–27

[24] Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. ACM Transactions on Information and System Security 9(2), 181–234
(2006)

[25] Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: CRYPTO 2018, pp. 95–125

[26] Han, S., Jager, T., Kiltz, E., Liu, S., Pan, J., Riepel, D., Schäge, S.: Authenti-
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Appendix

A Additional Preliminaries

A.1 Digital Signature and Its Strong MUc-CMA Security

Definition 13 (SIG). A signature (SIG) scheme SIG = (SetupSIG,Gen,Sign,
VrfySIG) with message spaceM consists of four PPT algorithms:

– ppSIG ←$ SetupSIG: The setup algorithm outputs a public parameter ppSIG,
which serves as an implicit input of other algorithms.

– (vk, sigk)←$ Gen(ppSIG): Taking ppSIG as input, the key generation algo-
rithm outputs a pair of verification key and signing key (vk, sigk).

– σ ←$ Sign(sigk,m): Taking as input a signing key sigk and a message m ∈
M, the signing algorithm outputs a signature σ.

– 0/1 ← VrfySIG(vk,m, σ): Taking as input a verification key vk, a message
m ∈ M and a signature σ, the deterministic verification algorithm outputs
a bit indicating whether σ is a valid signature for m w.r.t. vk.

Correctness requires that for all ppSIG ∈ SetupSIG, (vk, sigk) ∈ Gen(ppSIG), m ∈
M, it holds that Pr[σ ←$ Sign(sigk,m) : VrfySIG(vk,m, σ) = 1] ≥ 1− negl(λ).

In [6], Bader et al. defined existential unforgeability for digital signatures
under chosen-message attacks (CMA) in a Multi-User setting with adaptive
corruptions of secret keys (MUc-CMA). Moreover, strong MUc-CMA requires that
the adversary cannot even forge a new signature for a message that it has ever
queried. Below we present the definition of strong MUc-CMA security.

Definition 14 (Strong MUc-CMA Security for SIG). A signature scheme
SIG is strongly MUc-CMA secure, if for any PPT A and any polynomial N , it
holds that Advstr-cma-c

SIG,A,N (λ) := Pr[Expstr-cma-c
SIG,A,N ⇒ 1] ≤ negl(λ), where the experiment

Expstr-cma-c
SIG,A,N is defined in Fig. 5.

Expstr-cma-c
SIG,A,N :

ppSIG ←$ SetupSIG
For i ∈ [N ]: (vki, sigki) ←$ Gen(ppSIG)

QSign := ∅ �Record the signing queries

QCor := ∅ �Record the corruption queries

(i∗ ∈ [n],m∗, σ∗) ←$ AOSign(·,·),OCor(·)(ppSIG, {vki}i∈[N ])

If (i∗ /∈ QCor) ∧ ((i∗,m∗, σ∗) /∈ QSign) ∧ (VrfySIG(vki∗ ,m
∗, σ∗) = 1):

Return 1;

Else: Return 0

OSign(i,m):

σ ←$ Sign(sigki,m)

QSign := QSign ∪ {(i,m, σ)}
Return σ

OCor(i):

QCor := QCor ∪ {i}
Return sigki

Fig. 5. The strong MUc-CMA security experiment Expstr-cma-c
SIG,A,N for SIG.
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A.2 Public-Key Encryption and Its MUMCc-CCA Security

Definition 15 (PKE). A public-key encryption (PKE) scheme PKE = (SetupPKE,
Gen,Enc,Dec) with message spaceM consists of four PPT algorithms:

– ppPKE ←$ SetupPKE: The setup algorithm outputs a public parameter ppPKE,
which serves as an implicit input of other algorithms.

– (pk, sk)←$ Gen(ppPKE): Taking ppPKE as input, the key generation algorithm
outputs a pair of public key and secret key (pk, sk).

– c←$ Enc(pk,m): Taking as input a public key pk and a message m ∈ M,
the encryption algorithm outputs a ciphertext c.

– m′/⊥ ← Dec(sk, c): Taking as input a secret key sk and a ciphertext c, the
deterministic decryption algorithm outputs either a message m′ ∈ M or a
special symbol ⊥ indicating the failure of decryption.

Correctness requires that for all ppPKE ∈ SetupPKE, (pk, sk) ∈ Gen(ppPKE) and
m ∈M, it holds that Pr[c←$ Enc(pk,m) : Dec(sk, c) = m] ≥ 1− negl(λ).

In [33], Lee et al. defined indistinguishability for PKE schemes under chosen-
ciphertext attacks (CCA) in a Multi-User Multi-Challenge setting with adap-
tive corruptions of secret keys, which was originally called MUC+ in [33] and
is denoted by MUMCc-CCA in this paper. Below we present the definition of
MUMCc-CCA security.

Definition 16 (MUMCc-CCA Security for PKE). A PKE scheme PKE is
MUMCc-CCA secure, if for any PPT A and any polynomial N , it holds that
Advcca-cPKE,A,N (λ) :=

∣∣Pr[Expcca-cPKE,A,N ⇒ 1] − 1
2

∣∣ ≤ negl(λ), where the experiment
Expcca-cPKE,A,N is defined in Fig. 6.

Expcca-cPKE,A,N :

ppPKE ←$ SetupPKE
For i ∈ [N ]: (pki, ski) ←$ Gen(ppPKE)

QEnc := ∅ �Record the encryption queries

QCor := ∅ �Record the corruption queries

β ←$ {0, 1} �Single challenge bit

β′ ←$ AOEnc(·,·,·),ODec(·,·),OCor(·)(ppPKE, {pki}i∈[N ])

If β′ = β: Return 1; Else: Return 0

OEnc(i
∗,m0,m1):

If |m0| ̸= |m1|: Return ⊥
If i∗ ∈ QCor: Return ⊥
c∗ ←$ Enc(pki∗ ,mβ)

QEnc := QEnc ∪ {(i∗, c∗)}
Return c∗

ODec(i, c):

If (i, c) ∈ QEnc: Return ⊥
Return Dec(ski, c)

OCor(i):

If (i, ·) ∈ QEnc: Return ⊥
QCor := QCor ∪ {i}
Return ski

Fig. 6. The MUMCc-CCA security experiment Expcca-cPKE,A,N for PKE. Note that to avoid
trivial attacks, A is not allowed to submit a same user index i to both OEnc and OCor.

A.3 Quasi-Adaptive Non-Interactive Zero-Knowledge Argument

Quasi-Adaptive Non-Interactive Zero-Knowledge argument (QA-NIZK) was pro-
posed by Jutla and Roy [30], where the common reference string (CRS) may
depend on the specific language Lρ for which proofs are generated. Tag-based
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QA-NIZK additionally takes a tag as input when generating and verifying proofs.
Below we formalize tag-based QA-NIZK according to [34], for a gap language

GLρ = (Lρ, L̃ρ) (Lρ ⊆ L̃ρ) indexed by language parameter ρ. Intuitively, com-
pleteness and zero-knowledge of QA-NIZK are guaranteed for instances in Lρ,

while soundness is guaranteed for instances outside L̃ρ.

Definition 17 (Tag-based QA-NIZK for Gap Language). A tag-based
QA-NIZK scheme QANIZK = (CRSGen,Prove,VrfyNIZK,SimGen,Sim) for a gap

language GLρ = (Lρ, L̃ρ) with tag space T consists of five PPT algorithms:

– crs ←$ CRSGen(ρ): Taking as input the language parameter ρ, the CRS gen-
eration algorithm outputs a common reference string (CRS) crs.

– π ←$ Prove(crs, τ, x, w): Taking as input crs, a tag τ ∈ T , x ∈ Lρ and a
witness w for x ∈ Lρ, the proof generation algorithm outputs a proof π.

– 0/1 ← VrfyNIZK(crs, τ, x, π): Taking as input crs, a tag τ ∈ T , x ∈ X and
a proof π, the deterministic verification algorithm outputs a bit indicating
whether π is a valid proof.

– (crs, tdcrs) ←$ SimGen(ρ): Taking as input the parameter ρ, the simulated
CRS generation algorithm outputs a crs and a simulation trapdoor tdcrs.

– π ←$ Sim(crs, tdcrs, τ, x): Taking as input crs, a simulation trapdoor tdcrs, a
tag τ ∈ T and x ∈ X , the simulation algorithm outputs a simulated proof π.

Completeness requires: for all crs ∈ CRSGen(ρ), τ ∈ T and x ∈ Lρ with witness
w, it holds Pr[π ←$ Prove(crs, τ, x, w) : VrfyNIZK(crs, τ, x, π) = 1] ≥ 1− negl(λ).

Below we define the zero-knowledge and the unbounded simulation-soundness
(USS) according to [34].

Definition 18 (Zero-Knowledge of Tag-based QA-NIZK). A tag-based

QA-NIZK scheme QANIZK for gap language GLρ = (Lρ, L̃ρ) has zero-knowledge,

if for any PPT A, it holds that AdvzkQANIZK,A(λ) :=
∣∣Pr[Expzk,(0)QANIZK,A ⇒ 1] −

Pr[Exp
zk,(1)
QANIZK,A ⇒ 1]

∣∣ ≤ negl(λ), where the experiments Exp
zk,(0)
QANIZK,A and Exp

zk,(1)
QANIZK,A

are defined in Fig. 7.

Exp
zk,(0)
QANIZK,A:

crs ←$ CRSGen(ρ)

β ←$ AO(0)
Prv

(·,·,·)(ρ, crs)

Return β

O(0)
Prv(τ, x, w):

If w is not a witness for x ∈ Lρ: Return ⊥
Else: π ←$ Prove(crs, τ, x, w), Return π

Exp
zk,(1)
QANIZK,A:

(crs, tdcrs) ←$ SimGen(ρ)

β ←$ AO(1)
Prv

(·,·,·)(ρ, crs)

Return β

O(1)
Prv(τ, x, w):

If w is not a witness for x ∈ Lρ: Return ⊥
Else: π ←$ Sim(crs, tdcrs, τ, x), Return π

Fig. 7. The zero-knowledge experiments Exp
zk,(0)
QANIZK,A and Exp

zk,(1)
QANIZK,A for QANIZK.

We note that the above definition captures a notion of multi-theorem zero-
knowledge, which allows the adversary to obtain proofs for multiple statements.
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Definition 19 (USS of Tag-based QA-NIZK). A tag-based QA-NIZK scheme

QANIZK for gap language GLρ = (Lρ, L̃ρ) has unbounded simulation-soundness
(USS), if for any PPT A, it holds that AdvussQANIZK,A(λ) := Pr[ExpussQANIZK,A ⇒
1] ≤ negl(λ), where the experiment ExpussQANIZK,A is defined in Fig. 8.

ExpussQANIZK,A:

(crs, tdcrs) ←$ SimGen(ρ)

QSim := ∅ �Record the simulation queries

(τ∗, x∗, π∗) ←$ AOSim(·,·)(ρ, tdρ, crs) �Recall that tdρ is a trapdoor

for testing membership of L̃ρ

If (x∗ /∈ L̃ρ) ∧ ((τ∗, x∗, π∗) /∈ QSim) ∧ (VrfyNIZK(crs, τ
∗, x∗, π∗) = 1): Return 1;

Else: Return 0

OSim(τ, x):

π ←$ Sim(crs, tdcrs, τ, x)

QSim := QSim ∪ {(τ, x, π)}
Return π

Fig. 8. The unbounded simulation-soundness experiment ExpussQANIZK,A for QANIZK.

We note that the above USS definition is different from the usual one in [23]
in the following three aspects.

– Firstly, A is given the trapdoor tdρ of the language parameter ρ. Recall that

tdρ contains enough information for deciding whether an instance x is in L̃ρ.
– Secondly, A is allowed to output a forgery with a reused tag.
– Thirdly, the instance x∗ in A’s forgery should be outside L̃ρ rather than Lρ.

A.4 Collision-Resistant Hash Functions

Definition 20 (Collision-Resistant Hash Functions). A family of hash
functions H is collision-resistant, if for any PPT adversary A, it holds that

AdvcrH,A(λ) := Pr[H ←$ H, (x1, x2)←$ A(H) : x1 ̸= x2 ∧H(x1) = H(x2)] ≤ negl(λ).

A.5 Error-Correcting Code

Definition 21 (Error-Correcting Code). An error-correcting code ECC =
(Encode,Decode) from a message set M to a codeword set C consists of two
deterministic polynomial-time algorithms:

– c← Encode(m): Taking a message m ∈M as input, the encoding algorithm
outputs a codeword c ∈ C.

– m′/⊥ ← Decode(c): Taking an element c ∈ C as input, the decoding algo-
rithm outputs either a message m′ ∈M or a special symbol ⊥ indicating the
failure of decoding.

We say that ECC is able to correct ε errors (ε-correctness), if for all m ∈ M,
c := Encode(m) and c′ ∈ Ballε

(
c
)
, it holds that m = Decode(c′).
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A.6 Quasi-Adaptive Hash Proof System

We recall the formal definition of QA-HPS according to [28].

Definition 22 (QA-HPS). A quasi-adaptive hash proof system (QA-HPS)
scheme QAHPS = (SetupHPS, α(·),Pub,Priv) for a language distribution L con-
sists of four PPT algorithms:

– ppHPS ←$ SetupHPS: The setup algorithm outputs a public parameter ppHPS,
which implicitly defines a hashing key space SK, a hash value space HV,
and a family of hash functions Λ(·) : X −→ HV indexed by hashing keys
sk ∈ SK, where X is the universe for languages output by L .

We require that Λ(·) is efficiently computable and there are PPT algorithms
for sampling sk ←$ SK uniformly and sampling hv ←$ HV uniformly. We
require ppHPS to be an implicit input of other algorithms.

– pkρ ← αρ(sk): Taking as input a hashing key sk ∈ SK, the projection algo-
rithm indexed by language parameter ρ outputs a projection key pkρ.

– hv ← Pub(pkρ, x, w): Taking as input a projection key pkρ = αρ(sk) specified
by ρ, an instance x ∈ Lρ and a witness w for x ∈ Lρ, the deterministic public
evaluation algorithm outputs a hash value hv ∈ HV.

– hv ← Priv(sk, x): Taking as input a hashing key sk and an instance x ∈ X ,
the deterministic private evaluation algorithm outputs a hash value hv ∈ HV.

Correctness requires: for all (ρ, tdρ) ∈ L , ppHPS ∈ SetupHPS, sk ∈ SK, x ∈
Lρ with witness w, pkρ := αρ(sk), it holds that Pub(pkρ, x, w) = Λsk(x) =
Priv(sk, x).

B Proof of Theorem 1 (Strong MUc-CMA Security of SIG)

Theorem 1 (Strong MUc-CMA Security of SIG) Assume that (i) L and L0

have hard SMPs, (ii) prQAHPS is a probabilistic QA-HPS for both L and L0,
having (εprPub, εprPriv)-approximate correctness, εevaInd-evaluation indistinguishabil-
ity, and supporting εext-⟨L0,L ⟩-OT-extracting, where εext ≥ εprPriv, (iii) CMT
is a dual-mode gap commitment scheme that is εbinding-statistical binding and
εhiding-statistical hiding, (iv) QANIZK is a tag-based QA-NIZK for the gap lan-

guage GL(QANIZK)
ρ′ defined in Fig. 1, satisfying both zero-knowledge and unbounded

simulation-soundness, (iv) H is collision-resistant. Then the proposed SIG scheme
in Fig. 1 is strongly MUc-CMA secure.

Concretely, for any number N of users and any adversary A making at most
Qs times of OSign queries, there exist adversaries B1, · · · ,B7, s.t. T(B1) ≈ · · · ≈
T(B6) ≈ T(A) + (N +Qs) · poly(λ), with poly(λ) independent of T(A), and

Advstr-cma-c
SIG,A,N (λ) ≤ AdvzkQANIZK,B1

(λ) + AdvcrH,B2
(λ) + Advmsmp

L ,B3,Qs
(λ) + Advmsmp

L0,B4,Qs
(λ)

+ AdvussQANIZK,B5
(λ) + Advpara-indCMT,B6

(λ) + statist. loss,

where statist. loss = 2 · εbinding +Qs · εevaInd +N · ϵεext-⟨L0,L⟩-otext
prQAHPS,B7

+ εhiding +
N(N−1)

2 /|SK|.
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Proof of Theorem 1. We prove the theorem by defining a sequence of games
G0 –G7 and showing adjacent games indistinguishable. A brief description of
differences between adjacent games is summarized in Table 1. By Pri[·] we denote
the probability of a particular event occurring in game Gi.

Game G0: This is the Expstr-cma-c
SIG,A,N experiment (cf. Fig. 5).

Let (vki, sigki = (ski, ri)) denote the verification/signing key pair of user
i ∈ [N ]. In this game, when answering an OSign query (i,m), the challenger
samples x ←$ Lρ with witness w, computes d←$ prPriv(ski, x), τ := H(m)
and π ←$ Prove(crs, τ, (x, vki, d), (w, ski, ri)). Then, the challenger returns σ :=
(x, d, π) to A and puts (i,m, σ) to set QSign. For an OCor query i, the challenger
returns sigki = (ski, ri) to A and puts i to set QCor.

At the end of the game, A outputs a forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗ )). Let
Win denote the event that

i∗ /∈ QCor ∧ (i∗,m∗, σ∗) /∈ QSign ∧ VrfyNIZK(crs, τ
∗, (x∗, vki∗ , d

∗), π∗) = 1,

where τ∗ := H(m∗). By definition, Advstr-cma-c
SIG,A,N (λ) = Pr0[Win].

Game G1: It is the same as G0, except that, after generating n pairs of ver-
ification/signing keys {(vki, sigki = (ski, ri))}i∈[N ], the challenger aborts im-
mediately if there are two verification keys collide, i.e., ∃1 ≤ i < j ≤ N , s.t.
vki = vkj .

Claim 1.
∣∣Pr0[Win]− Pr1[Win]

∣∣ ≤ εbinding +
N(N−1)

2 /|SK|.

Proof. Let VKColl denote the event that ∃1 ≤ i < j ≤ N , s.t. vki = vkj , and let
SKColl denote the event that ∃1 ≤ i < j ≤ N , s.t. ski = skj . Clearly, G0 and G1

are the same until VKColl occurs, thus∣∣Pr0[Win]− Pr1[Win]
∣∣ ≤ Pr1[VKColl] ≤ Pr1[SKColl] + Pr1[¬SKColl ∧ VKColl].

(14)
It suffices to bound Pr1[SKColl] and Pr1[¬SKColl ∧ VKColl].

• Since ski and skj are independently and uniformly chosen from SK, by a

union bound, we have Pr1[SKColl] ≤
∑

1≤i<j≤N Pr[ski = skj ] ≤ N(N−1)
2 /|SK|.

• Since vki = Com(ppCMT, ski; ri) and vkj = Com(ppCMT, skj ; rj), the event
¬SKColl ∧ VKColl means ∃1 ≤ i < j ≤ N , s.t. ski ̸= skj but vki =
Com(ppCMT, ski; ri) = Com(ppCMT, skj ; rj) = vkj . By the εbinding-statistical
binding property of CMT under BSetup (the binding mode), this can happen
with probability at most εbinding. Therefore Pr1[¬SKColl ∧ VKColl] ≤ εbinding.

Overall, Claim 1 holds by plugging the above two bounds into (14).

Game G2: It is the same as G1, except that, at the beginning of the game, the
challenger generates crs via (crs, tdcrs)←$ SimGen(ρ′) instead of crs ←$ CRSGen(ρ′).
Moreover, when answering OSign(i,m), the challenger computes π via the Sim
algorithm of QANIZK by using the simulation trapdoor tdcrs:
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• π ←$ Sim(crs, tdcrs, τ, (x, vki, d)).

Note that the witness w for x ∈ Lρ is no longer needed.

Claim 2.
∣∣Pr1[Win]− Pr2[Win]

∣∣ ≤ AdvzkQANIZK,B1
(λ).

Proof. Note that when answering OSign(i,m), (1) x is chosen from Lρ with wit-
ness w, (2) vki = Com(ppCMT, ski; ri), and (3) d ←$ prPriv(ski, x), which satisfies
d ∈ BallεprPriv

(
Λski

(x)
)
by the (εprPub, εprPriv)-approximate correctness of prQAHPS.

Therefore, (x, vki, d) ∈ L(QANIZK)
ρ′ with witness (w, ski, ri). Then by the zero-

knowledge of QANIZK (cf. Definition 18), the crs generated via SimGen and the
π’s generated via Sim in G2 are computationally indistinguishable from the crs
generated via CRSGen and the π’s generated via Prove in G1. Consequently, we
have

∣∣Pr1[Win]− Pr2[Win]
∣∣ ≤ AdvzkQANIZK,B1

(λ) and Claim 2 follows.

Game G3: It is the same as G2, except that, when answering OSign(i,m),
the challenger also puts (τ, (x, vki, d), π) to a set QSim, and for the forgery
(i∗,m∗, σ∗ = (x∗, d∗, π∗ )) output by A, the event Win is now defined as

i∗ /∈ QCor ∧ (i∗,m∗, σ∗) /∈ QSign ∧ VrfyNIZK(crs, τ
∗, (x∗, vki∗ , d

∗), π∗) = 1

∧ (τ∗, (x∗, vki∗ , d
∗), π∗) /∈ QSim .

Claim 3.
∣∣Pr2[Win]− Pr3[Win]

∣∣ ≤ AdvcrH,B2
(λ).

Proof. By Bad denote the event that A’s forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗ ))
satisfying ∃ (i,m, σ = (x, d, π )) ∈ QSign, s.t.

i∗ /∈ QCor ∧ (i∗,m∗, σ∗ = (x∗, d∗, π∗)) ̸= (i,m, σ = (x, d, π)) ∈ QSign

∧ VrfyNIZK(crs, τ
∗, (x∗, vki∗ , d

∗), π∗) = 1 ∧ (τ∗, (x∗, vki∗ , d
∗), π∗) = (τ, (x, vki, d), π) ∈ QSim,

where τ∗ := H(m∗) and τ := H(m). Clearly, G2 and G3 are the same until Bad
occurs, thus

∣∣Pr2[Win]− Pr3[Win]
∣∣ ≤ Pr3[Bad].

To bound Pr3[Bad], we first note that (τ
∗, (x∗, vki∗ , d

∗), π∗) = (τ, (x, vki, d), π)
in Bad implies (τ∗, x∗, i∗, d∗, π∗) = (τ, x, i, d, π), since there are no verification
key collisions (due to the game change in G1). Together with (i∗,m∗, σ∗ =
(x∗, d∗, π∗)) ̸= (i,m, σ = (x, d, π)) in Bad, it follows that m∗ ̸= m but τ∗ =
H(m∗) = H(m) = τ . Therefore, Bad suggests a collision of H. It is straight-
forward to construct an adversary B2 so that Pr3[Bad] ≤ AdvcrH,B2

(λ). (B2 can
sample all signing keys itself, simulate G3 honestly for A, and successfully find
a collision as long as Bad happens.)

Overall,
∣∣Pr2[Win]− Pr3[Win]

∣∣ ≤ Pr3[Bad] ≤ AdvcrH,B2
(λ).

Game G4: It is the same as G3, except that, at the beginning of the game, the
challenger picks (ρ0, tdρ0

)←$ L0 besides (ρ, tdρ)←$ L , and for all the OSign

queries, the challenger samples x ←$ Lρ0 instead of x ←$ Lρ. We stress that the
challenger still uses ρ to define the QANIZK’s gap language parameter ρ′ :=
(ρ, ppHPS, ppCMT) for which (crs, tdcrs)←$ SimGen(ρ′) is generated.
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Claim 4.
∣∣Pr3[Win]− Pr4[Win]

∣∣ ≤ Advmsmp
L ,B3,Qs

(λ) + Advmsmp
L0,B4,Qs

(λ).

Proof. We introduce an intermediate Game G3.5 between G3 and G4, where the
challenger samples x ←$ X for all the OSign queries.

Since witness w for x is not used at all in G3, G3.5 and G4 (due to the game
change in G2), we can directly construct two adversaries B3 and B4 for solving the
multi-fold SMP related to L and the multi-fold SMP related to L0 respectively,
s.t.

∣∣Pr3[Win] − Pr3.5[Win]
∣∣ ≤ Advmsmp

L ,B3,Qs
(λ) and

∣∣Pr3.5[Win] − Pr4[Win]
∣∣ ≤

Advmsmp
L0,B4,Qs

(λ). The full description of B3 and B4 can be found in Appendix B.1.
(B3 and B4 can sample all signing keys themselves, simulate G3/G3.5/G4 honestly
for A depending on the challenges that B3 and B4 receive, and succeed as long
as A behaves differently in these games.)

Game G5: It is the same as G4, except that, the event Win is now defined as

i∗ /∈ QCor ∧ (i∗,m∗, σ∗) /∈ QSign ∧ VrfyNIZK(crs, τ
∗, (x∗, vki∗ , d

∗), π∗) = 1

∧ (τ∗, (x∗, vki∗ , d
∗), π∗) /∈ QSim ∧ x∗ ∈ L̃ρ ∧ d∗ ∈ Ballεext

(
Λski∗ (x

∗)
)
.

Claim 5.
∣∣Pr4[Win]− Pr5[Win]

∣∣ ≤ AdvussQANIZK,B5
(λ) + εbinding.

Proof. By Forge denote the event that A’s forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗ ))
s.t.

i∗ /∈ QCor ∧ (i∗,m∗, σ∗) /∈ QSign ∧ VrfyNIZK(crs, τ
∗, (x∗, vki∗ , d

∗), π∗) = 1

∧ (τ∗, (x∗, vki∗ , d
∗), π∗) /∈ QSim ∧ (x∗ /∈ L̃ρ ∨ d∗ /∈ Ballεext

(
Λski∗ (x

∗)
)
).

G4 and G5 are the same unless Forge occurs, so
∣∣Pr4[Win]−Pr5[Win]

∣∣ ≤ Pr5[Forge].
Note that by the εbinding-statistical binding property of CMT under BSetup,

vki∗ = Com(ppCMT, ski∗ ; ri∗) cannot be a commitment of messages in S̃K other
than ski∗ , except with probability at most εbinding. We take this for granted in

the following analysis. Therefore, the event (x∗ /∈ L̃ρ ∨ d∗ /∈ Ballεext

(
Λski∗ (x

∗)
)
)

in Forge implies (x∗, vki∗ , d
∗) /∈ L̃(QANIZK)

ρ′ where ρ′ = (ρ, ppHPS, ppCMT). Conse-
quently, Forge implies VrfyNIZK(crs, τ

∗, (x∗, vki∗ , d
∗), π∗) = 1 ∧ (τ∗, (x∗, vki∗ , d

∗),

π∗) /∈ QSim ∧ (x∗, vki∗ , d
∗) /∈ L̃(QANIZK)

ρ′ , which directly breaks the USS prop-
erty of tag-based QANIZK. Formally, we can build an adversary B5 such that
Pr5[Forge] ≤ AdvussQANIZK,B5

(λ). B5 can sample all signing keys itself, simulate G5

honestly for A (using its own oracle OSim defined in Fig. 8 to generate simulated
proofs π when answering OSign queries for A), output the (τ∗, (x∗, vki∗ , d

∗), π∗)
extracted from A’s forgery to its own challenger, and succeed as long as Forge
occurs. We also provide a full description of B5 in Appendix B.2.

By taking the aforementioned εbinding into account, we have Pr5[Forge] ≤
AdvussQANIZK,B5

(λ) + εbinding. This completes the proof of Claim 5.

Game G6: It is the same as G5, except that, when answering OSign(i,m), the
challenger computes d via the prPub algorithm of prQAHPS by using the projec-
tion key αρ0(ski) and a witness w of x ∈ Lρ0 :
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• d←$ prPub(αρ0(ski), x, w).

Since x is chosen from Lρ0 ⊆ L̃ρ0 with witness w, by the εevaInd-evaluation in-
distinguishability of prQAHPS (cf. Definition 7), the d←$ prPub(αρ0

(ski), x, w)
in G6 is statistically close to the d←$ prPriv(ski, x) in G5, with statistical dis-
tance at most εevaInd. By a union bound over allOSign queries, we have

∣∣Pr5[Win]−
Pr6[Win]

∣∣ ≤ Qs · εevaInd.

Game G7: It is the same as G6, except that, at the beginning of the game, the
challenger generates ppCMT via ppCMT ←$ HSetup (the hiding mode) instead of
ppCMT ←$ BSetup (the binding mode).

By the parameter indistinguishability of the two modes of CMT, G6 and G7

are computationally indistinguishable, and it is straightforward to construct an
adversary B6 so that

∣∣Pr6[Win]−Pr7[Win]
∣∣ ≤ Advpara-indCMT,B6

(λ). (B6 receives ppCMT

from its own challenger, simulates G6/G7 honestly for A by using the ppCMT it
received and by sampling all signing keys itself, and successfully distinguishes
the two modes as long as A behaves differently in G6 and G7.)

Finally, we have the following claim regarding Pr7[Win].

Claim 6. Pr7[Win] ≤ N · ϵεext-⟨L0,L⟩-otext
prQAHPS,B7

+ εhiding.

Proof. Let i∗ denote the user index contained in A’s forgery. In the case that
A corrupts user i∗ (i.e., i∗ ∈ QCor), Win does not occur, thus the claim trivially
holds. Next we prove the claim in the case that A never corrupts user i∗ (i.e.,
i∗ /∈ QCor). We analyze the information about ski∗ that A may obtain in G7.

• Firstly, the verification keys contain vki∗ = CMT(ppCMT, ski∗ ; ri∗).
Due to the game change in G7, ppCMT is generated by HSetup. By the εhiding-
statistical hiding property of CMT under HSetup (the hiding mode), vki∗ =

CMT(ppCMT, ski∗ ; ri∗) is statistically close to a commitment CMT(ppCMT, s̃k; r̃)

of any s̃k ∈ SK with r̃ ←$ R. Therefore, vki∗ = CMT(ppCMT, ski∗ ; ri∗) sta-
tistically hides the information about ski∗ .

• Due to the game change in G6, OSign(i
∗,m) for user i∗ uses only αρ0

(ski∗)
instead of the whole ski∗ .

• Since i∗ /∈ QCor, A never queries OCor(i
∗).

Overall, the information about ski∗ that A learns in G7 is limited in αρ0(ski∗).
Then we analyze the probability Pr7[Win]. For A’s forgery (i∗,m∗, σ∗ =

(x∗, d∗, π∗ )), Win will not occur unless x∗ ∈ L̃ρ ∧ d∗ ∈ Ballεext

(
Λski∗ (x

∗)
)
.

Intuitively, by the εext-⟨L0,L ⟩-OT-extracting property of prQAHPS (cf. Defi-

nition 11), we know that x∗ ∈ L̃ρ ∧ d∗ ∈ Ballεext

(
Λski∗ (x

∗)
)
holds with only

a negligible probability, even in the presence of αρ0
(ski∗). Hence Win hardly

happens in G7.
Formally, we build an (unbounded) adversary B7 against the εext-⟨L0,L ⟩-

OT-extracting property of prQAHPS. B7 is given (ppHPS, ρ0, ρ, αρ0(sk)), where
sk ←$ SK is chosen by its own challenger. B7 will simulate G7 for A. Firstly,
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B7 guesses the user index i∗ for which A forges a signature (with a security loss
N) and implicitly sets the signing key of user i∗ as the sk chosen by its own
challenger. B7 samples ppCMT ←$ HSetup and computes the verification key of

user i∗ as vki∗ := CMT(ppCMT, s̃k; r̃) for an arbitrary s̃k ∈ SK, where r̃ ←$ R.
By the εhiding-statistical hiding property of CMT under HSetup (the hiding mode),
this simulation is statistically close to G7, with statistical distance at most εhiding.
For the remaining N − 1 users, B7 samples signing keys itself, thus can hon-
estly answer OSign and OCor queries made by A for these users. For user i∗,
B7 can answer OSign queries using the projection key αρ0(sk) contained in its
own input (since x ←$ Lρ0) and abort immediately if A corrupts i∗. Finally, B7
receives a forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗)) from A, and returns (x∗, d∗) to its
own challenger. Overall, B7’s simulation is statistically close to G7 and B7 suc-
ceeds (i.e., x∗ ∈ L̃ρ ∧ d∗ ∈ Ballεext

(
Λski∗ (x

∗)
)
) as long as i∗ is correctly guessed

and Win occurs, thus ϵ
εext-⟨L0,L⟩-otext
prQAHPS,B7

≥ 1
N · Pr[Win occurs in B7’s simulation] ≥

1
N ·

(
Pr7[Win]−εhiding

)
. We also provide a full description of B7 in Appendix B.3.

Taking all things together, Theorem 1 follows. ⊓⊔

B.1 Full Description of Reductions B3 and B4 for Claim 4

We introduce an intermediate game G3.5 between G3 and G4:

– Game G3.5: It is the same as game G3, except that, for all the OSign queries,
the challenger samples x ←$ X .

Note that the witness w for x is not used at all in games G3, G3.5 and G4

(due to the game change in G2).
Below we construct two adversaries B3 and B4 for solving the multi-fold SMP

related to L and the multi-fold SMP related to L0 respectively, s.t.
∣∣Pr3[Win]−

Pr3.5[Win]
∣∣ ≤ Advmsmp

L ,B3,Qs
(λ) and

∣∣Pr3.5[Win]− Pr4[Win]
∣∣ ≤ Advmsmp

L0,B4,Qs
(λ).

We first provide the full description of B3 for solving the multi-fold SMP
related to L (cf. Definition 3). B3 is given (ρ, {xj}j∈[Qs]), where (ρ, tdρ)←$ L ,
and B3 aims to decide whether x1, ..., xQs

←$ Lρ or x1, ..., xQs
←$ X . B3 will

simulate G3 or G3.5 for A, depending on the input that B3 receives.

• Firstly, B3 invokes ppHPS ←$ SetupHPS, ppCMT ←$ BSetup, and sets ρ′ :=

(ρ, ppHPS, ppCMT) which defines the gap language GL(QANIZK)
ρ′ as in Fig. 1.

Then B3 invokes (crs, tdcrs)←$ SimGen(ρ′), samplesH ←$ H, and sets ppSIG :=
(ρ, ppHPS, ppCMT, crs, H). Then for each user i ∈ [N ], B3 sets the signing key
sigki := (ski, ri) itself with ski ←$ SK and ri ←$ R, and computes the cor-
responding vki := Com(ppCMT, ski; ri). B3 sends (ppSIG, {vki}i∈[N ]) to A.
• For OSign queries, when answering the j-th (j ∈ [Qs]) OSign query (i,m),
B3 sets x as the xj in its own input, and computes d ←$ prPriv(ski, x),
τ := H(m) and π ←$ Sim(crs, tdcrs, τ, (x, vki, d)), without knowing a wit-
ness of x. B3 returns σ := (x, d, π) to A, puts (i,m, σ) to QSign and puts
(τ, (x, vki, d), π) to QSim.
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In the case that x = xj is uniformly chosen from Lρ, B3 perfectly simulates
G3 for A; in the case that x = xj is uniformly chosen from X , B3 perfectly
simulates G3.5 for A.

• For an OCor query i, B3 returns sigki = (ski, ri) to A and puts i to QCor,
the same way as G3 and G3.5.

• Finally, B3 receives a forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗ )) from A. B3 uses
the signing keys {sigki}i∈[N ] to decide whether the event Win defined in G3

(which is the same as that defined in G3.5 and G4) occurs, i.e.,

i∗ /∈ QCor ∧ (i∗,m∗, σ∗) /∈ QSign ∧ VrfyNIZK(crs, τ
∗, (x∗, vki∗ , d

∗), π∗) = 1

∧ (τ∗, (x∗, vki∗ , d
∗), π∗) /∈ QSim.

B3 returns 1 to its own challenger if and only if Win occurs.

Overall, B3 simulates G3 for A in the case x1, ..., xQs
←$ Lρ and simulates G3.5

for A in the case x1, ..., xQs ←$ X , thus B3 successfully distinguishes the two
cases as long as the probability that Win occurs in G3 differs non-negligibly from
that in G3.5. Consequently, we have Advmsmp

L ,B3,Qs
(λ) ≥

∣∣Pr3[Win]− Pr3.5[Win]
∣∣.

Next, we provide the description of B4 for solving the multi-fold SMP related
to L0 (cf. Definition 3). B4 is given (ρ0, {xj}j∈[Qs]), where (ρ0, tdρ0

)←$ L0, and
B4 aims to decide whether x1, ..., xQs

←$ Lρ0
or x1, ..., xQs

←$ X . B4 simulates
exactly the same way as B3 does, except that, B4 samples (ρ, tdρ)←$ L it-
self to generate the ρ contained in ppSIG. In particular, when answering the
j-th (j ∈ [Qs]) OSign query (i,m) made by A, B4 sets x as the xj in its
own input. In the case that x = xj is uniformly chosen from Lρ0

, B4 per-
fectly simulates G4 for A; in the case that x = xj is uniformly chosen from
X , B4 perfectly simulates G3.5 for A. Therefore, B4 successfully distinguishes
x1, ..., xQs ←$ Lρ0 from x1, ..., xQs ←$ X as long as the probability that Win
occurs in G4 differs non-negligibly from that in G3.5. Consequently, we have
Advmsmp

L0,B4,Qs
(λ) ≥

∣∣Pr3.5[Win]− Pr4[Win]
∣∣.

This completes the proof of Claim 4.

B.2 Full Description of Reduction B5 for Claim 5

To bound Pr5[Forge], we construct an adversary B5 against the USS of tag-based

QANIZK (cf. Definition 19) for the gap language GL(QANIZK)
ρ′ = (L(QANIZK)

ρ′ , L̃(QANIZK)
ρ′ )

defined in Fig. 1, where ρ′ = (ρ, ppHPS, ppCMT). The full description of B5 is as
follows. B5 is given (ρ′ = (ρ, ppHPS, ppCMT), tdρ′ , crs) and has access to the oracle
OSim defined in Fig. 8 (cf. Definition 19). B5 simulates G5 for A as follows.

• Firstly, B5 samples H ←$ H, and sets ppSIG := (ρ, ppHPS, ppCMT, crs, H).
B5 also invokes (ρ0, tdρ0

)←$ L0. Then for each user i ∈ [N ], B5 samples
ski ←$ SK and ri ←$ R itself, sets sigki := (ski, ri), and computes the cor-
responding vki := Com(ppCMT, ski; ri). B5 sends (ppSIG, {vki}i∈[N ]) to A.
• For an OSign query (i,m) made by A, B5 samples x ←$ Lρ0 , computes
d←$ prPriv(ski, x) and τ := H(m). Then B5 sends (τ, (x, vki, d)) to its own
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OSim oracle and obtains π, which is generated by OSim via π ←$ Sim(crs, tdcrs,
τ, (x, vki, d)). B5 returns σ := (x, d, π) to A, puts (i,m, σ) to QSign and puts
(τ, (x, vki, d), π) to QSim.

• For an OCor query i, B5 returns sigki = (ski, ri) to A and puts i to QCor.
• Finally, B5 receives a forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗ )) fromA. B5 computes
τ∗ := H(m∗), and outputs (τ∗, (x∗, vki∗ , d

∗), π∗) to its own challenger.

It is clear to see that B5 simulates G5 perfectly for A, and B5 outputs a suc-
cessful forgery (τ∗, (x∗, vki∗ , d

∗), π∗) to its own challenger so that (x∗, vki∗ , d
∗) /∈

L̃(QANIZK)
ρ′ ∧ (τ∗, (x∗, vki∗ , d

∗), π∗) /∈ QSim ∧ VrfyNIZK(crs, τ
∗, (x∗, vki∗ , d

∗), π∗) =
1 as long as Forge occurs. By taking the aforementioned statistical binding pa-
rameter εbinding into account, we have Pr5[Forge] ≤ AdvussQANIZK,B5

(λ)+εbinding. This

completes the proof of Claim 5.

B.3 Full Description of Reduction B7 for Claim 6

To bound Pr7[Win], we construct an (unbounded) adversary B7 against the εext-
⟨L0,L ⟩-OT-extracting property of prQAHPS (cf. Definition 11). The full de-
scription of B7 is as follows. B7 is given (ppHPS, ρ0, ρ, αρ0(sk)), where sk ←$ SK
is chosen by its own challenger. B7 simulates G7 for A as follows.

• Firstly, B7 invokes ppCMT ←$ HSetup, and sets ρ′ := (ρ, ppHPS, ppCMT) which

defines the gap language GL(QANIZK)
ρ′ as in Fig. 1. Then B7 invokes (crs, tdcrs)

←$ SimGen(ρ′), H ←$ H, and sets ppSIG := (ρ, ppHPS, ppCMT, crs, H).

B7 samples an index î ←$ [N ] uniformly, sets sk̂i := sk implicitly for user

î, where sk is the hashing key chosen by B7’s own challenger, and computes

the verification key of user î as vk̂i := CMT(ppCMT, s̃k; r̃) for an arbitrary

s̃k ∈ SK, with r̃ ←$ R. By the εhiding-statistical hiding property of CMT
under HSetup (the hiding mode), this simulation is statistically close to G7,
with statistical distance at most εhiding.

For all other users i ∈ [N ] \
{
î
}
, B7 samples ski ←$ SK and ri ←$ R

itself, sets sigki := (ski, ri), and computes vki := Com(ppCMT, ski; ri).
B7 sends (ppSIG, {vki}i∈[N ]) to A.

• For an OSign query (i,m) made by A, B7 computes a signature σ as follows.

B7 first samples x ←$ Lρ0
with witness w. If i ̸= î, B7 computes d

via d ←$ prPub(αρ0
(ski), x, w) using αρ0

(ski), the same as G7; if i = î, B7
computes d via d←$ prPub(αρ0

(sk), x, w) using the projection key αρ0
(sk)

contained in its own input, which is also the same as G7. Then, B7 computes
τ := H(m), invokes π ←$ Sim(crs, tdcrs, τ, (x, vki, d)) and sets σ := (x, d, π).
B7 returns σ to A, puts (i,m, σ) to QSign and (τ, (x, vki, d), π) to QSim.

• For an OCor query i made by A, if i ̸= î, B7 returns sigki = (ski, ri) to A;
if i = î, B7 aborts immediately.

• Finally, B7 receives a forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗ )) from A. If i∗ = î,

B7 outputs (x∗, d∗) to its own challenger; if i∗ ̸= î, B7 aborts the game.
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It is clear to see that if î = i∗ (which happens with probability 1
N ) and A never

corrupts i∗, B7’s simulation is statistically close to G7, and B7’s output (x∗, d∗)
succeeds (i.e., x∗ ∈ L̃ρ ∧ d∗ ∈ Ballεext

(
Λsk(x

∗)
)
) as long as Win occurs. Thus,

ϵ
εext-⟨L0,L⟩-otext
prQAHPS,B7

≥ 1
N ·Pr[Win occurs in B7’s simulation] ≥ 1

N ·
(
Pr7[Win]−εhiding

)
and Claim 6 follows.

C Proof of Theorem 2 (MUMCc-CCA Security of PKE)

Theorem 2 (MUMCc-CCA Security of PKE) Assume that (i) L and L0 have
hard SMPs, (ii) prQAHPS is a probabilistic QA-HPS for both L and L0, having
εevaInd-evaluation indistinguishability, PK-diversity, and supporting both ⟨L ,L0⟩-
key-switching and L0-multi-key-multi-extracting, (iii) QANIZK is a tag-based

QA-NIZK for the gap language GLρ = (Lρ, L̃ρ) generated by L , satisfying
both zero-knowledge and unbounded simulation-soundness, (iv) H is collision-
resistant. Then the proposed PKE scheme in Fig. 2 is MUMCc-CCA secure.

Concretely, for any number N of users and any adversary A who makes
at most Qe times of OEnc queries and Qd times of ODec queries, there exist
adversaries B1, · · · ,B7, such that T(B1) ≈ · · · ≈ T(B6) ≈ T(A) + (N + Qe +
Qd) · poly(λ), with poly(λ) independent of T(A), and

Advcca-cPKE,A,N (λ) ≤ AdvzkQANIZK,B1
(λ) + AdvcrH,B2

(λ) + Advmsmp
L ,B3,Qe

(λ) + Advmsmp
L0,B4,Qe

(λ)

+ AdvussQANIZK,B5
(λ) + AdvL0-mk-mext

prQAHPS,B6,N,Qe
(λ) + statist. loss,

where statist. loss = N(N−1)
2 · ϵpk-divprQAHPS + (3Qe + 2Qd) · εevaInd +N · ϵ⟨L,L0⟩-ks

prQAHPS,B7
.

Proof of Theorem 2. We prove Theorem 2 by defining a sequence of games
G0 –G9 and showing adjacent games indistinguishable. A brief description of
differences between adjacent games is summarized in Table 2. By Pri[·] we denote
the probability of a particular event occurring in game Gi.

Game G0: This is the Expcca-cPKE,A,N experiment (cf. Fig. 6). Let Win denote the

event that β′ = β. By definition, Advcca-cPKE,A,N (λ) = |Pr0[Win]− 1
2 |.

Let (pki, ski) denote the public/secret key pair of user i ∈ [N ]. In this game,
when answering an OEnc query (i∗,m0,m1), the challenger samples x∗ ←$ Lρ

with witness w∗, computes hv∗ ←$ prPub(pki∗ , x
∗, w∗), d∗ := hv∗+Encode(mβ),

τ∗ := H(pki∗ , d
∗) and π∗ ←$ Prove(crs, τ∗, x∗, w∗). Then, the challenger returns

the challenge ciphertext c∗ := (x∗, d∗, π∗ ) to A and puts (i∗, c∗) to set QEnc.
Upon an ODec query (i, c = (x, d, π )), the challenger computes τ := H(pki, d),
hv′ ←$ prPriv(ski, x), returns m := Decode(d − hv′) to A if (i, c) /∈ QEnc ∧
VrfyNIZK(crs, τ, x, π) = 1 holds, and returns ⊥ otherwise. For an OCor query i,
the challenger returns ski to A and puts i to set QCor.

Game G1: It is the same as G0, except that, the challenger aborts immediately
if there are collisions in {pki}i∈[N ], i.e., ∃1 ≤ i < j ≤ N , s.t. pki = pkj .
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Since ski and skj are chosen independently from SK for each 1 ≤ i <
j ≤ N , by a union bound and by the PK-diversity of prQAHPS, it follows that∣∣Pr0[Win]− Pr1[Win]

∣∣ ≤∑
1≤i<j≤N Pr[αρ(ski) = αρ(skj)] ≤ N(N−1)

2 · ϵpk-divprQAHPS.

Game G2: It is the same as G1, except that, at the beginning of the game, the
challenger generates crs via (crs, tdcrs)←$ SimGen(ρ) instead of crs ←$ CRSGen(ρ).
Moreover, when answering OEnc(i

∗,m0,m1), the challenger computes hv∗ and
π∗ without using the witness w∗ for x∗ ∈ Lρ:

• hv∗ ←$ prPriv(ski∗ , x
∗), • π∗ ←$ Sim(crs, tdcrs, τ

∗, x∗).

Claim 7.
∣∣Pr1[Win]− Pr2[Win]

∣∣ ≤ AdvzkQANIZK,B1
(λ) +Qe · εevaInd.

Proof. Since x∗ is chosen from Lρ with witness w∗, by the zero-knowledge of
QANIZK (cf. Definition 18), the crs generated via SimGen and the π∗’s generated
via Sim in G2 are computationally indistinguishable from the crs generated via
CRSGen and the π∗’s generated via Prove in G1, and more precisely, A can
distinguish them with probability at most AdvzkQANIZK,B1

(λ).
Moreover, by the εevaInd-evaluation indistinguishability of prQAHPS (cf. Defini-

tion 7), the hv∗ ←$ prPriv(ski∗ , x
∗) in G2 is statistically close to the hv∗ ←$ prPub(pki∗ ,

x∗, w∗) in G1, with statistical distance at most εevaInd. Then by a union bound
over all OEnc queries, all hv∗’s generated via prPriv in G2 are statistically indis-
tinguishable from the hv∗’s generated via prPub in G1, with statistical distance
at most Qe · εevaInd.

Overall, we have
∣∣Pr1[Win]− Pr2[Win]

∣∣ ≤ AdvzkQANIZK,B1
(λ) +Qe · εevaInd.

Game G3: It is the same as G2, except that, when answering OEnc(i
∗,m0,m1),

the challenger also puts (τ∗, x∗, π∗) to a setQSim, and when answeringODec(i, c =
(x, d, π)), the challenger adds the following new rejection rule:

• If (τ, x, π) ∈ QSim, return ⊥ directly.

Clearly, G2 and G3 are the same unless that A ever queries ODec(i, c =
(x, d, π )) s.t.

∃ (i∗, c∗ = (x∗, d∗, π∗ )) ∈ QEnc, s.t. (i, c = (x, d, π )) ̸= (i∗, c∗ = (x∗, d∗, π∗ ))

∧ VrfyNIZK(crs, τ, x, π) = 1 ∧ (τ, x, π) = (τ∗, x∗, π∗) ∈ QSim,

where τ := H(pki, d) and τ∗ := H(pki∗ , d
∗).

Note that by (i, c = (x, d, π )) ̸= (i∗, c∗ = (x∗, d∗, π∗ )) and (τ, x, π) =
(τ∗, x∗, π∗), it follows that (i, d) ̸= (i∗, d∗) and τ = H(pki, d) = H(pki∗ , d

∗) =
τ∗. Since there are no public key collisions (due to the game change in G1),
(i, d) ̸= (i∗, d∗) implies (pki, d) ̸= (pki∗ , d

∗). Consequently, the above event sug-
gests a collision of H, and we have

∣∣Pr2[Win]− Pr3[Win]
∣∣ ≤ AdvcrH,B2

(λ).

Game G4: It is the same as G3, except that, at the beginning of the game, the
challenger picks (ρ0, tdρ0)←$ L0 besides (ρ, tdρ)←$ L , and for all the OEnc

queries, the challenger samples x∗ ←$ Lρ0 instead of x∗ ←$ Lρ.
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By the multi-fold SMP related to L and by the multi-fold SMP related to
L0, we can first change G3 to an intermediate game G3.5 where the challenger
samples x∗ ←$ X for all theOEnc queries, then further change G3.5 to G4. Overall,
we have the following claim.

Claim 8.
∣∣Pr3[Win]− Pr4[Win]

∣∣ ≤ Advmsmp
L ,B3,Qe

(λ) + Advmsmp
L0,B4,Qe

(λ).

The proof is similar to that for Claim 4 in the proof of Theorem 1, thus we omit it.

Game G5: It is the same as G4, except that, when answering ODec(i, c =
(x, d, π)), the challenger adds another new rejection rule:

• If x /∈ L̃ρ, return ⊥ directly.

Note that the challenger can use the trapdoor tdρ to check x /∈ L̃ρ efficiently.
Clearly, G4 and G5 are the same unless that A ever queries ODec(i, c =

(x, d, π )) s.t.

(i, c = (x, d, π )) /∈ QEnc ∧ VrfyNIZK(crs, τ, x, π) = 1 ∧ (τ, x, π) /∈ QSim ∧ x /∈ L̃ρ.

This event implies VrfyNIZK(crs, τ, x, π) = 1 ∧ (τ, x, π) /∈ QSim ∧ x /∈ L̃ρ. Thus by
the USS of QANIZK, we have the following claim.

Claim 9.
∣∣Pr4[Win]− Pr5[Win]

∣∣ ≤ AdvussQANIZK,B5
(λ).

We provide a formal proof for Claim 9 in Appendix C.1. A subtlety is that B5
obtains the language trapdoor tdρ from its own challenger, thus can use tdρ to

efficiently decide the membership of L̃ρ when answering ODec queries for A.

Game G6: It is the same as G5, except that, when answering OEnc(i
∗,m0,m1),

the challenger computes hv∗ via the prPub algorithm of prQAHPS by using the
projection key αρ0(ski∗) and a witness w∗ of x∗ ∈ Lρ0 :

• hv∗ ←$ prPub(αρ0(ski∗), x
∗, w∗).

Moreover, when answering ODec(i, c = (x, d, π)), the challenger computes τ :=
H(pki, d), checks whether (i, c) /∈ QEnc ∧ VrfyNIZK(crs, τ, x, π) = 1 ∧ (τ, x, π) /∈
QSim ∧ x ∈ L̃ρ holds, and returns ⊥ to A directly if the check fails. If the check

passes, the challenger uses brute force to find a witness w for x ∈ L̃ρ, and
computes hv′ via the prPub algorithm by using the projection key αρ(ski):

• hv′ ←$ prPub(αρ(ski), x, w),

and returns m := Decode(d− hv′) to A.
We note that the challenger in this game may not be PPT. This does not

matter, since the following arguments (before the challenger is changed back to
PPT) are statistical.

Below we show that G6 is statistically close to G5. For OEnc queries, since
w∗ is a witness for x∗ ∈ Lρ0 ⊆ L̃ρ0 , by the εevaInd-evaluation indistinguishabil-
ity of prQAHPS (cf. Definition 7), the hv∗ ←$ prPub(αρ0(ski∗), x

∗, w∗) in G6 is
statistically close to the hv∗ ←$ prPriv(ski∗ , x

∗) in G5, with statistical distance

48



at most εevaInd. Similarly, for ODec queries, since w is a witness for x ∈ L̃ρ, the
hv′ ←$ prPub(αρ(ski), x, w) in G6 is statistically close to the hv

′ ←$ prPriv(ski, x)
in G5, with statistical distance at most εevaInd. By a union bound over all OEnc

queries and all ODec queries, we have
∣∣Pr5[Win]−Pr6[Win]

∣∣ ≤ (Qe+Qd) ·εevaInd.

Game G7.η, 0 ≤ η ≤ N : It is the same as G6, except that, at the beginning of the
game, the challenger picks another sk′i ←$ SK besides ski for each user i ∈ [N ].
Moreover, when answering OEnc(i

∗,m0,m1) for users i∗ ≤ η, the challenger
switches ski∗ to the new secret key sk′i∗ in computing hv∗:

• hv∗ ←$ prPub(αρ0(sk
′
i∗), x

∗, w∗),

where w∗ is a witness of x∗ ∈ Lρ0 . The challenger still uses {ski}i∈[N ] to compute
the public keys for all users i ∈ [N ], to answer OEnc queries for users i∗ > η,
and to answer ODec and OCor queries for all users i ∈ [N ].

It is clearly that G7.0 is identical to G6, thus Pr6[Win] = Pr7.0[Win].
For each η ∈ [N ], note that the difference between G7.η−1 and G7.η lies in the

OEnc oracle for user η: in G7.η−1, OEnc computes hv∗ ←$ prPub(αρ0(skη), x
∗, w∗)

using skη, while in G7.η, OEnc computes hv∗ ←$ prPub(αρ0
(sk′η), x

∗, w∗) using

sk′η. By the ⟨L ,L0⟩-key-switching property of prQAHPS (cf. Definition 8), the

challenger can safely switch skη to sk′η when answering OEnc for user η, and we
have the following claim.

Claim 10. For each η ∈ [N ], |Pr7.η−1[Win]− Pr7.η[Win]| ≤ ϵ
⟨L,L0⟩-ks
prQAHPS,B7

.

We provide a formal proof for Claim 10 in Appendix C.2.

Game G8: It is the same as G7.N , except that, when answering OEnc(i
∗,m0,m1),

the challenger computes hv∗ via the prPriv algorithm of prQAHPS by using sk′i∗ ,
without using a witness w∗ of x∗ ∈ Lρ0 :

• hv∗ ←$ prPriv(sk′i∗ , x
∗).

Moreover, when answering ODec(i, c = (x, d, π)), the challenger computes τ :=
H(pki, d), checks whether (i, c) /∈ QEnc ∧ VrfyNIZK(crs, τ, x, π) = 1 ∧ (τ, x, π) /∈
QSim ∧ x ∈ L̃ρ holds, and returns ⊥ to A directly if the check fails. If the check
passes, the challenger does not use brute force anymore, but computes hv′ via
the prPriv algorithm of prQAHPS, without knowing a witness w for x ∈ L̃ρ:

• hv′ ←$ prPriv(ski, x),

and returns m := Decode(d− hv′) to A.
We note that the challenger in this game is now PPT again, since it can use

the language trapdoor tdρ to decide the membership of L̃ρ efficiently.
The change from G7.N to G8 is reverse to that from G5 to G6. By a similar

argument, we have
∣∣Pr7.N [Win]− Pr8[Win]

∣∣ ≤ (Qe +Qd) · εevaInd.

Game G9: It is the same as G8, except that, for all the OEnc queries, the chal-
lenger samples hv∗ ←$ HV uniformly, instead of computing hv∗ with {sk′i}i∈[N ].
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Note that the only place that G8 differs from G9 lies in the computations of
hv∗ in the OEnc oracle for all users i∗ ∈ [N ], where hv∗ ←$ prPriv(sk′i∗ , x

∗) in G8

while hv∗ ←$ HV in G9. Since {sk′i}i∈[N ] is used only in the computations of hv∗

in OEnc, and x∗ in OEnc are uniformly chosen from Lρ0
, by the L0-multi-key-

multi-extracting property of prQAHPS (cf. Definition 10), we have the following
claim.

Claim 11.
∣∣Pr8[Win]− Pr9[Win]

∣∣ ≤ AdvL0-mk-mext
prQAHPS,B6,N,Qe

(λ).

We provide a formal proof for Claim 11 in Appendix C.3.

Finally in G9, hv
∗ is uniformly chosen from HV and d∗ := hv∗+Encode(mβ),

thus the challenge bit β is completely hidden to A. Then Pr9[Win] = 1
2 .

Taking all things together, Theorem 2 follows. ⊓⊔

C.1 Proof of Claim 9

Claim 9.
∣∣Pr4[Win]− Pr5[Win]

∣∣ ≤ AdvussQANIZK,B5
(λ).

Proof. By Forge denote the event that A ever queries ODec(i, c = (x, d, π )) s.t.

(i, c = (x, d, π )) /∈ QEnc ∧ VrfyNIZK(crs, τ, x, π) = 1 ∧ (τ, x, π) /∈ QSim ∧ x /∈ L̃ρ.

G4 and G5 are the same until Forge occurs, so
∣∣Pr4[Win]−Pr5[Win]

∣∣ ≤ Pr5[Forge].
To bound Pr5[Forge], we construct an adversary B5 against the USS of tag-

based QANIZK (cf. Definition 19) for the gap language GLρ = (Lρ, L̃ρ) as follows.
B5 is given (ρ, tdρ, crs) and has access to the oracle OSim defined in Fig. 8 (cf.
Definition 19). B5 simulates G5 for A as follows.

• Firstly, B5 invokes ppHPS ←$ SetupHPS, samples H ←$ H, and sets ppPKE :=
(ρ, ppHPS, crs, H). Then for each user i ∈ [N ], B5 samples secret key ski ←$ SK
itself and computes the corresponding public key pki := αρ(ski). B5 also
picks (ρ0, tdρ0

) ←$ L0. B5 sends (ppPKE, {pki}i∈[N ]) to A.
• For an OEnc query (i∗,m0,m1) made by A, B5 samples x∗ ←$ Lρ0

, computes
hv∗ ←$ prPriv(ski∗ , x

∗), d∗ := hv∗ + Encode(mβ) and τ∗ := H(pki∗ , d
∗).

Then B5 sends (τ∗, x∗) to its own OSim oracle and obtains π∗, which is gen-
erated by OSim via π∗ ←$ Sim(crs, tdcrs, τ

∗, x∗). B5 returns c∗ := (x∗, d∗, π∗ )
to A, puts (i∗, c∗) to QEnc and puts (τ∗, x∗, π∗) to QSim.
• For an ODec query (i, c = (x, d, π)) made by A, B5 computes τ := H(pki, d),
checks whether (i, c) /∈ QEnc∧VrfyNIZK(crs, τ, x, π) = 1∧(τ, x, π) /∈ QSim, and
returns ⊥ to A if the check fails. Then B5 uses tdρ to further check whether

x ∈ L̃ρ. If x /∈ L̃ρ, B5 returns ⊥ toA, the same as G5, and sends (τ, x, π) to its

own challenger as its forgery. If x ∈ L̃ρ, B5 computes hv′ ←$ prPriv(ski, x),
and returns m := Decode(d− hv′) to A, the same as G5.
• B5 uses {ski}i∈[N ] to answer OCor queries for A, the same as G5.

It is clear to see that B5 simulates G5 perfectly for A, and B5 outputs a successful
forgery (τ, x, π) to its own challenger so that VrfyNIZK(crs, τ, x, π) = 1 ∧ (τ, x, π) /∈
QSim ∧ x /∈ L̃ρ as long as Forge occurs. Therefore, Pr5[Forge] ≤ AdvussQANIZK,B5

(λ)

and Claim 9 follows.
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C.2 Proof of Claim 10

Claim 10. For each η ∈ [N ], |Pr7.η−1[Win]− Pr7.η[Win]| ≤ ϵ
⟨L,L0⟩-ks
prQAHPS,B7

.

Proof. Note that the only difference between G7.η−1 and G7.η lies in the OEnc

oracle for user η: in G7.η−1, OEnc computes hv∗ ←$ prPub(αρ0
(skη), x

∗, w∗) using
skη, while in G7.η, OEnc computes hv∗ ←$ prPub(αρ0(sk

′
η), x

∗, w∗) using sk′η.
Let Corη denote the event that A corrupts user η, i.e., A ever queries OCor(η)

when (η, ·) /∈ QEnc and obtains skη. In the case that Corη occurs, η is appended
to QCor, thus A is not allowed to query OEnc(η,m0,m1) for user η, and G7.η−1
is identical to G7.η. Consequently,

|Pr7.η−1[Win]−Pr7.η[Win]| = |Pr7.η−1[Win∧¬Corη]−Pr7.η[Win∧¬Corη]|. (15)

To bound (15), we first analyze the information about skη (resp. skη and

sk′η ) that A may obtain in G7.η−1 (resp. G7.η ) in the case that ¬Corη occurs.

• Firstly, the public keys contain pkη = αρ(skη).
• In OEnc(η,m0,m1), due to the game change in G6, the behavior of OEnc for

user η is determined by αρ0
(skη) (resp. αρ0

(sk′η) ).

• In ODec(η, c), due to the game change in G6, the behavior of ODec for user
η is determined by αρ(skη).

• In the case that ¬Corη, A never queries OCor(η).

Overall, the information about skη (resp. skη and sk′η ) that A learns in G7.η−1

(resp. G7.η ) is limited in αρ(skη) and αρ0(skη) (resp. αρ0(sk
′
η) ).

Then we analyze (15). Intuitively, by the ⟨L ,L0⟩-key-switching property of

prQAHPS (cf. Definition 8), αρ0
(skη) is statistically close to αρ0

(sk′η) , even

in the presence of αρ(skη). Thus, the OEnc for user η in G7.η−1 (using skη) is

statistically close to that in G7.η (using sk′η ).

Formally, we build an (unbounded) adversary B7 against the ⟨L ,L0⟩-key-
switching property of prQAHPS. B7 is given a challenge (ppHPS, ρ, ρ0, αρ(sk), αρ0(sk))

(say b = 0) or (ppHPS, ρ, ρ0, αρ(sk), αρ0
(sk′) ) (say b = 1 ), where sk, sk′ ←$ SK

are chosen by its own challenger, and B7 wants to decide which case it is. To
this end, B7 will simulate G7.η−1 (or G7.η ) for A. B7 picks a challenge bit

β ←$ {0, 1}. Intuitively, B7 will implicitly set skη as sk and set sk′η as sk′ for

user η, where sk and sk′ are the hashing keys chosen by its own challenger, and
explicitly define the public key of user η as the αρ(sk) contained in its input. For
the remaining N − 1 users i ∈ [N ] \ {η}, B7 samples secret keys ski, sk

′
i itself,

thus can honestly answer OEnc queries (sampling x∗ from Lρ0
), ODec queries

(using brute force to decide the membership of L̃ρ and find witness) and OCor

queries made by A for these users. For user η, B7 can answer ODec queries using
the projection key αρ(sk) contained in its own input (since ODec will output ⊥
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unless x ∈ L̃ρ & B7 can decide the membership of L̃ρ and find witness using
brute force), and aborts immediately if A corrupts η. To answer OEnc queries
of user η, B7 samples x∗ from Lρ0

, and uses the projection key αρ0
(sk) (or

αρ0
(sk′) ) contained in its own challenge to compute hv∗. Finally, B7 receives

a bit β′ from A and returns 1 to its own challenger as the guessing of b if and
only if β′ = β and ¬Corη occurs (i.e., A never corrupts user η). Overall, B7
simulates G7.η−1 perfectly for A if b = 0 and ¬Corη occurs, and simulates G7.η

perfectly for A if b = 1 and ¬Corη occurs. Therefore, B7 successfully distin-
guishes b = 0 from b = 1 as long as the probability that β′ = β in G7.η−1 differs
non-negligibly from that in G7.η in the case ¬Corη, and consequently, we have

ϵ
⟨L,L0⟩-ks
prQAHPS,B7

≥ |Pr7.η−1[Win ∧ ¬Corη]− Pr7.η[Win ∧ ¬Corη]|.
The full description of B7 is as follows.

• B7 is given a challenge (ppHPS, ρ, ρ0, αρ(sk), p̃kb), where p̃k0 := αρ0
(sk) and

p̃k1 := αρ0(sk
′) with sk, sk′ ←$ SK are chosen by B7’s own challenger.

• Firstly, B7 invokes (crs, tdcrs)←$ SimGen(ρ), samplesH ←$ H, and sets ppPKE
:= (ρ, ppHPS, crs, H). B7 also samples (ρ0, tdρ0

) ←$ L0, and samples a chal-
lenge bit β ←$ {0, 1} for A.

For user η, B7 sets skη := sk and sk′η := sk′ implicitly and defines

pkη := αρ(sk) explicitly, where sk and sk′ are the hashing keys chosen by
B7’s own challenger and αρ(sk) is part of B7’s own input. For all other users
i ∈ [N ] \ {η}, B7 samples secret keys ski, sk

′
i ←$ SK itself and computes

pki := αρ(ski). B7 sends (ppPKE, {pki}i∈[N ]) to A.
• When answering an OEnc query (i∗,m0,m1) for user i

∗ ̸= η made by A, B7
computes a challenge ciphertext c∗ the same way as G7.η−1 and G7.η.

More precisely, B7 samples x∗ ←$ Lρ0
with witness w∗, computes hv∗ ←$

prPub(αρ0
(sk′i∗), x

∗, w∗) using sk′i∗ if i∗ < η and computes hv∗ ←$

prPub(αρ0
(ski∗), x

∗, w∗) using ski∗ if i∗ > η. Then B7 computes d∗ := hv∗+
Encode(mβ), τ

∗ := H(pki∗ , d
∗), invokes π∗ ←$ Sim(crs, tdcrs, τ

∗, x∗) and sets
c∗ := (x∗, d∗, π∗).
B7 returns c∗ to A, puts (i∗, c∗) to QEnc and puts (τ∗, x∗, π∗) to QSim.

• When answering an OEnc query (η,m0,m1) for user η made by A, B7 com-
putes a challenge ciphertext c∗ as follows.
B7 samples x∗ ←$ Lρ0

with witness w∗, and computes hv∗ ←$ prPub(p̃kb, x
∗, w∗)

using the projection key p̃kb contained in B7’s challenge. Then B7 computes
d∗ := hv∗ + Encode(mβ), τ

∗ := H(pkη, d
∗), π∗ ←$ Sim(crs, tdcrs, τ

∗, x∗) and
sets c∗ := (x∗, d∗, π∗).
B7 returns c∗ to A, puts (η, c∗) to QEnc and puts (τ∗, x∗, π∗) to QSim.

In the case b = 0, note that p̃k0 = αρ0(sk) and B7 implicitly sets skη := sk,

it follows that hv∗ ←$ prPub(p̃kb, x
∗, w∗) = prPub(αρ0

(skη), x
∗, w∗), thus B7

perfectly simulates G7.η−1 for A; in the case b = 1, note that p̃k1 = αρ0(sk
′)

and B7 implicitly sets sk′η := sk′ , it follows that hv∗ ←$ prPub(p̃kb, x
∗, w∗) =

prPub( αρ0
(sk′η) , x

∗, w∗), thus B7 perfectly simulates G7.η for A.
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• For an ODec query (i, c = (x, d, π)) made by A, B7 decrypts the same way
as G7.η−1 and G7.η.

More precisely, B7 computes τ := H(pki, d), checks whether (i, c) /∈ QEnc

∧VrfyNIZK(crs, τ, x, π) = 1 ∧ (τ, x, π) /∈ QSim, and returns ⊥ to A if the

check fails. Then B7 uses brute force to further decide whether x ∈ L̃ρ.

If x /∈ L̃ρ, B7 returns ⊥ to A. If x ∈ L̃ρ, B7 uses brute force to find a

witness w for x ∈ L̃ρ, computes hv′ ←$ prPub(αρ(ski), x, w) using ski if
i ̸= η and computes hv′ ←$ prPub(αρ(sk), x, w) using the projection key
αρ(sk) contained in its own input if i = η, and returns m := Decode(d−hv′)
to A.

• For an OCor query i made by A, if i ̸= η, B7 returns ski to A; if i = η, B7
aborts immediately.

• Finally, B7 receives a bit β′ from A, and outputs 1 to its own challenger as
the guessing of b if and only if β′ = β and A never corrupts η (i.e., ¬Corη).

It is clearly that B7 simulates oracles OEnc w.r.t. users i∗ ̸= η and ODec

perfectly for A, and simulates oracle OCor perfectly for A as well in the case
of ¬Corη. Moreover, B7’s simulation of oracle OEnc w.r.t. user η is the same as
G7.η−1 in the case b = 0 and the same as G7.η in the case b = 1. Overall, B7
simulates G7.η−1 perfectly for A in the case b = 0 and ¬Corη, and simulates G7.η

perfectly for A in the case b = 1 and ¬Corη. Therefore, we have

ϵ
⟨L,L0⟩-ks
prQAHPS,B7

= |Pr[B7 ⇒ 1|b = 0]− Pr[B7 ⇒ 1|b = 1]|
= |Pr[β′ = β ∧ ¬Corη|b = 0]− Pr[β′ = β ∧ ¬Corη|b = 1]|
= |Pr7.η−1[Win ∧ ¬Corη]− Pr7.η[Win ∧ ¬Corη]|.

(16)

Taking (15) and (16) together, Claim 10 follows.

C.3 Proof of Claim 11

Claim 11.
∣∣Pr8[Win]− Pr9[Win]

∣∣ ≤ AdvL0-mk-mext
prQAHPS,B6,N,Qe

(λ).

Proof. The only place that G8 differs from G9 lies inOEnc. For anOEnc(i
∗,m0,m1)

query, the challenger samples x∗ ←$ Lρ0
, and computes hv∗ ←$ prPriv(sk′i∗ , x

∗)
in G8 while samples hv∗ ←$ HV in G9.

Let us fix some notations. Let i∗j , x
∗
j , hv

∗
j denote the i∗, x∗, hv∗ in the j-th

OEnc query, respectively, where j ∈ [Qe]. The difference between G8 and G9 can
be characterized by the following two distributions:

• G8:
(
x∗j ←$ Lρ0

, hv∗j ←$ prPriv(sk′i∗j , x
∗
j )

)
j∈[Qe]

,

• G9:
(
x∗j ←$ Lρ0

, hv∗j ←$ HV
)
j∈[Qe]

.

Since {sk′i}i∈[N ] is used only in the computations of {hv∗j}j∈[Qe] in OEnc, and
{x∗j}j∈[Qe] in OEnc are uniformly chosen from Lρ0

, by the L0-multi-key-multi-
extracting property of prQAHPS (cf. Definition 10), the above two distributions
are computationally indistinguishable.
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Formally, we build an adversary B6 against the L0-multi-key-multi-extracting
property of prQAHPS by invokingA. B6 is given (ppHPS, ρ0, {xi,j , hvi,j}i∈[N ],j∈[Qe]),
where (ρ0, tdρ0

)←$ L0, sk
′
1, ..., sk

′
n ←$ SK, and x1,1, ..., xN,Qe

←$ Lρ0
. B6 aims

to decide whether hvi,j ←$ prPriv(sk′i, xi,j) for all i ∈ [N ] and j ∈ [Qe] (say
b = 0) or hv1,1, ..., hvN,Q ←$ HV (say b = 1). B6 will simulate G8 or G9 for A,
depending on the value of b.

• Firstly, B6 invokes (ρ, tdρ)←$ L , (crs, tdcrs) ←$ SimGen(ρ), samplesH ←$ H,
and sets ppPKE := (ρ, ppHPS, crs, H). Then for each user i ∈ [N ], B6 sam-
ples secret key ski ←$ SK itself and computes the corresponding public key
pki := αρ(ski). B6 sends (ppPKE, {pki}i∈[N ]) to A. B6 also picks a challenge
bit β ←$ {0, 1} for A.
• B6 has the secret keys ski of all users, thus can honestly answer ODec queries
(using tdρ to decide the membership of L̃ρ) and OCor queries made by A,
the same way as G8 and G9.
• As for OEnc queries, when answering the j-th (j ∈ [Qe]) OEnc query (i∗j ,m0,j ,
m1,j), B6 sets x∗j as the xi∗j ,j

in its own input, and sets hv∗j as the hvi∗j ,j in its

own input. Then B6 computes d∗j := hv∗j + Encode(mβ,j), τ
∗
j := H(pki∗j , d

∗
j )

and π∗j ←$ Sim(crs, tdcrs, τ
∗
j , x
∗
j ), without knowing a witness of x∗j . B6 returns

c∗j := (x∗j , d
∗
j , π
∗
j ) to A, puts (i∗j , c∗j ) to QEnc and puts (τ∗j , x

∗
j , π
∗
j ) to QSim.

In the case b = 0, hv∗j = hvi∗j ,j is generated by prPriv(sk′i∗j , xi∗j ,j
) =

prPriv(sk′i∗j , x
∗
j ), thus B6 perfectly simulates G8 for A; in the case b = 1,

hv∗j = hvi∗j ,j is uniformly random over HV, thus B6 perfectly simulates G9.

• Finally, B6 receives a bit β′ from A and returns 1 to its own challenger if
and only if β′ = β.

Overall, B6 simulates G8 for A in the case b = 0 and simulates G9 for A in
the case b = 1, thus B6 successfully distinguishes b = 0 from b = 1 as long
as the probability that β′ = β in G8 differs non-negligibly from that in G9.
Consequently, we have AdvL0-mk-mext

prQAHPS,B6,N,Qe
(λ) ≥

∣∣Pr8[Win]− Pr9[Win]
∣∣.

This completes the proof of Claim 11.

D Missing Details in Sect. 5 and Proof of Theorem 3
(Tighter Reduction from LWE to Multi-secret LWE)

In this section, we provide the missing details in Sect. 5, and in particular, the
formal proof of Theorem 3.

Before presenting the proof, we first specify some notations involved in this
section. For two distribution ensembles X,Y and a positive real number ϵ, we

use the notation “X
c
≈ Y with ϵ” to denote |Pr[D(X) = 1]− Pr[D(Y ) = 1]| ≤ ϵ

for all PPT distinguishers D. For a matrix M, we use σM to denote its spectral
norm.

The rest of this section is organized as follows. In Appendix D.1, we introduce
some definitions and lemmas need in our formal proof. Then in Appendix D.2,
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we present the formal proof of Theorem 3. Finally, in Appendix D.3, we extend
Theorem 3 to Theorem 10, which addresses the almost tight reduction from LWE
to Multi-secret LWE for arbitrary modulus instead of just the prime modulus.

D.1 Additional Backgrounds on Lattices

Firstly, we recall the definition of “Lossy Sampler”.

Definition 23 (Lossy Sampler [2, Definition 3.1]). Let λ be the security
parameter, n,m, ℓ, q be integers (functions of λ), and χ = χ(λ) be a distribution
over Zq. We define the following efficient lossy sampler Ã←$ Lossy(1n, 1m, 1ℓ, q, χ)

as: Sample B←$ Zℓ×m
q , C←$ Zn×ℓ

q , F ←$ χn×m and output Ã = C ·B+ F.

The following lemma shows that the output of lossy sampler is computation-
ally indistinguishable from random matrix.

Lemma 10 ([2]). Let A ←$ Zn×m
q , and let Ã ←$ Lossy(1n, 1m, 1ℓ, q, χ). Then,

we have: A
c
≈ Ã with Advn-LWE

[ℓ,q,χ,m](λ).

The following lemma shows the decomposition of continuous Gaussian vector.

Lemma 11 ([15, Proposition 3.2]). Let F ∈ Zn×m be an arbitrary matrix
with spectral norm σF. Let σ0, σ1 > 0 be s.t. σ0 > σ1 ·σF . Let e⊤1 ←$ Dn

σ1
and let

e2 ←$ D√Σ for Σ = σ0
2I−σ1

2F⊤F. Then the random variable e⊤ = e⊤1 F+ e⊤2
is distributed according to Dm

σ0
.

With the results above, we can derive the following conditional min-entropy
lower bound. The proof is similar to that of [15].

Lemma 12. Let n,m, ℓ, q be positive integers. Let s ←$ Zn
q , Ã←$ Lossy(1n, 1m,

1ℓ, q,DZ,γ), e1 ←$ Dn
σ1
, and e←$ Dm

σ0
such that σ0 > γ · C ·

√
m · σ1, where C

is the global constant from Lemma 7. Then we have:

H̃∞(s | (Ã, s⊤ · Ã+ e⊤)) ≥ H̃∞(s| s+ e1)− ℓ · log q.

Proof. The proof is similar to that of [15, Theorem 4.1]. According to Definition
23, we know Ã = C ·B+ F, and hence s⊤ · Ã+ e⊤ = s⊤ ·C ·B+ s⊤F+ e⊤.

Furthermore, by Lemma 11, we know e⊤ = e⊤1 F+ e⊤2 , so

s⊤ ·C ·B+ s⊤F+ e⊤ = s⊤ ·C ·B+ s⊤F+ e⊤1 F+ e⊤2 = s⊤ ·C ·B+ (s⊤ + e⊤1 )F+ e⊤2 .

Note that Ã and s⊤ · Ã+e⊤ can be reconstructed completely given C,B,F, s⊤ ·
C, s + e1, e2. Together with the fact that s⊤ · C leaks at most ℓ log q bits of
information about s, by Lemma 1, we have

H̃∞(s | (Ã, s⊤ · Ã+ e⊤)) ≥H̃∞(s | (C,B,F, s⊤ ·C, s+ e1, e2))

=H̃∞(s | (s⊤ ·C, s+ e1)) ≥ H̃∞(s | s+ e1)− ℓ · log q. ⊓⊔

The following lemma states the lower bound of the so-called “noise lossiness”
of uniformly random vectors.
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Lemma 13 ([15, Lemma 5.2]). Let n be an integer, let q be a modulus and

σ1 be a parameter for a Gaussian. Assume that q
σ1
≥

√
ln(4n)

π . Let s ←$ Zn
q and

e1 ←$ Dn
σ1
. Then it holds that H̃∞(s | s+ e1) ≥ n · log(σ1)− 1.

D.2 Proof of Theorem 3

Now we recall Theorem 3 and present its formal proof.

Theorem 3 (LWE ⇒ Multi-secret LWE with Prime Modulus) Let
n,m, ℓ, q ∈ N, and q be a prime. Let σ, σ0, σ1, r, γ > 0 such that σ =

√
σ0

2 + r2,

σ0 > γ·C ·
√
m·σ1,

q
σ1
≥

√
ln(4n)

π and r ≥
√
λ, where C is the global constant from

Lemma 7. For any adversary A, there exists an adversary B, such that T(B) ≈
T(A)+Q ·poly(λ) with poly(λ) independent of T(A), and AdvQ-LWE

[n,q,DZ,σ,m],A(λ) ≤
2cn · AdvLWE

[ℓ,q,DZ,γ ,m],B(λ) +
Q(m+c+1)

2λ
, where c is an integer such that m′ = ⌊mc ⌋

and n ≥ (m′ log q + ℓ log q + 2λ+ 1)/ log(σ1).

Proof of Theorem 3. We will use the multi-secret LWE with continuous
Gaussian Dσ0 defined in Definition 12 as an intermediate assumption, and show
that there exists an adversary B′ such that T(B) ≈ T(B′) + Q · poly′(λ) ≈
T(A) +Q · poly(λ) and

AdvQ-LWE
[n,q,DZ,σ,m],A(λ) ≤ AdvQ-LWE

[n,q,Dσ0
,m],B′(λ) +

Qm
2λ

, (9)

AdvQ-LWE
[n,q,Dσ0 ,m],B′(λ) ≤ 2cn · AdvLWE

[ℓ,q,DZ,γ ,m],B(λ) +
Q(c+1)

2λ
. (10)

Then Theorem 3 follows directly from (9) and (10).
We already proved (9) in proof sketch in Sect. 5. It remains to show (10).

Below we present the formal proof of (10). Our target is to prove that the
Q-LWEn,q,Dσ0

,m-assumption holds, i.e.,(
A, s⊤1 ·A+ e⊤1 , . . . , s

⊤
Q ·A+ e⊤Q

) c
≈

(
A,u⊤1 + e⊤1 , . . . ,u

⊤
Q + e⊤Q

)
, (17)

based on the the LWEℓ,q,DZ,γ ,m-assumption. Here s1, · · · , sQ and u1, · · · ,uQ are
independent and uniformly random in Zn

q and Zm
q respectively, and e1, · · · , eQ

are independently sampled from Dm
σ0
.

Given the matrix A ←$ Zn×m
q in (17), we can parse A = (A1, . . . ,Ac+1) ,

where Aj ∈ Zn×m1
q for 1 ≤ j ≤ c, and Ac+1 ∈ Zn×m2

q with m1 = ⌊mc ⌋ and
m2 = m− c⌊mc ⌋. Then the left part of (17) can be rewritten as(

A, s⊤1 ·A+ e⊤1 , . . . , s
⊤
Q ·A+ e⊤Q

)
=

(
{Aj}j∈[c+1], {s⊤i ·Aj + e⊤i,j}i∈[Q],j∈[c+1]

)
=
(
A1, {s⊤i ·A1 + e⊤i,1}i∈[Q], . . . ,Ac+1, {s⊤i ·Ac+1 + e⊤i,c+1}i∈[Q]

)
,

(18)

where ei,j ←$ Dm1
σ0

for 1 ≤ j ≤ c and ei,c+1 ←$ Dm2
σ0

.
Then, we will use the standard hybrid argument to prove (17). According to

(18), the related hybrids are defined as follows.
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– H0:
(
A1, {s⊤i ·A1 + e⊤i,1}i∈[Q], . . . ,Ac+1, {s⊤i ·Ac+1 + e⊤i,c+1}i∈[Q]

)
.

– Hz for 1 ≤ z ≤ c:(
{Ai}i∈[z], {u⊤

i,j + e⊤
i,j}i∈[Q],j∈[z] , {Aj}(z+1)≤j≤c, {s⊤i ·Aj + e⊤

i,j}i∈[Q],(z+1)≤j≤c,

Ac+1, {s⊤i ·Ac+1 + e⊤
i,c+1}i∈[Q]

)
,

where ui,j ←$ Zm1
q for i ∈ [Q], j ∈ [z].

– Hc+1:
(
{Ai}i∈[c+1], {u⊤i,j + e⊤i,j}i∈[Q],j∈[c+1]

)
.

Therefore, we have that

AdvQ-LWE
[n,q,Dσ0

,m],B′(λ) =
∣∣Pr[B′(H0) = 1]− Pr[B′(Hc+1) = 1]

∣∣
≤

c+1∑
z=1

∣∣Pr[B′(Hz−1) = 1]− Pr[B′(Hz) = 1]
∣∣. (19)

Next, we use the following two claims to show the indistinguishability of these
neighboring hybrids.

Claim 12. For each 1 ≤ z ≤ c, we have
∣∣Pr[B′(Hz−1) = 1]− Pr[B′(Hz) = 1]

∣∣ ≤
2n · AdvLWE

[ℓ,q,DZ,γ ,m],B(λ) + Q · 2−λ for an adversary B against the LWEℓ,q,DZ,γ ,m

assumption with T(B) ≈ T(B′) +Q · poly′(λ) ≈ T(A) +Q · poly(λ).

Proof. For 1 ≤ z ≤ c, letm′z = m−zm1,A
′
z = (Az+1, . . . ,Ac+1) ∈ Zn×m′

z
q , e′i,z =

(ei,z+1, . . . , ei,c+1) ∈ D
m′

z
σ0 . Then we can parse A = (A1, . . . ,Az−1,Az,A

′
z). In

this case, we can re-write hybrids Hz−1 and Hz in the following way:

Hz−1 :
(
{Ai}i∈[z−1], {u⊤

i,j + e⊤
i,j}i∈[Q],j∈[z−1], Az, {s⊤i ·Az + e⊤

i,z}i∈[Q] ,A
′
z,

{s⊤i ·A′
z + e′⊤

i,z}i∈[Q]

)
,

(20)

Hz :
(
{Ai}i∈[z−1], {u⊤

i,j + e⊤
i,j}i∈[Q],j∈[z−1], Az, {u⊤

i,z + e⊤
i,z}i∈[Q] ,A

′
z,

{s⊤i ·A′
z + e′⊤

i,z}i∈[Q]

)
,

(21)

where ui,z ←$ Zm1
q for i ∈ [Q]. Hence, the target of this claim is to prove that

(20) and (21) are computationally indistinguishable.

To do this, we take n,m′z, ℓ, q,DZ,γ as input and run lossy sampler Lossy(1n, 1m
′
z ,

1ℓ, q,DZ,γ) to get Ã
′
z = C·B+F, whereB←$ Zℓ×m′

z
q ,C←$ Zn×ℓ

q , F ←$ D
n×m′

z

Z,γ .

According to Lemma 10, we have A′z
c
≈ Ã′z with Advn-LWE

[ℓ,q,DZ,γ ,m′
z ]
(λ). For (20), we

have: (
{{Ai}i∈[z−1], {u⊤

i,j + e⊤
i,j}i∈[Q],j∈[z−1],Az, {s⊤i ·Az + e⊤

i,z}i∈[Q],

A′
z, {s⊤i ·A′

z + e′⊤
i,z}i∈[Q]

)
c
≈
(
{Ai}i∈[z−1], {u⊤

i,j + e⊤
i,j}i∈[Q],j∈[z−1],Az, {s⊤i ·Az + e⊤

i,z}i∈[Q],

Ã′
z, {s⊤i · Ã′

z + e′⊤
i,z}i∈[Q]

)
,

(22)
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with Advn-LWE
[ℓ,q,DZ,γ ,m′

z ]
(λ).

Then, according to Lemma 12, Lemma 13 and our parameter setting as the
theorem statement, it holds

H̃∞(si | (Ã′z, s⊤i · Ã′z + e′⊤i,z)) ≥ H̃∞(si | si + ei,1)− ℓ · log q
≥ n log(σ1)− ℓ · log q − 1

≥ m1 log q + 2λ.

(23)

Moreover, by Lemma 2 and (23), for every i ∈ [Q] and ui,z ←$ Zm1
q , we have

∆
((
Az, s

⊤
i ·Az

)
,
(
Az,u

⊤
i,z

))
≤ 2−λ. (24)

In this case, through putting all i ∈ [Q] in (24) together, we have

∆
(
({Ai}i∈[z−1], {u⊤

i,j + e⊤
i,j}i∈[Q],j∈[z−1], Az, {s⊤i ·Az + e⊤

i,z}i∈[Q] , Ã
′
z,

{s⊤i · Ã′
z + e′⊤

i,z}i∈[Q]), ({Ai}i∈[z−1], {u⊤
i,j + e⊤

i,j}i∈[Q],j∈[z−1],

Az, {u⊤
i,z + e⊤

i,z}i∈[Q] , Ã
′
z, {s⊤i · Ã′

z + e′⊤
i,z}i∈[Q])

)
≤ Q · 2−λ,

(25)

since every {si}i∈[Q] is sampled independently, and {Ai}i∈[z−1] and Ã′z are in-
dependent of Az.

Then, similar to (22), we can use Lemma 10 again to change Ã′z back to A′z.
Hence, it holds that(

{Ai}i∈[z−1], {u⊤
i,j + e⊤

i,j}i∈[Q],j∈[z−1],Az, {u⊤
i,z + e⊤

i,z}i∈[Q],

Ã′
z, {s⊤i · Ã′

z + e′⊤
i,z}i∈[Q]

)
c
≈
(
{Ai}i∈[z−1], {u⊤

i,j + e⊤
i,j}i∈[Q],j∈[z−1],Az, {u⊤

i,z + e⊤
i,z}i∈[Q],

A′
z, {s⊤i ·A′

z + e′⊤
i,z}i∈[Q]

)
,

(26)

with Advn-LWE
[ℓ,q,DZ,γ ,m′

z ]
(λ).

Finally, through combining (20), (21) (22), (25) and (26) together, we get:

Hz−1
c
≈ Hz,

with

2 · Advn-LWE
[ℓ,q,DZ,γ ,m′

z ]
(λ) +Q · 2−λ ≤ 2 · Advn-LWE

[ℓ,q,DZ,γ ,m](λ) +Q · 2−λ

≤ 2n · AdvLWE
[ℓ,q,DZ,γ ,m](λ) +Q · 2−λ,

where the last inequality follows from a simple hybrid argument. More specifi-
cally, we can construct an adversary B, such that

∣∣Pr[B′(Hz−1) = 1]−Pr[B′(Hz) =

1]
∣∣ ≤ 2n ·AdvLWE

[ℓ,q,DZ,γ ,m],B(λ) +Q · 2−λ. This completes the proof of the claim.
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Claim 13. Hc and Hc+1 are statistically indistinguishable. More specifically, the
statistical distance between Hc and Hc+1 is at most Q · 2−λ.
Proof. The difference between Hc and Hc+1 can be noticed more clearly from
the following descriptions:

Hc :

(
{Ai}i∈[c], {u⊤

i,j + e⊤
i,j}i∈[Q],j∈[c], Ac+1, {s⊤i ·Ac+1 + e⊤

i,c+1}i∈[Q]

)
,

Hc+1 :

(
{Ai}i∈[c], {u⊤

i,j + e⊤
i,j}i∈[Q],j∈[c], Ac+1, {u⊤

i,c+1 + e⊤
i,c+1}i∈[Q]

)
.

In this case, it suffices to prove the statistical distance between (Ac+1, s
⊤
i ·Ac+1)

and (Ac+1,u
⊤
i,c+1) is negligible in λ, i.e.,

∆
((
Ac+1, s

⊤
i ·Ac+1 + ei

)
,
(
Ac+1,u

⊤
i,c+1

))
≤ 2−λ, (27)

for all i ∈ [Q], since every {si}i∈[Q] is sampled independently, and {Ai}i∈[c] are
independent of Ac+1. Furthermore, according to Lemma 2 and the lower bound

on min-entropy H̃∞(si) from the theorem statement, (27) clearly holds. As a
result, this claim follows.

Now, by plugging Claim 12 and Claim 13 into (19), (10) is clearly set up.
Finally, taking (9) and (10) together, Theorem 3 holds. ⊓⊔

D.3 Almost Tight Reduction for Arbitrary Modulus

Similar to Theorem 3, we have the following theorem that addresses the almost
tight reduction from LWE to Multi-secret LWE for arbitrary modulus.

Theorem 10 (LWE ⇒ Multi-secret LWE with Arbitrary Modulus).
Let n,m, ℓ, q ∈ N. Let σ, σ0, σ1, r, γ > 0 such that σ =

√
σ0

2 + r2, σ0 > γ ·
C ·
√
m · σ1,

q
σ1
≥

√
ln(4n)

π and r ≥
√
λ, where C is the global constant from

Lemma 7. For any adversary A, there exists an adversary B, such that T(B) ≈
T(A)+Q ·poly(λ) with poly(λ) independent of T(A), and AdvQ-LWE

[n,q,DZ,σ,m],A(λ) ≤
2cn · AdvLWE

[ℓ,q,DZ,γ ,m],B(λ) +
Q(m+c+1)

2λ
, where c is an integer such that m′ = ⌊mc ⌋

and n ≥ (2m′ log q + ℓ log q + 2λ+ 1)/ log(pσ1

q ) for any q’s prime factor p.

The proof of Theorem 10 is almost identical to that of Theorem 3, except
that in all places where we use (the first result of) Lemma 2 in the prime mod-
ulus setting, we now use the second result of Lemma 2 to deal with composite
modulus.

E Missing Proofs in Subsect. 6.2 (Probabilistic QA-HPS
from LWE)

E.1 Proof of Theorem 4 (Approximate Correctness & Evaluation
Indistinguishability of prQAHPSLWE)

First, we show the approximate correctness for instances in Lρ = LA. Note that
for any sk = k ∈ {0, 1}m, pkρ = p = Ak and c = (s⊤A + e⊤)⊤ ∈ LA with
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witness wc = (s, e ∈ [−B,B]m), we have

prPub(pkρ, c, wc)− Λsk(c) = s⊤(Ak) + e′ − (s⊤A+ e⊤)k = e′ − e⊤k,

prPriv(sk, c)− Λsk(c) = c⊤k+ e′ − c⊤k = e′,

where e′ ←$ [−B′, B′]. Since |e′| ≤ B′, ∥e∥∞ ≤ B and ∥k∥∞ ≤ 1, it follows that
|e′ − e⊤k| ≤ B′ + mB. Thus, prPub(pkρ, c, wc) always lies in BallεprPub

(
Λsk(c)

)
with εprPub = B′ +mB and prPriv(sk, c) lies in BallεprPriv

(
Λsk(c)

)
with εprPriv = B′.

Next, we evaluate the statistical distance between the probabilistic public
evaluation and private evaluation for instances in L̃ρ = L̃A. For any (fixed)

sk = k ∈ {0, 1}m, pkρ = p = Ak and c = (s⊤A + e⊤)⊤ ∈ L̃A with witness

wc = (s, e ∈ [−B̃, B̃]m), we have

∆(prPub(pkρ, c, wc), prPriv(sk, c)) = ∆(s⊤(Ak) + e′, (s⊤A+ e⊤)k+ e′)

(∗)
= ∆(���

s⊤Ak+ e′, ���
s⊤Ak+ e⊤k+ e′)

(∗∗)
≤ mB̃/B′,

where the probability is over e′ ←$ [−B′, B′]. Here (∗) holds since s⊤Ak is a
common constant, and (∗∗) follows from the fact that |e⊤k| ≤ mB̃ (due to
∥e∥∞ ≤ B̃ and ∥k∥∞ ≤ 1) and Lemma 6 (the Smudging Lemma). Therefore,

prQAHPSLWE has εevaInd-evaluation indistinguishability with εevaInd = mB̃/B′. ⊓⊔

E.2 Proof of Theorem 5 (⟨L ,L0⟩-Key-Switching of prQAHPSLWE)

For any adversary A, we aim to prove ϵ
⟨L,L0⟩-ks
prQAHPS,A :=∣∣Pr[A(ppHPS, ρ = A, ρ0 = A0, αρ(sk) = Ak, αρ0

(sk) = A0k ) = 1]

−Pr[A(ppHPS, ρ = A, ρ0 = A0, αρ(sk) = Ak, αρ0
(sk′) = A0k

′ ) = 1]
∣∣ ≤ 2−λ.

(28)

where (A,TA)←$ L , (A0,TA0)←$ L0, sk = k ←$ {0, 1}m, sk′ = k′ ←$ {0, 1}m.
Let p be any prime factor of q. Since k and k′ are chosen uniformly at random

from {0, 1}m, we have H̃∞(k mod p) = H̃∞(k′ mod p) = m. Note that Ak ∈ Zn
q

leaks at most n log q bits of information about k, but leaks nothing about k′.
Thus, according to Lemma 1, we have

H̃∞(k mod p |Ak) ≥ m− n log q, H̃∞(k′ mod p |Ak) = m.

According to Lemma 2, we know that uniform matrix A0 is a good extractor.
Concretely, by applying Lemma 2 with ϵ = 2−(λ+1) and by the condition m >
3n log q + 2(λ+ 1), we have

∆((A0,A0k), (A0,u) |Ak) ≤ 2−(λ+1), ∆((A0,A0k
′), (A0,u) |Ak) ≤ 2−(λ+1),

where u is uniformly chosen from Zn
q . Then by the triangle inequality, we have

∆((A0, A0k ), (A0, A0k
′ ) | Ak) ≤ 2−λ. (29)

Finally, (28) follows from (29) by noting that A is independent of A0, k, k
′. ⊓⊔
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E.3 Proof of Theorem 6 (PK-Diversity of prQAHPSLWE)

For (ρ = A, tdρ = TA) ←$ L , k,k′ ←$ {0, 1}m, we have

ϵpk-divprQAHPS : = Pr[αρ(sk) = Ak = Ak′ = αρ(sk
′)]

≤ Pr[k′ = k] + Pr[Ak = Ak′ | k′ ̸= k] = 2−m + q−n,

where the last equality is explained below.

• The uniformity of k and k′ over {0, 1}m implies that Pr[k′ = k] = 2−m.

• Parse A = (a1,a2, . . . ,am) with each ai ∈ Zn
q , and parse (k − k′) =

(b1, b2, . . . , bm)⊤ ∈ {−1, 0, 1}m. Note that the condition k′ ̸= k means bj ∈
{−1, 1} for some j ∈ [m], and the event Ak = Ak′ means

∑m
i=1 bi · ai = 0.

By the uniformity of aj over Zn
q and by the condition that bj ∈ {−1, 1}, it

follows that
∑m

i=1 bi ·ai = bj ·aj+
∑m

i=1,i̸=j bi ·ai is uniformly distributed over

Zn
q . Thus, the probability that

∑m
i=1 bi · ai = 0 conditioned on bj ∈ {−1, 1}

is exactly q−n, and consequently, we get Pr[Ak = Ak′ | k′ ̸= k] = q−n. ⊓⊔

E.4 Proof of Theorem 7 (Almost Tight L0-Multi-Key-Multi-
Extracting of prQAHPSLWE)

We prove the theorem by defining a sequence of distributions D0–D5 and showing
adjacent distributions indistinguishable.

Let ppHPS ←$ SetupHPS, (ρ0 = A0, tdρ0 = TA0)←$ L0, ski = ki ←$ {0, 1}m
for all i ∈ [N ], and ci,j ←$ Lρ0 with c⊤i,j = s⊤i,jA0+e⊤i,j for all i ∈ [N ] and j ∈ [Q].
The distributions are defined as follows, where the differences are highlighted.

• D0 := (ppHPS,A0, {ci,j , hvi,j = prPriv(ski, ci,j) = (s⊤i,jA0 + e⊤i,j)ki + e′i,j }i∈[N ],j∈[Q]),

where e′i,j ←$ [−B′, B′] for all i ∈ [N ], j ∈ [Q].

• D1 := (ppHPS,A0, {ci,j , hvi,j = s⊤i,jA0ki +�
��e⊤i,jki + e′i,j}i∈[N ],j∈[Q]).

• D2 := (ppHPS,A0, {ci,j , hvi,j = s⊤i,jA0ki + ẽi,j + e′i,j}i∈[N ],j∈[Q]),

where ẽi,j ←$ χ for all i ∈ [N ], j ∈ [Q].

• D3 := (ppHPS,A0, {ci,j , hvi,j = s⊤i,j bi + ẽi,j + e′i,j}i∈[N ],j∈[Q]),

where bi ←$ Zn
q for all i ∈ [N ].

• D4 := (ppHPS,A0, { ci,j ←$ Zm
q , hvi,j ←$ Zq }i∈[N ],j∈[Q]).

• D5 := (ppHPS,A0, { ci,j ←$ Lρ0 , hvi,j ←$ Zq }i∈[N ],j∈[Q]).

By definition, AdvL0-mk-mext
prQAHPS,A,n,Q(λ) =

∣∣Pr[A(D0) = 1]− Pr[A(D5) = 1]
∣∣.

We prove adjacent distributions indistinguishable via the following claims.

Claim 14.
∣∣Pr[A(D0) = 1]− Pr[A(D1) = 1]

∣∣ ≤ ∆(D0,D1) ≤ NQ ·mB/B′.
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Proof. Let us first fix all random variables except e′i,j ←$ [−B′, B′] for all i ∈
[N ], j ∈ [Q], and analyze ∆(D0,D1):

∆(D0,D1) = ∆({e⊤i,jki + e′i,j}i∈[N ],j∈[Q], {e′i,j}i∈[N ],j∈[Q]) (30)

≤
∑

i∈[N ],j∈[Q] ∆(e⊤i,jki + e′i,j , e′i,j) (31)

≤ NQ ·mB/B′, (32)

where (30) holds since all other terms in D0 and D1 are fixed values and are iden-
tical in D0 and D1, (31) follows from a hybrid argument, and (32) follows from the
fact that |e⊤i,jki| ≤ mB (due to ∥ei,j∥∞ ≤ B and ∥ki∥∞ ≤ 1), e′i,j ←$ [−B′, B′]
and Lemma 6 (the Smudging Lemma).

Then by an averaging argument over all random variables, we still have
∆(D0,D1) ≤ NQ ·mB/B′.

Claim 15.
∣∣Pr[A(D1) = 1]− Pr[A(D2) = 1]

∣∣ ≤ ∆(D1,D2) ≤ NQ ·B/B′.

Proof. The proof is similar to that of Claim 14. Firstly, let us fix all random
variables except e′i,j ←$ [−B′, B′] for all i ∈ [N ], j ∈ [Q] and analyze ∆(D1,D2):

∆(D1,D2) = ∆({e′i,j}i∈[N ],j∈[Q], { ẽi,j + e′i,j}i∈[N ],j∈[Q])

≤
∑

i∈[N ],j∈[Q] ∆(e′i,j , ẽi,j + e′i,j) ≤ NQ ·B/B′,

which follows from similar arguments as those in the proof of Claim 14 (with
one difference that |ẽi,j | ≤ B for any fixed ẽi,j ←$ χ).

Then Claim 15 follows from an averaging argument.

Claim 16.
∣∣Pr[A(D2) = 1]− Pr[A(D3) = 1]

∣∣ ≤ ∆(D2,D3) ≤ N · 2−λ.

Proof. Let p be any prime factor of q. Since each ki is chosen uniformly at
random from {0, 1}m, we have H̃∞(ki mod p) = m > 2n log q + 2λ. According
to Lemma 2, uniform matrix A0 is a good extractor. Then it follows that

∆(D2,D3) ≤ ∆((A0, {A0ki}i∈[N ]), (A0, { bi }i∈[N ])) (33)

≤
∑

i∈[N ] ∆((A0,A0ki), (A0, bi )) (34)

≤ N · 2−λ, (35)

where (33) holds since D2 (resp., D3) can be constructed from (A0, {A0ki}i∈[N ])

(resp., (A0, { bi }i∈[N ])) along with {s⊤i,j , e⊤i,j , ẽi,j , e′i,j}i∈[N ],j∈[Q], (34) follows

from a hybrid argument, and (35) holds by applying Lemma 2 with ϵ = 2−λ.

Claim 17.
∣∣Pr[A(D3) = 1] − Pr[A(D4) = 1]

∣∣ ≤ 2cn · AdvLWE
[ℓ,q,DZ,γ ,m],B1

(λ) +
NQ(m+c+2)

2λ
.
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Proof. In D3, for all i ∈ [N ] and j ∈ [Q], we have c⊤i,j = s⊤i,jA0 + e⊤i,j and

hvi,j = s⊤i,jbi + ẽi,j + e′i,j . For the ease of our analysis, for each i ∈ [N ], we use
the following notations:

Ci :=


c⊤i,1
c⊤i,2
...

c⊤i,Q

 ∈ ZQ×m
q , Si :=


s⊤i,1
s⊤i,2
...

s⊤i,Q

 ∈ ZQ×n
q , Ei :=


e⊤i,1
e⊤i,2
...

e⊤i,Q

 ∈ ZQ×m
q ,

hvi :=


hvi,1
hvi,2
...

hvi,Q

 ∈ ZQ
q , ẽi :=


ẽi,1
ẽi,2
...

ẽi,Q

 ∈ ZQ
q , e′i :=


e′i,1
e′i,2
...

e′i,Q

 ∈ ZQ
q .

Then for all i ∈ [N ], we have Ci = SiA0 +Ei and hvi = Sibi + ẽi + e′i, i.e.,

(hvi|Ci) = Si(bi|A0) + (ẽi|Ei) + (e′i|0),

where Si ←$ ZQ×n
q , bi ←$ Zn

q , Ei ←$ χQ×m, ẽi ←$ χQ and e′i ←$ [−B′, B′]Q.
In D4, for all i ∈ [N ] and j ∈ [Q], we have ci,j ←$ Zm

q and hvi,j ←$ Zq. By
using the above notations, for all i ∈ [N ], we have

(hvi|Ci)←$ ZQ×(m+1)
q .

Therefore, it suffices to show

D3 : (A0, {Si(bi|A0) + (ẽi|Ei)}i∈[N ])
c
≈ D4 : (A0, { Ui }i∈[N ]),

(36)

whereA0 ←$ Zn×m
q , and Si ←$ ZQ×n

q , bi ←$ Zn
q , (ẽi|Ei)←$ χQ×(m+1) = D

Q×(m+1)
Z,σ

and Ui ←$ ZQ×(m+1)
q for each i ∈ [N ]. We will prove (36) based on the

LWEℓ,q,DZ,γ ,m-assumption.
Firstly, we note that if all bi’s are the same, i.e., b1 = b2 = · · · = bN ←$ Zn

q ,
then the problem of distinguishing (36) is just the (NQ)-LWEn,q,χ,m+1 problem.
Since we set χ = DZ,σ, by the almost tight reduction from LWE to multi-
secret LWE (Theorem 3), we know that

∣∣Pr[A(D3) = 1] − Pr[A(D4) = 1]
∣∣ ≤

AdvNQ-LWE
[n,q,χ,m+1],B′

1
(λ) ≤ 2cn ·AdvLWE

[ℓ,q,DZ,γ ,m],B1
(λ) + NQ(m+c+2)

2λ
, and Claim 17 fol-

lows.
However, b1, · · · ,bN in (36) are independently chosen, so the problem of

distinguishing (36) is not exactly the same as (but very close to) the (NQ)-
LWEn,q,χ,m+1 problem. Nevertheless, for the problem of distinguishing (36), we
can basically use the same techniques as in the proof of Theorem 3 to show that∣∣Pr[A(D3) = 1] − Pr[A(D4) = 1]

∣∣ ≤ 2cn · AdvLWE
[ℓ,q,DZ,γ ,m],B1

(λ) + NQ(m+c+2)
2λ

.
Below we give a proof sketch.
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Similar to the proof of Theorem 3 , we first introduce an intermediate problem
of distinguishing the following D′3 and D′4 with errors sampled according to the
continuous Gaussian Dσ0

(recall that σ =
√
σ0

2 + r2 for r ≥
√
λ):

D′3 : (A0, {Si(bi|A0) + (ẽi|Ei)}i∈[N ])
c
≈ D′4 : (A0, { Ui + (ẽi|Ei)}i∈[N ]),

(37)

where A0 ←$ Zn×m
q , and Si ←$ ZQ×n

q , bi ←$ Zn
q , (ẽi|Ei)←$ D

Q×(m+1)
σ0 and

Ui ←$ ZQ×(m+1)
q for each i ∈ [N ]. Then we will prove the claim by showing

that there exists an adversary B′1 such that T(B1) ≈ T(B′1) + NQ · poly′(λ) ≈
T(A) +NQ · poly(λ) and∣∣Pr[A(D3) = 1]− Pr[A(D4) = 1]

∣∣ ≤ ∣∣Pr[B′1(D′3) = 1]− Pr[B′1(D
′
4) = 1]

∣∣+ NQm
2λ

,

(38)∣∣Pr[B′1(D′3) = 1]− Pr[B′1(D
′
4) = 1]

∣∣ ≤ 2cn · AdvLWE
[ℓ,q,DZ,γ ,m],B1

(λ) + NQ(c+2)
2λ

. (39)

The proof of (38) is almost identical to that of (9) in the proof of Theorem 3,
by using the randomized rounding technique due to Peikert [42] (i.e., Lemma 8),
thus we omit it here.

Next we turn to the proof of (39). That is, we aim to prove (37) based on
the LWEℓ,q,DZ,γ ,m-assumption, and determine the security loss factor. Its proof
is almost identical to that of (10) in the proof of Theorem 3, with only the first
step being slightly different, as shown below.

In the first step, we break A0 ∈ Zn×m
q into (A0,1|Ā0,1) ∈ Zn×m′

q ×Zn×(m−m′)
q

and Ei ∈ DQ×m
σ0

into (Ei,1|Ēi,1) ∈ DQ×m′

σ0
× D

Q×(m−m′)
σ0 for each i ∈ [N ],

where the block A0,1 contains the first m′ columns of A0. Then we change

Ā0,1 into a lossy one Ã0,1 = CB + F, where C←$ Zn×ℓ
q ,B←$ Zℓ×(m−m′)

q and

F ∈ Zn×(m−m′)
q follows the error distribution D

n×(m−m′)
Z,γ . This change is indis-

tinguishable due to the n-secret LWEℓ,q,DZ,γ ,m−m′ -assumption. Therefore,

D′3 :

(
A0,

{
Si(bi|A0) + (ẽi|Ei)

}
i∈[N ]

)
=

(
(A0,1|Ā0,1),

{
(Si(bi|A0,1) + (ẽi|Ei,1))

∣∣∣(SiĀ0,1 + Ēi,1

)}
i∈[N ]

)
c
≈

(
(A0,1|Ã0,1),

{
(Si(bi|A0,1) + (ẽi|Ei,1))

∣∣∣(SiÃ0,1 + Ēi,1

)}
i∈[N ]

)
but it incurs a loss factor of n since hybrid arguments yield Advn-LWE

[ℓ,q,DZ,γ ,m−m′](λ) ≤
n ·AdvLWE

[ℓ,q,DZ,γ ,m−m′](λ) ≤ n ·AdvLWE
[ℓ,q,DZ,γ ,m](λ). Now given a lossy Ã0,1, for each

i ∈ [N ], the information of Si leaked by SiÃ0,1 is bounded. Then for each i ∈ [N ],

since (bi|A0,1) is uniformly distributed over Zn×(m′+1)
q , by taking it as extrac-

tor, we can extract the remaining entropy of Si to obtain Si(bi|A0,1)
s
≈ Ui,1 ,
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where Ui,1 ←$ ZQ×(m′+1)
q . So we have(

(A0,1|Ã0,1),
{
(Si(bi|A0,1) + (ẽi|Ei,1))

∣∣∣(SiÃ0,1 + Ēi,1

)}
i∈[N ]

)
s
≈

(
(A0,1|Ã0,1),

{(
Ui,1 + (ẽi|Ei,1)

)∣∣∣(SiÃ0,1 + Ēi,1

)}
i∈[N ]

)
.

Next, we change the lossy Ã0,1 back to uniform Ā0,1, and have(
(A0,1|Ã0,1),

{(
Ui,1 + (ẽi|Ei,1)

)∣∣∣(SiÃ0,1 + Ēi,1

)}
i∈[N ]

)
c
≈

(
(A0,1|Ā0,1),

{(
Ui,1 + (ẽi|Ei,1)

)∣∣∣(SiĀ0,1 + Ēi,1

)}
i∈[N ]

)
.

Then we have loss factor n again.
In the second step, we breakA0 = (A0,1|Ā0,1) further into (A0,1|A0,2|Ā0,2) ∈

Zn×m′

q × Zn×m′

q × Zn×(m−2m′)
q and Ei = (Ei,1|Ēi,1) into (Ei,1|Ei,2|Ēi,2) ∈

DQ×m′

σ0
× DQ×m′

σ0
× D

Q×(m−2m′)
σ0 for each i ∈ [N ], where the block A0,2 con-

tains the second m′ columns of A0. Then we change Ā0,2 to a lossy one Ã0,2

and have(
(A0,1|Ā0,1),

{(
Ui,1 + (ẽi|Ei,1)

)∣∣∣(SiĀ0,1 + Ēi,1

)}
i∈[N ]

)
=

(
(A0,1|A0,2|Ā0,2),

{(
Ui,1 + (ẽi|Ei,1)

)∣∣∣(SiA0,2 +Ei,2

)∣∣∣(SiĀ0,2 + Ēi,2

)}
i∈[N ]

)
c
≈

(
(A0,1|A0,2|Ã0,2),

{(
Ui,1 + (ẽi|Ei,1)

)∣∣∣(SiA0,2 +Ei,2

)∣∣∣(SiÃ0,2 + Ēi,2

)}
i∈[N ]

)
with a lossy factor n. With a similar argument, the uniform A0,2 can extract

the remaining entropy of Si for each i ∈ [N ] so that SiA0,2
s
≈ Ui,2 , where

Ui,2 ←$ ZQ×m′

q . So(
(A0,1|A0,2|Ã0,2),

{(
Ui,1 + (ẽi|Ei,1)

)∣∣∣(SiA0,2 +Ei,2

)∣∣∣(SiÃ0,2 + Ēi,2

)}
i∈[N ]

)
s
≈

(
(A0,1|A0,2|Ã0,2),

{(
Ui,1 + (ẽi|Ei,1)

)∣∣∣( Ui,2 +Ei,2

)∣∣∣(SiÃ0,2 + Ēi,2

)}
i∈[N ]

)
.

Changing lossy Ã0,2 back to uniform Ā0,2 yields(
(A0,1|A0,2|Ã0,2),

{(
Ui,1 + (ẽi|Ei,1)

)∣∣∣( Ui,2 +Ei,2

)∣∣∣(SiÃ0,2 + Ēi,2

)}
i∈[N ]

)
c
≈

(
(A0,1|A0,2|Ā0,2),

{(
Ui,1 + (ẽi|Ei,1)

)∣∣∣( Ui,2 +Ei,2

)∣∣∣(SiĀ0,2 + Ēi,2

)}
i∈[N ]

)
with a price of another loss factor n.
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Overall, with at most c ≈ m
m′ steps, we can prove (37) with a loss factor of

2cn, and thus obtain (39).
Finally, taking (38) and (39) together, Claim 17 holds.

Claim 18.
∣∣Pr[A(D4) = 1]−Pr[A(D5) = 1]

∣∣ ≤ Advmsmp
L0,B′

2,NQ(λ) ≤ 2cn·AdvLWE
[ℓ,q,DZ,γ ,m],B2

(λ)

+NQ(m+c+1)
2λ

.

Proof. Note that all hvi,j ’s are uniformly chosen from Zq both in D4 and D5.
The only difference between D4 and D5 is the ci,j ’s (i ∈ [N ], j ∈ [Q]), which
are chosen from Zm

q = X in D4 and from Lρ0
= LA0

in D5. Thus, D4 and
D5 are computationally indistinguishable by the multi-fold SMP for L0, and∣∣Pr[A(D4) = 1]− Pr[A(D5) = 1]

∣∣ ≤ Advmsmp
L0,B′

2,NQ(λ) for an adversary B′2. Then
by Lemma 9 (since L0 is the distribution specified in Subsect. 6.1), Claim 18
follows.

Finally, by taking Claims 14–18 together, Theorem 7 follows. ⊓⊔

E.5 Proof of Theorem 8 (εext-⟨L0,L ⟩-OT-Extracting of prQAHPSLWE)

By definition, we have ϵ
εext-⟨L0,L⟩-otext
prQAHPS,A :=

Pr

[
(c∗, hv∗)←$ A(ppHPS, ρ0 = A0, ρ = A, αρ0(sk) = A0k) :

c∗ ∈ L̃A ∧
|hv∗ − Λsk(c

∗)| ≤ εext

]
,

where (A,TA)←$ L , (A0,TA0
)←$ L0 and sk = k ←$ {0, 1}m.

In the case c∗ /∈ L̃A, ϵ
εext-⟨L0,L⟩-otext
prQAHPS,A = 0, then the theorem trivially holds.

Next, we prove the theorem in the case c∗ ∈ L̃A. To this end, we first claim that
in the view of A, Λsk(c

∗) + e′ with e′ ←$ [−B′, B′] is statistically close to the
uniform distribution over Zq, i.e.,

∆(Λsk(c
∗) + e′, u | (A0,A,A0k)) ≤ 2−λ +mB̃/B′, (40)

where u←$ Zq. Assuming that the claim (40) holds, Theorem 8 follows due to

ϵ
εext-⟨L0,L⟩-otext
prQAHPS,A ≤ Pr

[
(c∗, hv∗)←$ A( · · · ) : |hv∗ − (Λsk(c

∗) + e′)| ≤ εext +B′
]

≤ 2−λ +mB̃/B′ + Pr
[
(c∗, hv∗)←$ A( · · · ) : |hv∗ − u| ≤ εext +B′

]
= 2−λ +mB̃/B′ + Pr

[
(c∗, hv∗)←$ A( · · · ) : u ∈ [hv∗ − εext −B′, hv∗ + εext +B′]

]
= 2−λ +mB̃/B′ + (2εext + 2B′ + 1)/q.

It remains to prove (40). Since c∗ ∈ L̃A, we can write c∗ = (s∗⊤A+ e∗⊤)⊤

for some s∗ ∈ Zn
q \ {0} and e∗ ∈ [−B̃, B̃]m. By the triangle inequality, we have

∆(Λsk(c
∗) + e′, u | (A0,A,A0k)) = ∆((s∗⊤A+ e∗⊤)k+ e′, u | (A0,A,A0k))

≤ ∆(s∗⊤Ak+ e∗⊤k+ e′, s∗⊤Ak+ e′ | (A0,A,A0k)) (41)

+∆(s∗⊤Ak+ e′, u | (A0,A,A0k)). (42)
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Next, we analyze the two statistical distances in (41) and (42) separately. The
analysis of the statistical distance in (41) is as follows

∆(s∗⊤Ak+ e∗⊤k+ e′, s∗⊤Ak+ e′ | (A0,A,A0k))

≤ ∆(����
s∗⊤Ak+ e∗⊤k+ e′,����

s∗⊤Ak+ e′ | (A0,A,A0k, s
∗⊤Ak )) (43)

≤ mB̃/B′, (44)

where (43) holds since s∗⊤Ak+e∗⊤k+e′ (resp., s∗⊤Ak+e′) can be constructed
with e∗⊤k+e′ (resp., e′) and s∗⊤Ak, and (44) follows from the fact that |e∗⊤k| ≤
mB̃ (due to ∥e∗∥∞ ≤ B̃ and ∥k∥∞ ≤ 1) and Lemma 6 (the Smudging Lemma).
The analysis of the statistical distance in (42) is as follows

∆(s∗⊤Ak+ e′, u | (A0,A,A0k))

≤ ∆(s∗⊤Ak+��e
′, u− e′ | (A0,A,A0k, e

′ )) (45)

= ∆(s∗⊤Ak, u−��e
′ | (A0,A,A0k,��e

′)) (46)

= ∆(s∗⊤Ak, s∗⊤u | (A0,A,A0k)) (47)

≤ ∆( Ak , u | (A0,A,A0k)) (48)

≤ 2−λ, (49)

where u ←$ Zn
q . Here (45) holds since s∗⊤Ak+ e′ (resp., u) can be constructed

with s∗⊤Ak (resp., u − e′) and e′, (46) holds since u is uniformly distributed
over Zq and e′ is independent of other variables, (47) holds due to the uniformity

of u and the fact that s∗ ̸= 0, and (48) holds since s∗⊤Ak (resp., s∗⊤u) can
be constructed from Ak (resp., u) along with s∗. The justification of (49) is as
follows. Let p be any prime factor of q. Since k is chosen uniformly at random
from {0, 1}m, we have H̃∞(k mod p) = m. Note that A0k ∈ Zn

q leaks at most
n log q bits of information about k. Thus, according to Lemma 1 and by the
condition m > 3n log q + 2λ, we have

H̃∞(k mod p | (A0,A0k)) ≥ m− n log q > 2n log q + 2λ.

According to Lemma 2, we know that uniform matrix A is a good extractor.
Concretely, by applying Lemma 2 with ϵ = 2−λ, we have

∆((A,Ak), (A,u) | (A0,A0k)) ≤ 2−λ.

Thus (49) holds. Finally, by bounding the statistical distances in (41) and (42)
with (44) and (49), we obtain (40) and complete the proof of Theorem 8. ⊓⊔

F Proof of Theorem 9 (Security of ComLWE)

We prove the three security properties for ComLWE as follows.
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Parameter Indistinguishability. The public parameter ppCMT in the binding

mode is X :=
(
X
b⊤

)
=

(
X

s⊤X+e⊤

)
. The public parameter ppCMT in the hiding mode

isX ←$ Z(n+1)×m
q2 , which can be equivalently set byX :=

(
X
u⊤

)
withX ←$ Zn×m

q2

and u ←$ Zm
q2 . By the LWEn,q2,χ,m assumption,

(
X

s⊤X+e⊤

)
is computationally in-

distinguishable from
(
X
u⊤

)
, thus we have Advpara-indCMT,A(λ) ≤ AdvLWE

[n,q2,χ,m],B(λ).

Statistical Binding for M̃ under BSetup. For any public parameter in the binding

mode X =
(

X
s⊤X+e⊤

)
, we show that it is impossible to have m ̸= m′ ∈ M̃ and

R,R′ ∈ R̃ such that Com(X,m;R) = Com(X,m′;R′), thus εbinding = 0.

Suppose towards a contradiction that there exist m ̸= m′ ∈ M̃ and R,R′ ∈
R̃ such that Com(X,m;R) = X·R+

(
0

q·m⊤

)
= X·R′+

(
0

q·m′⊤

)
= Com(X,m′;R′).

Then
X · (R′ −R) =

(
0

q·(m−m′)⊤

)
.

By multiplying (−s⊤, 1) to the both sides of the above equation, we obtain
e⊤ · (R′ −R) = q · (m−m′)⊤, which further implies that∥∥e⊤ · (R′ −R)

∥∥
∞ =

∥∥q · (m−m′)⊤
∥∥
∞ . (50)

However, on the left-hand side of (50), ∥e∥∞ ≤ B (since χ is B-bounded) and

∥R′ −R∥∞ ≤ 2B̃ (since R,R′ ∈ R̃ = [−B̃, B̃]m×m), so
∥∥e⊤ · (R′ −R)

∥∥
∞ ≤

2mBB̃. On the right-hand side,
∥∥q · (m−m′)⊤

∥∥
∞ = q ·

∥∥(m−m′)⊤
∥∥
∞ ≥ q

(since m ̸= m′ ∈ M̃ = [−B̃, B̃]m). According to the condition q > 2mBB̃, (50)
is impossible to hold, which yields a contradiction.

Statistical Hiding forM under HSetup. Let m0,m1 be any pair of messages in
M = {0, 1}m. We aim to prove that

∆
(
(X,X ·R+

(
0

q·m⊤
0

)︸ ︷︷ ︸
Com(X,m0;R)

), (X,X ·R+
(

0
q·m⊤

1

)︸ ︷︷ ︸
Com(X,m1;R)

)
)
≤ εhiding = m · 2−λ, (51)

where the probability is overX ←$ Z(n+1)×m
q2 (the public parameter in the hiding

mode) and R←$ R = {0, 1}m×m.
Let us parse R = {0, 1}m×m as R = (r1, . . . , rm) with each ri ∈ {0, 1}m.

Due to the uniformity of R, each ri is uniformly distributed over {0, 1}m, hence

H̃∞(ri mod p) = m for any prime factor p of q2. According to Lemma 2, we know
that uniform matrix X is a good extractor. Concretely, by applying Lemma 2
with ϵ = 2−(λ+1) and by the condition m > 4(n+ 1) log q + 2(λ+ 1), we have

∆((X,X · ri), (X,ui)) ≤ 2−(λ+1)

for each i ∈ [m], where ui ←$ Zn+1
q2 . By a simple hybrid argument, it yields that

∆((X,X ·R), (X,U)) ≤ m · 2−(λ+1),
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where U ←$ Z(n+1)×m
q2 . Hence no matter for m = m0 or m = m1, we have

∆
(
(X,X ·R+

(
0

q·m⊤

)
), (X,U)

)
≤ m · 2−(λ+1). (52)

Finally, (51) follows from (52) by the triangle inequality.
This completes the proof of Theorem 9. ⊓⊔

G Full Details of QA-NIZK from LWE in Subsect. 6.4

In this section, we present full details of Subsect. 6.4 and show how to build
tag-based QA-NIZK for gap language based on the LWE assumptions, in order
to serve as building blocks for our SIG and PKE constructions together with our
LWE-based prQAHPSLWE and CMTLWE schemes.

We will follow the generic transformation proposed by Libert et al. in [34,
Subsect. 4.2] that compiles any trapdoor Σ-protocol for gap language into tag-
based QA-NIZK for the same gap language, with the help of correlation in-
tractable (CI) hash function and lossy PKE. Moreover, the transformation is
tightness-preserving, i.e., the resulting tag-based QA-NIZK has tight zero-knowledge
and tight USS as long as the building blocks are tightly secure. Given the fact
that there are already CI hash and lossy PKE from LWE (see Appendix G.1
for their LWE-based instantiations), all we need to do is to instantiate trapdoor
Σ-protocol for gap language from LWE.

The roadmap of this section is as follows. In Appendix G.1, we recall the def-
initions of the building blocks including trapdoor Σ-protocol, CI hash and lossy
PKE, and provide the instantiations of CI hash and lossy PKE based on LWE.
In Appendix G.2, we provide additional lattice backgrounds. In Appendix G.3,
we present the instantiations of trapdoor Σ-protocol based on LWE. Finally, in
Appendix G.4, we recall the generic transformation in [34, Subsect. 4.2] for com-
pleteness, and describe how to compile our LWE-based trapdoor Σ-protocols
into tag-based QA-NIZK schemes for gap languages.

G.1 Building Blocks: Definitions and Instantiations

In this subsection, we present the formal definitions of the building blocks of
the generic transformation proposed in [34, Subsect. 4.2], including trapdoor
Σ-protocol, correlation intractable (CI) hash function, lossy PKE, pseudoran-
dom function (PRF) and one-time signature (OTS). We also recall the existing
LWE-based instantiations for all the building blocks except trapdoor Σ-protocol,
whose instantiations will be given in Appendix G.3.

Building Block 1 – Trapdoor Σ-Protocol for Gap Language: Syntax and Security
Requirements.

Definition 24 (Trapdoor Σ-Protocol for Gap Language [34]). Let GLρ =

(Lρ, L̃ρ) be a gap language parameterized by language parameter ρ, and let tdρ de-
note some trapdoor information for GLρ. A trapdoor Σ-protocol for gap language
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GLρ consists of PPT algorithms Σ = (Σ.CRSGen, Σ.Prove1, Σ.Prove2, Σ.Vrfy,
Σ.Sim, Σ.TrapGen, Σ.BadChallenge).

– crs ←$ Σ.CRSGen(ρ) : Taking as input a language parameter ρ, the CRS
generation algorithm outputs a common reference string (CRS) crs, which
implicitly defines a challenge space CH.

– 3-Move Protocol. The 3-move protocol is executed between a “prover” and
a “verifier”. The prover and the verifier both take a CRS crs and an instance
x ∈ Lρ as input. The prover also takes as input a witness w of x.
• (a, st)←$ Σ.Prove1(crs, x, w): The prover invokes Σ.Prove1 to get a mes-
sage a and a state st. Then the prover keeps st as its own state informa-
tion and sends a to the verifier.

• ch ←$ CH: After receiving a, the verifier chooses ch ←$ CH uniformly at
random as the challenge and sends ch to the prover.

• z←$ Σ.Prove2(crs, x, w, a, st, ch): After obtaining ch, the prover invokes
Σ.Prove2 to get a message z and sends z to the verifier.

• 0/1← Σ.Vrfy(crs, x, a, ch, z): After getting z, the verifier invokes Σ.Vrfy
to obtain a decision bit.

– (ã, z̃)←$ Σ.Sim(crs, x, ch): Taking as input crs, an instance x and a challenge
ch ∈ CH, the simulation algorithm outputs a simulated (ã, z̃). Here (ã, ch, z̃)
serves as a simulated transcript.

– (crs, tdΣ)←$ Σ.TrapGen(ρ, tdρ): Taking as input a language parameter ρ and
a trapdoor information tdρ for the gap language GLρ, the trapdoor CRS gen-
eration algorithm outputs a crs and a trapdoor tdΣ for the scheme.

– ch ←$ Σ.BadChallenge(crs, tdΣ , x, a): Taking as input crs, a trapdoor tdΣ,
an instance x and a first message a, the bad challenge algorithm outputs a
challenge ch.

The following properties are required:

• Completeness: For all x ∈ Lρ with witness w and all crs←$ Σ.CRSGen(ρ),
it holds that

Pr

 (a, st)←$ Σ.Prove1(crs, x, w),
ch ←$ CH,

z ←$ Σ.Prove2(crs, x, w, a, st, ch)
: Σ.Vrfy(crs, x, a, ch, z) = 1

 ≥ 1− negl(λ).

• Special Soundness: For any x /∈ L̃ρ, any crs ∈ Σ.CRSGen(ρ) and any first
message a, there is at most one challenge ch ∈ CH such that Σ.Vrfy(crs, x, a,
ch, z) = 1 for some third message z. Moreover, we define a “bad challenge
function” f with f(crs, x, a) := ch if there exists such a unique ch and
f(crs, x, a) := ⊥ otherwise. Note that f might not be efficiently computable.

• Special Zero-Knowledge: For all x ∈ Lρ with witness w, all crs←$

Σ.CRSGen(ρ) and all ch ∈ CH, it holds that

∆((a, z), (ã, z̃)) ≤ negl(λ),

where the probability is over (a, st)← Σ.Prove1(crs, x, w), z← Σ.Prove2(crs,
x, w, a, st, ch)) and (ã, z̃)← Σ.Sim(crs, x, ch).

70



• Perfect CRS Indistinguishability: The crs generated by crs ←$ Σ.CRSGen(ρ)
is identically distributed as the crs generated by (crs, tdΣ)←$ Σ.TrapGen(ρ, tdρ).

• Correctness of Σ.BadChallenge: For all x /∈ L̃ρ, all (crs, tdΣ) ∈ TrapGen(ρ, tdρ)
and all first messages a, it holds that Σ.BadChallenge(crs, tdΣ , x, a) = f(crs, x, a)
if f(crs, x, a) ̸= ⊥. Here f is the bad challenge function.

Building Block 2 – Correlation Intractable Hash: Syntax, Security Requirements,
and LWE-based Construction.

Definition 25 (Searchable Relation). A relation R ⊆ X × Y is searchable
in time T if there exists a function f : X −→ Y which is computable in time T
and satisfies that, if there exists y s.t. (x, y) ∈ R, then f(x) = y.

Definition 26 (Somewhere Statistically Correlation Intractable Hash
[16]). Given a relation ensemble R = {R ⊆ X × Y}, a keyed hash family
H = {h : K×X −→ Y} with key space K is somewhere statistically correlation in-
tractable (CI) w.r.t. R if there exist PPT algorithms CIH = (CIH.Gen,CIH.StGen)
defined as follows:

– k ←$ CIH.Gen: It outputs a hashing key k ∈ K.
– k ←$ CIH.StGen(aux): It takes an auxiliary string aux as input and outputs

a hashing key k ∈ K.

For any relation R ∈ R, there exists an auxiliary string auxR with the following
two properties:

• Key Indistinguishability: For any PPT algorithm A, it holds that

AdvindCIH,A(λ) :=
∣∣Pr[k ←$ CIH.Gen : A(k, auxR) = 1]

− Pr[k ←$ CIH.StGen(auxR) : A(k, auxR) = 1]
∣∣ ≤ negl(λ).

• Statistical Correlation Intractability: It requires that

Pr
[
k ←$ CIH.StGen(auxR) : ∃ x ∈ X s.t. (x, h(k, x)) ∈ R

]
≤ 2−Ω(λ).

In [43], Peikert and Shiehian proposed a CI-Hash for any searchable relation
defined by functions f of bounded depth (in the sense of Definition 25) based
on the standard LWE assumption. We summarize the result in the following
theorem.

Theorem 11 ([43]). Assuming the hardness of LWEn−1,q,χ,m+1 for a poly(n)-
bounded χ and a sufficiently large q = mO(d), the CI-Hash scheme proposed in
[43] supports arbitrary input length, and its output length is exactly m = n⌈log q⌉.
It is somewhere statistically correlation intractable for the class of functions with
output length m that can be implemented by depth-d Boolean circuits, and each
circuit serves as the auxiliary input for itself. Concretely, for any PPT adversary
A, there exists a PPT adversary B such that

AdvindCIH,A(λ) ≤ AdvLWE
[n−1,q,χ,m+1],B(λ).

71



With the help of fully homomorphic encryption (FHE) scheme, the CIH func-
tion can be constructed to support statistically correlation intractable function
which is implemented by circuits of any polynomial size. In this case, the secu-
rity of CIH is tightly reduced to the LWE assumption and CPA security of FHE,
which can be further tightly reduced to the LWE assumption.

Building Block 3 – Lossy PKE: Syntax, Security Requirements, and LWE-based
Construction.

Definition 27 (R-Lossy PKE with Efficient Opening [34, 18]). Let R ⊆
Kλ×Tλ be an efficiently computable binary relation. An R-lossy PKE scheme R-
LPKE = (Gen, LGen,Enc,Dec,Opener, LOpener) consists of PPT algorithms and
is associated with message space M, tag space Tλ, initialization value space Kλ

and randomness space RLPKE. The randomness distribution over RLPKE used for
encryption is denoted by DRLPKE

.

– (pk, sk, tk)←$ Gen(K): The key generation algorithm takes as input an ini-
tialization value K ∈ Kλ, and outputs an injective public key pk, a decryption
key sk and a trapdoor key tk.

– (pk, sk, tk)←$ LGen(K): The lossy key generation algorithm takes as input
an initialization value K ∈ Kλ, and outputs a lossy public key pk, a lossy
secret key sk and a trapdoor key tk.

– c←$ Enc(pk, t,m): The encryption algorithm takes as input a public key pk,
a tag t ∈ Tλ and a message m ∈M, and outputs a ciphertext c.

– m′/⊥ ← Dec(sk, t, c): The decryption algorithm takes as input a decryption
key sk, a tag t ∈ Tλ and a ciphertext c, and outputs m′ ∈M or ⊥.

– r′ ←$ Opener(pk, tk, t, c,m′): The opening algorithm takes as input a public
key pk, a trapdoor key tk, a tag t ∈ Tλ, a ciphertext c and a message m′,
and outputs a randomness r′ ∈ RLPKE.

– r′ ←$ LOpener(sk, t, c,m′): The lossy opening algorithm takes as input a se-
cret key sk, a tag t ∈ Tλ, a ciphertext c and a message m′, and outputs a
randomness r′ ∈ RLPKE.

The following properties should be satisfied:

• Decryption Correctness under Injective Tags: For any initialization
value K and any tag t such that (K, t) ∈ R, and any m ∈M, it holds that

Pr

[
(pk, sk, tk)←$ Gen(K) :

∃ r ∈ RLPKE, s.t.
Dec(sk, t,Enc(pk, t,m; r)) ̸= m

]
≤ negl(λ).

• Key Indistinguishability: There are two requirements. One is the indistin-
guishability of public/trapdoor key pairs outputted by the normal algorithm
Gen and the lossy algorithm LGen. The other is the indistinguishability of
public/secret key pairs output by LGen under different initialization values.

(i) For any initialization value K ∈ Kλ, and any PPT A, it holds that

Advind-1R-LPKE,A(λ) :=
∣∣Pr[(pk, sk, tk)←$ Gen(K) : A(pk, tk) = 1]

− Pr[(pk, sk, tk)←$ LGen(K) : A(pk, tk) = 1]
∣∣ ≤ negl(λ).
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(ii) For any distinct values K,K ′ ∈ Kλ, and any PPT A, it holds that

Advind-2R-LPKE,A(λ) :=
∣∣Pr[(pk, sk, tk)←$ LGen(K) : A(pk, sk) = 1]

− Pr[(pk, sk, tk)←$ LGen(K ′) : A(pk, sk) = 1]
∣∣ ≤ negl(λ).

• Lossiness under Lossy Tags: For any value K ∈ Kλ and tag t ∈ Tλ such
that (K, t) /∈ R, any (pk, sk, tk)←$ Gen(K), and any m0,m1 ∈M, it holds

∆(c0, c1) ≤ negl(λ),

where the probability is over c0 ← Enc(pk, t,m0) and c1 ← Enc(pk, t,m1).

• Efficient Opening via Opener under Lossy Tags: Let DRLPKE
be the

randomness distribution over RLPKE, from which the random coins r used by
Enc are sampled. For any public key pk, tag t, message m and ciphertext c,
let Dpk,m,c,t denote the probability distribution on RLPKE with support

Spk,m,c,t =
{
r̄ ∈ RLPKE

∣∣ Enc(pk, t,m; r̄) = c
}
,

and such that, for any r̄ ∈ Spk,m,c,t, we have

Dpk,m,c,t(r̄) = Pr
r ←$ DRLPKE

[
r = r̄

∣∣ Enc(pk, t,m; r) = c
]
.

For any K ∈ Kλ, any keys (pk, sk, tk)←$ Gen(K) and (pk, sk, tk)←$ LGen(K),
any tag t ∈ Tλ such that (K, t) /∈ R, any messages m0,m1 ∈ M, and any
r ←$ DRLPKE

, let c = Enc(pk, t,m0; r). Then it holds that

∆(r′, r̄) ≤ negl(λ),

where r′ ←$ Opener(pk, tk, t, c,m1) and r̄ follows the distribution Dpk,m1,c,t.

• Efficient Opening via LOpener under Lossy Keys: For any K ∈ Kλ,
any (pk, sk, tk)←$ LGen(K), any tag t ∈ Tλ, any messages m0,m1 ∈ M,
and any r ←$ DRLPKE

, let c = Enc(pk, t,m0; r). Then it holds that

∆(r′, r̄) ≤ negl(λ),

where r′ ←$ LOpener(sk, t, c,m1) and r̄ follows the distribution Dpk,m1,c,t.

In [34], Libert et al. proposed a R-LPKE scheme with security tightly reduced
to the multi-secret LWE assumption. We summarize the result in the following
theorem.

Theorem 12 ([34]). Let q = poly(λ) be a prime modulus,M = {0, 1}n0 be the
message space, n = n0+Ω(λ), m = 2n⌈log q⌉+O(λ) and σ = O(m) ·λ. Then the
R-LPKE scheme proposed in [34] is a lossy PKE scheme with message spaceM =
{0, 1}n0 . Concretely, for any PPT adversary A, there exists a PPT adversary B
s.t. Advind-1R-LPKE,A(λ) ≤ Advn0-LWE

[n−n0,q,DZ,σ,m],B(λ) and Advind-2R-LPKE,A(λ) ≤ 2−Ω(λ).
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Building Block 4 – Pseudorandom Function: Syntax, Security Requirements, and
LWE-based Construction.

Definition 28 (Pseudorandom Function). Let PRF : K × X −→ Y be a
function with key space K, input space X and output space Y. PRF is a pseudo-
random function, if for any PPT adversary A, it holds that

AdvpsePRF,A(λ) :=
∣∣Pr[APRF(K,·) = 1]− Pr[Af(·) = 1]

∣∣ ≤ negl(λ),

where K ←$ K, f is uniformly chosen from the set of all functions mapping X
to Y, and A has oracle access to either PRF(K, ·) or f(·).

As suggested by Libert et al. [34], the Key-homomorphic PRF scheme in
[13] is a good choice, and the pseudorandomness of PRF is based on the LWE
assumption with security loss factor linear to the input length of the PRF. We
conclude as follows.

Theorem 13 ([34, 13]). Let q = O(
√
n/α) and m = ⌈n log q⌉. If the PRF

scheme proposed in [13] supports ℓ-bit input, then for any PPT adversary A,
there exists a PPT adversary B such that

AdvpsePRF,A(λ) ≤ ℓ · AdvLWE
[n,q,χ,m],B(λ).

Building Block 5 – One-Time Signature: Syntax, Security Requirements, and
LWE-based Construction.

The syntax of one-time signature (OTS) is the same as signature defined in
Definition 13. Below we define the strong one-time security for one-time signature
in the Multi-User setting (strong MU-OT).

Definition 29 (Strong MU-OT Security for One-Time Signature). A
signature scheme OTS = (Setup,Gen,Sign,Vrfy) is strongly MU-OT secure, if for
any PPT adversary A and any polynomial N , it holds that Advstr-otOTS,A,N (λ) :=

Pr[Expstr-otOTS,A,N ⇒ 1] ≤ negl(λ), where Expstr-otOTS,A,N is defined in Fig. 9.

Expstr-otOTS,A,N :

ppSIG ←$ Setup

For i ∈ [N ]: (vki, sigki) ←$ Gen(ppSIG)

QSign := ∅ �Record the signing queries

(i∗ ∈ [n],m∗, σ∗) ←$ AOSign(·,·)(ppSIG, {vki}i∈[N ])

If ((i∗,m∗, σ∗) /∈ QSign) ∧ (Vrfy(vki∗ ,m
∗, σ∗) = 1):

Return 1;

Else: Return 0

OSign(i,m): �at most one query per user i

σ ←$ Sign(sigki,m)

QSign := QSign ∪ {(i,m, σ)}
Return σ

Fig. 9. The MU-OT security experiment Expstr-otOTS,A,N for OTS.

In [35], Libert et al. presented a one-time signature with strong MU-OT
security, which is tightly reduced to the Short Integer Solution (SIS) assumption.
We recall the definition of SIS and conclude their OTS as follows.
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Definition 30 (SIS Assumption). The Short Integer Solution SISn,q,m,β as-
sumption holds if for any PPT adversary A, it holds that

AdvSIS[n,q,m,β],A(λ) := Pr

[
A ←$ Zn×m

q ,
x ∈ Zm ←$ A(A)

:
A · x = 0 mod q

∧ x ̸= 0 ∧ ∥x∥ ≤ β

]
≤ negl(λ).

Theorem 14 ([35]). The OTS scheme proposed in [35] is strongly MU-OT se-
cure based on the SIS assumption. Let n,m, q ∈ N be public parameters of OTS
such that m > 4n log q. Let σ be the discrete Gaussian parameter in OTS, and
let β = m(1 + 2σ). The message space of OTS is M = {0, 1}m. Then for any
PPT adversary A and any polynomial N , there exists a PPT adversary B such
that Advstr-otOTS,A,N (λ) ≤ AdvSIS[n,q,m,β],B(λ).

G.2 Additional Backgrounds on Lattices

Lemma 14 ([36, Theorem 4.6]). Let V be a subset of Zm in which all ele-
ments have ℓ2 norms less than T , ζ be a real number such that ζ = ω(T

√
logm)

and V be a distribution over V. Then, there exists a real number M such that
the distributions of the following algorithms A and F has statistical distance at

most 2−ω(log m)

M :

– A: sample v ←$ V , z ←$ DZm,ζ,v and output (z,v) with probability

min
(

DZm,ζ(z)
M ·DZm,ζ,v(z)

, 1
)
;

– F : sample v ←$ V , z ←$ DZm,ζ and output (z,v) with probability 1/M .

Moreover, the probability that A outputs something is at least 1−2−ω(log m)

M .

More concretely, if ζ = αT for any positive α, then M = e12/α+1/(2α2), the
above statistical distance is at most 2−100/M , and the probability that A outputs
something is at least (1− 2−100)/M .

G.3 Trapdoor Σ-protocol from LWE

In order to construct tag-based QA-NIZK schemes for gap languages, in this
subsection, we will first construct trapdoor Σ-protocols for the same gap lan-
guages based on the LWE assumptions, then in next subsection (Appendix G.4),
we show how to compile them into tag-based QA-NIZK schemes via the generic
transformation proposed in [34, Subsect. 4.2].

The Gap Language. As discussed in Subsect. 6.4, we note that the gap
languages needed in our generic SIG and PKE constructions are different.

For the SIG construction in Subsect. 4.1, the gap language is the GL(QANIZK)
ρ′ =

(L(QANIZK)
ρ′ , L̃(QANIZK)

ρ′ ) defined in Fig. 1, which is determined by the gap lan-
guage distribution L , the pr-QA-HPS scheme prQAHPS and the commitment
scheme CMT. We make the gap language concrete by instantiating with our
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LWE-based L in Subsect. 6.1, prQAHPSLWE in Subsect. 6.2 and CMTLWE in Sub-
sect. 6.3. Let ppLWE = (n,m, ℓ, q, σ, γ, χ,B, B̃, B′, B̃′, ζ, ζ ′) be the LWE-related
public parameters that serve as implicit input to all algorithms, where B < B̃
and B′ < B̃′. More precisely, let ρ = A ∈ Zn×m

q be a language parameter output
by L , which is generated by (A,TA)←$ TrapGen(n, q,m) (cf. Lemma 3), and

let ppCMT = X ∈ Z(n+1)×m
q2 be a parameter generated by BSetup. Then according

to Fig. 1, ρ′ = (A,X) and the gap language GL(QANIZK)
ρ′ = (L(QANIZK)

ρ′ , L̃(QANIZK)
ρ′ )

is instantiated as follows:

L(QANIZK)
ρ′ =

(c, vk, d)

∣∣∣∣∣∣
∃ (s ∈ Zn

q , e ∈ [−B,B]m,
R ∈ {0, 1}m×m,k ∈ {0, 1}m,

e′ ∈ [−B′, B′])
s.t.

c⊤ = s⊤ ·A+ e⊤

∧ vk = X ·R+
(

0
q·k⊤

)
∧ d = c⊤ · k+ e′

 , (53)

L̃(QANIZK)
ρ′ =

(c, vk, d)

∣∣∣∣∣∣
∃ (s ∈ Zn

q , e ∈ [−B̃, B̃]m,

R ∈ [−B̃, B̃]m×m,k ∈ [−B̃, B̃]m,

e′ ∈ [−B̃′, B̃′])
s.t.

c⊤ = s⊤ ·A+ e⊤

∧ vk = X ·R+
(

0
q·k⊤

)
∧ d = c⊤ · k+ e′

 . (54)

We set tdρ′ := TA as the trapdoor information of the gap language GL(QANIZK)
ρ′ ,

where TA is generated along with A by TrapGen(n, q,m).

For the PKE construction in Subsect. 4.2, the gap language is exactly the
GLρ = (Lρ, L̃ρ) generated by L , as defined in Subsect. 6.1, i.e., ρ = A and

Lρ :=
{
c ∈ Zm

q

∣∣∃ s ∈ Zn
q \ {0}, e ∈ [−B,B]m, s.t. c⊤ = s⊤ ·A+ e⊤

}
, (55)

L̃ρ :=
{
c ∈ Zm

q

∣∣∃ s ∈ Zn
q \ {0}, e ∈ [−B̃, B̃]m, s.t. c⊤ = s⊤ ·A+ e⊤

}
. (56)

Next, we will construct trapdoor Σ-protocols for the gap language GL(QANIZK)
ρ′

= (L(QANIZK)
ρ′ , L̃(QANIZK)

ρ′ ) and for the gap language GLρ = (Lρ, L̃ρ) based on the
LWE assumptions, respectively, serving as building blocks for our SIG and PKE
constructions. Our constructions are inspired by the trapdoor Σ-protocol for
ACPS ciphertexts [4] constructed in [34, Sect. 5], by observing that both the

gap languages GL(QANIZK)
ρ′ and GLρ are defined with linear equations, i.e., the

instance is linear in the witness, and parts of the witness are bounded.

The Trapdoor Σ-protocol for GL(QANIZK)
ρ′ . The syntax of trapdoorΣ-protocol

is shown in Definition 24. Below we construct an LWE-based trapdoorΣ-protocol
Σ = (Σ.CRSGen, Σ.Prove1, Σ.Prove2, Σ.Vrfy, Σ.Sim, Σ.TrapGen, Σ.BadChallenge)

for the gap language GL(QANIZK)
ρ′ = (L(QANIZK)

ρ′ , L̃(QANIZK)
ρ′ ) specified by (53) and

(54), with challenge set CH = {0, 1}.

• crs ←$ Σ.CRSGen(ρ′): On input of language parameter ρ′ = (A,X), return
crs := (A,X).

• (a, st) ←$ Σ.Prove1(crs, x, w): Parse crs = (A,X) and x = (c, vk, d). Choose

s0 ←$ Zn
q , e0 ←$ DZm,ζ , R0 ←$ DZm×m,ζ , k0 ←$ DZm,ζ , e′0 ←$ DZ,ζ′ .
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Compute

c⊤0 := s⊤0 ·A+ e⊤0 mod q, vk0 := X ·R0 +
(

0
q·k⊤

0

)
mod q2,

d0 := c⊤ · k0 + e′0 mod q.

Return a := (c0, vk0, d0) and st := (s0, e0,R0,k0, e
′
0).

• z ←$ Σ.Prove2(crs, x, w, a, st, ch ∈ {0, 1}): Parse w = (s, e,R,k, e′) and st =
(s0, e0,R0,k0, e

′
0). Compute

smix := s0 + ch · s mod q, emix := e0 + ch · e mod q,

Rmix := R0 + ch ·R mod q2, kmix := k0 + ch · k mod q,

e′mix := e′0 + ch · e′ mod q.

Return z := (smix, emix,Rmix,kmix, e
′
mix) with probability θ and abort oth-

erwise, where the probability θ is defined by θ := min
(

DZm,ζ(emix)
M ·DZm,ζ,ch·e(emix)

·
DZm×m,ζ(Rmix)

M ·DZm×m,ζ,ch·R(Rmix)
· DZm,ζ(kmix)

M ·DZm,ζ,ch·k(kmix)
· DZ,ζ′ (e

′
mix)

M ′·DZ,ζ′,ch·e′ (e
′
mix)

, 1
)

with M :=

e12
√
mB/ζ+mB2/(2ζ2) and M ′ := e12B

′/ζ′+B′2/(2ζ′2).

• 0/1← Σ.Vrfy(crs, x, a, ch, z): Parse crs = (A,X), x = (c, vk, d), a = (c0, vk0, d0)
and z = (smix, emix,Rmix,kmix, e

′
mix). Check if

∥emix∥∞ ≤ B̃/2, ∥Rmix∥∞ ≤ B̃/2, ∥kmix∥∞ ≤ B̃/2, |e′mix| ≤ B̃′/2,

and check if

c⊤0 + ch · c⊤ = s⊤mix ·A+ e⊤mix mod q,

vk0 + ch · vk = X ·Rmix +
(

0
q·k⊤

mix

)
mod q2,

d0 + ch · d = c⊤ · kmix + e′mix mod q.

If all these checks pass, return 1; otherwise, return 0.

• (crs, tdΣ)←$ Σ.TrapGen(ρ′, tdρ′): On input of language parameter ρ′ = (A,X)

and trapdoor information tdρ′ = TA for GL(QANIZK)
ρ′ , return crs := (A,X)

and tdΣ := TA.

• ch← Σ.BadChallenge(crs, tdΣ = TA, x, a): Parse x = (c, vk, d) and a = (c0, vk0, d0).

Invoke (s, e)←$ Invert(c0,TA) (cf. Lemma 4) and if ∥e∥∞ ≤ B̃/2 then re-
turn ch := 0.
Invoke (s, e)←$ Invert(c0 + c,TA) and if ∥e∥∞ ≤ B̃/2 then return ch := 1.
Otherwise, return ch := ⊥.

• (ã, z̃)←$ Σ.Sim(crs, x, ch): Parse crs = (A,X) and x = (c, vk, d). Choose

s̃mix ←$ Zn
q , ẽmix ←$ DZm,ζ , R̃mix ←$ DZm×m,ζ , k̃mix ←$ DZm,ζ , ẽ′mix ←$ DZ,ζ′ .
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Compute

c̃⊤0 :=
(
s̃⊤mix ·A+ ẽ⊤mix

)
− ch · c⊤ mod q,

ṽk0 :=
(
X · R̃mix +

(
0

q·k̃⊤
mix

))
− ch · vk mod q2,

d̃0 := (c⊤ · k̃mix + ẽ′mix)− ch · d mod q.

Return ã := (c̃0, ṽk0, d̃0) and z̃ := (s̃mix, ẽmix, R̃mix, k̃mix, ẽ
′
mix) with prob-

ability θ̃ and abort otherwise, where the probability θ̃ is defined by θ̃ :=

1/(M3M ′) with M := e12
√
mB/ζ+mB2/(2ζ2) and M ′ := e12B

′/ζ′+B′2/(2ζ′2).

Theorem 15 (Trapdoor Σ-protocol for GL(QANIZK)
ρ′ ). Let ζ =

√
mB·ω(

√
logm),

ζ ′ = ω(B′), B̃ = 2 · (ζ
√
m · ω(

√
log λ) + B), B̃′ = 2 · (ζ ′ · ω(

√
log λ) + B′) and

q ≥ 5mB̃. Then the above construction is a trapdoor Σ-protocol for the gap

language GL(QANIZK)
ρ′ = (L(QANIZK)

ρ′ , L̃(QANIZK)
ρ′ ) specified by (53) and (54).

Proof of Theorem 15. By the choices of B̃ = 2 · (ζ
√
m · ω(

√
log λ) + B)

and B̃′ = 2 · (ζ ′ · ω(
√
log λ) + B′), according to Lemma 5, we know that DZm,ζ

and DZm×m,ζ are ( B̃2 − B) = ζ
√
m · ω(

√
log λ)-bounded and DZ,ζ′ is ( B̃

′

2 − B′)
= ζ ′ · ω(

√
log λ)-bounded, except with negligible probability.

Completeness. For any instance x = (c, vk, d) ∈ L(QANIZK)
ρ′ with witness w =

(s, e,R,k, e′), any proof a = (c0, vk0, d0), z = (smix, emix,Rmix,kmix, e
′
mix)

and state st = (s0, e0,R0,k0, e
′
0) generated honestly by prover, we know that

e0 ←$ DZm,ζ , R0 ←$ DZm×m,ζ , k0 ←$ DZm,ζ and e′0 ←$ DZ,ζ′ . The above analy-

sis shows that e0,R0 and k0 are all (
B̃
2 −B)-bounded and e′0 is (

B̃′

2 −B
′)-bounded

except with negligible probability. Hence for any challenge ch ∈ {0, 1}, it holds
that ∥emix∥∞ ≤ ∥e0∥∞ + ∥e∥∞ ≤ B̃/2, ∥Rmix∥∞ ≤ ∥R0∥∞ + ∥R∥∞ ≤ B̃/2,

∥kmix∥∞ ≤ ∥k0∥∞ + ∥k∥∞ ≤ B̃/2 and |e′mix| ≤ |e′0| + |e′| ≤ B̃′/2, except with
negligible probability. Meanwhile, we have

c⊤0 + ch · c⊤ = (s⊤0 + ch · s⊤)A+ (e0
⊤ + ch · e⊤) = s⊤mix ·A+ e⊤mix mod q,

vk0 + ch · vk = X(R0 + ch ·R) +
(

0
q(k⊤

0 +ch·k⊤)

)
= X ·Rmix +

(
0

q·k⊤
mix

)
mod q2,

d0 + ch · d = c⊤(k0 + ch · k) + (e′0 + ch · e′) = c⊤ · kmix + e′mix mod q.

Therefore, the verification passes except with negligible probability.

Special Soundness. Special soundness requires that for any x /∈ L̃(QANIZK)
ρ′ and

any first message a, there exists at most one challenge ch ∈ {0, 1} such that
Σ.Vrfy(crs, x, a, ch, z) = 1 for some third message z. Suppose, toward contra-

diction, there exist x = (c, vk, d) /∈ L̃(QANIZK)
ρ′ and a = (c0, vk0, d0) such that

Σ.Vrfy(crs, x, a, ch, z(ch)) = 1 for both ch = 0 and ch = 1 for some z(0) =

(s
(0)
mix, e

(0)
mix,R

(0)
mix,k

(0)
mix, e

′(0)
mix) and z(1) = (s

(1)
mix, e

(1)
mix,R

(1)
mix,k

(1)
mix, e

′(1)
mix). That

is, for both ch = 0 and ch = 1 it holds that
∥∥∥e(ch)mix

∥∥∥
∞
≤ B̃/2,

∥∥∥R(ch)
mix

∥∥∥
∞
≤ B̃/2,
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∥∥∥k(ch)
mix

∥∥∥
∞
≤ B̃/2, |e′(ch)mix | ≤ B̃′/2 and

c⊤0 + 0 · c⊤ = s
(0)
mix

⊤
·A+ e

(0)
mix

⊤
mod q, (57)

c⊤0 + 1 · c⊤ = s
(1)
mix

⊤
·A+ e

(1)
mix

⊤
mod q, (58)

vk0 + 0 · vk = X ·R(0)
mix +

( 0

q·k(0)
mix

⊤
)
mod q2, (59)

vk0 + 1 · vk = X ·R(1)
mix +

( 0

q·k(1)
mix

⊤
)
mod q2, (60)

d0 + 0 · d = c⊤ · k(0)
mix + e′

(0)
mix mod q, (61)

d0 + 1 · d = c⊤ · k(1)
mix + e′

(1)
mix mod q. (62)

By subtracting (57) from (58), (59) from (60), and (61) from (62) respectively,
we have

c⊤ =
(
s
(1)
mix − s

(0)
mix

)⊤ ·A+
(
e
(1)
mix − e

(0)
mix

)⊤
mod q,

vk = X · (R(1)
mix −R

(0)
mix) +

( 0

q·(k(1)
mix−k

(0)
mix)

⊤
)
mod q2,

d = c⊤ · (k(1)
mix − k

(0)
mix) + (e′

(1)
mix − e′

(0)
mix) mod q.

Note that
∥∥∥e(1)mix − e

(0)
mix

∥∥∥
∞
≤

∥∥∥e(1)mix

∥∥∥
∞

+
∥∥∥e(0)mix

∥∥∥
∞
≤ B̃,

∥∥∥R(1)
mix −R

(0)
mix

∥∥∥
∞
≤∥∥∥R(1)

mix

∥∥∥
∞

+
∥∥∥R(0)

mix

∥∥∥
∞
≤ B̃,

∥∥∥k(1)
mix − k

(0)
mix

∥∥∥
∞
≤

∥∥∥k(1)
mix

∥∥∥
∞

+
∥∥∥k(0)

mix

∥∥∥
∞
≤ B̃

and |e′(1)mix − e′
(0)
mix| ≤ |e′

(1)
mix| + |e′

(0)
mix| ≤ B̃′. As a result,

(
s
(1)
mix − s

(0)
mix, e

(1)
mix −

e
(0)
mix,R

(1)
mix − R

(0)
mix,k

(1)
mix − k

(0)
mix, e

′(1)
mix − e′

(0)
mix

)
constitutes a witness for x =

(c, vk, d) ∈ L̃(QANIZK)
ρ′ , which yields a contradiction.

Correctness of Σ.BadChallenge. For any x = (c, vk, d) /∈ L̃(QANIZK)
ρ′ and any

a = (c0, vk0, d0), if the bad challenge function f(crs, x, a) ̸= ⊥, we aim to prove
that Σ.BadChallenge(crs, tdΣ , x, a) = f(crs, x, a). Suppose that f(crs, x, a) = ch
for some ch ∈ {0, 1}, then by the definition of f , ch is the unique challenge
such that Σ.Vrfy(crs, x, a, ch, z) = 1 for some z = (smix, emix, Rmix,kmix, e

′
mix).

Thus ∥emix∥∞ ≤ B̃/2 and c⊤0 + ch · c⊤ = s⊤mix ·A+ e⊤mix. Note that q ≥ 5mB̃,

so ∥emix∥ ≤
√
mB̃/2 ≤ q/(10

√
m). According to Lemma 4, it must hold that

Invert(TA, c0+ch·c) = (smix, emix). Consequently,Σ.BadChallenge(crs, tdΣ , x, a)
outputs ch, the same as f(crs, x, a). The correctness of Σ.BadChallenge follows.

Special Zero-Knowledge. We aim to bound the statistical distance between the
real proof (a = (c0, vk0, d0), z = (smix, emix, Rmix,kmix, e

′
mix)) and the sim-

ulated proof (ã = (c̃0, ṽk0, d̃0), z̃ = (s̃mix, ẽmix, R̃mix, k̃mix, ẽ
′
mix)) for any in-

stance x = (c, vk, d) ∈ L(QANIZK)
ρ′ with witness w = (s, e,R,k, e′).
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Note that both the real proof and the simulated proof satisfy the verification
equations, i.e.,

c⊤0 + ch · c⊤ = s⊤mix ·A+ e⊤mix mod q,

vk0 + ch · vk = X ·Rmix +
(

0
q·k⊤

mix

)
mod q2,

d0 + ch · d = c⊤ · kmix + e′mix mod q.

Therefore, in the real proof (a, z), a = (c0, vk0, d0) is completely determined by
z = (smix, emix,Rmix,kmix, e

′
mix), crs = (A,X), x = (c, vk, d) and ch, and in

the simulated proof (ã, z̃), ã = (c̃0, ṽk0, d̃0) is completely determined by z̃ =
(s̃mix, ẽmix, R̃mix, k̃mix, ẽ

′
mix), crs = (A,X), x = (c, vk, d) and ch in the same

way as the real proof.
So the difference between the real proof and the simulated proof lies in the

distribution of z and z̃, where z = (smix, emix,Rmix,kmix, e
′
mix) is generated by

first sampling

s0 ←$ Zn
q , e0 ←$ DZm,ζ , R0 ←$ DZm×m,ζ , k0 ←$ DZm,ζ , e′0 ←$ DZ,ζ′ ,

then computing

smix := s0 + ch · s mod q, emix := e0 + ch · e mod q,

Rmix := R0 + ch ·R mod q2, kmix := k0 + ch · k mod q,

e′mix := e′0 + ch · e′ mod q,

while z̃ = (s̃mix, ẽmix, R̃mix, k̃mix, ẽ
′
mix) is sampled directly via

s̃mix ←$ Zn
q , ẽmix ←$ DZm,ζ , R̃mix ←$ DZm×m,ζ , k̃mix ←$ DZm,ζ , ẽ

′
mix ←$ DZ,ζ′ .

Moreover, recall that the real proof (a, z) is outputted with probability θ, while
the simulated proof (ã, z̃) is outputted with probability θ̃. Our analysis is as
follows.

– Firstly, smix = s0 + ch · s in z and s̃mix in z̃ are both uniform over Zn
q .

– Secondly, note that ∥ch · e∥ ≤
√
mB and ζ =

√
mB · ω(

√
logm), Lemma

14 shows that emix = e0 + ch · e in z – when output with probability

min
(

DZm,ζ(emix)
M ·DZm,ζ,ch·e(emix)

, 1
)
– and ẽmix in z̃ – when output with probability

1/M – have statistical distance at most 2−100/M .
– Similarly, note that ∥ch ·R∥ ≤

√
m, ∥ch · k∥ ≤

√
m, |ch·e′| ≤ B′, ζ =

√
mB ·

ω(
√
logm) and ζ ′ = ω(B′), Lemma 14 shows that Rmix (resp., kmix, resp.,

e′mix) in z – when output with probability min
(

DZm×m,ζ(Rmix)

M ·DZm×m,ζ,ch·R(Rmix)
, 1
)

(resp., min
(

DZm,ζ(kmix)
M ·DZm,ζ,ch·k(kmix)

, 1
)
, resp., min

(
DZ,ζ′ (e

′
mix)

M ′·DZ,ζ′,ch·e′ (e
′
mix)

, 1
)
) – and

R̃mix (resp., k̃mix, resp., ẽ
′
mix) in z̃ – when output with probability 1/M

(resp., 1/M , resp., 1/M ′) – have statistical distance at most 2−100/M (resp.,
2−100/M , resp., 2−100/M ′).
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Overall, z = (smix, emix,Rmix,kmix, e
′
mix) – when output with probability θ =

min
(

DZm,ζ(emix)
M ·DZm,ζ,ch·e(emix)

· DZm×m,ζ(Rmix)

M ·DZm×m,ζ,ch·R(Rmix)
· DZm,ζ(kmix)
M ·DZm,ζ,ch·k(kmix)

· DZ,ζ′ (e
′
mix)

M ′·DZ,ζ′,ch·e′ (e
′
mix)

, 1
)

– and z̃ = (s̃mix, ẽmix, R̃mix, k̃mix, ẽ
′
mix) – when output with probability θ̃ =

1/(M3M ′) – have statistical distance at most 2−100 · (3/M + 1/M ′).
This completes the proof of special zero-knowledge.

Perfect CRS Indistinguishability. On input of language parameter ρ′ = (A,X),
both crs←$ Σ.CRSGen(ρ′) and (crs, tdΣ)←$ Σ.TrapGen(ρ′, tdρ′) simply set crs :=
(A,X). So perfect CRS indistinguishability trivially holds. ⊓⊔

The Trapdoor Σ-protocol for GLρ. For the gap language GLρ = (Lρ, L̃ρ)
defined in Subsect. 6.1 and specified by (55) and (56), the LWE-based trapdoor

Σ-protocol is just a simplified version of that for GL(QANIZK)
ρ′ , since it only needs

to prove the instance c satisfies c⊤ = s⊤ · A + e⊤ with witness (s, e). As a
result, crs := A; Σ.Prove1 outputs a := c0 and st := (s0, e0); Σ.Prove2 outputs

z := (smix, emix) with probability θ = min
(

DZm,ζ(emix)
M ·DZm,ζ,ch·e(emix)

, 1
)
; Σ.Vrfy only

checks ∥emix∥∞ ≤ B̃/2 and c⊤0 +ch ·c⊤ = s⊤mix ·A+e⊤mix mod q; Σ.Sim outputs

ã := c̃0 and z̃ = (s̃mix, ẽmix) with probability θ̃ = 1/M .
Similarly, we have the following theorem. Its proof is a simplified version of

that for Theorem 15, thus we omit it.

Theorem 16 (Trapdoor Σ-protocol for GLρ). Let ζ =
√
mB · ω(

√
logm),

B̃ = 2 · (ζ
√
m · ω(

√
log λ) +B) and q ≥ 5mB̃. Then the above construction is a

trapdoor Σ-protocol for the gap language GLρ = (Lρ, L̃ρ) defined in Subsect. 6.1
and specified by (55) and (56).

G.4 Generic QA-NIZK Transformation and QA-NIZK from LWE

In this subsection, we will use the generic QA-NIZK transformation in [34, Sub-
sect. 4.2] to convert the LWE-based trapdoor Σ-protocols proposed in the previ-
ous subsection (Appendix G.3) to LWE-based QA-NIZK schemes, which in turn
serve as building blocks for our SIG and PKE constructions in Sect. 4.

To this end, we will first recall the generic QA-NIZK transformation in [34,
Subsect. 4.2] for completeness, then describe how to compile our LWE-based
trapdoor Σ-protocols proposed in the previous subsection (Appendix G.3) into
LWE-based QA-NIZK schemes via the generic transformation.

The Generic QA-NIZK Transformation in [34, Subsect. 4.2]. The
generic transformation proposed by Libert et al. in [34, Subsect. 4.2] is able
to compile any trapdoor Σ-protocol for gap language into tag-based QA-NIZK
for the same gap language, with the help of correlation intractable (CI) hash
function and lossy PKE. Moreover, the transformation is tightness-preserving,
i.e., the resulting tag-based QA-NIZK has tight zero-knowledge and tight USS
as long as the building blocks are tightly secure.
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We recall the generic transformation for completeness. To construct a tag-
based QA-NIZK scheme for a gap language GLρ = (Lρ, L̃ρ), the underlying
building blocks are as follows.

• A trapdoor Σ-protocol Σ = (Σ.CRSGen, Σ.Prove1, Σ.Prove2, Σ.Vrfy, Σ.Sim,

Σ.TrapGen, Σ.BadChallenge) for the same gap language GLρ = (Lρ, L̃ρ).
• A pseudorandom function PRF : K×{0, 1}ℓ → {0, 1}λ with key space K and
input space {0, 1}ℓ. PRF define a relation RPRF : K × {0, 1}ℓ × {0, 1}λ →
{0, 1} with K = {0, 1}λ, where RPRF(K, ta, tc) = 1 iff tc ̸= PRF(K, ta). (The
syntax, security requirements and specific construction of PRF are recalled
in Definition 28.)
• AnRPRF-lossy PKE schemeRPRF-LPKE = (LPKE.Gen, LPKE.LGen, LPKE.Enc,
LPKE.Dec, LPKE.Opener, LPKE.LOpener) for the relationRPRF with tag space
T = {0, 1}λ × {0, 1}ℓ, randomness space RLPKE, message space M, cipher-
text space CT and randomness distribution DRLPKE

over RLPKE. (The syntax,
security requirements and specific construction of lossy PKE are recalled in
Definition 27.)
• A somewhere correlation intractable (CI) hash CIH = (CIH.Gen,CIH.StGen)
which is associate with efficiently computable keyed hash family H = {h :
K′ ×X × CT λ × {0, 1}λ × {0, 1}ℓ → {0, 1}λ}. (The syntax, security require-
ments and specific construction of CI hash are recalled in Definition 26.)
• A one-time signature scheme OTS = (OTS.Setup,OTS.Gen,OTS.Sign,OTS.Vrfy)
with verification key space VK = {0, 1}ℓ. (The syntax is the same as signa-
ture, see Definition 13. The security requirements and specific construction
of one-time signature are recalled in Definition 29)

The generic construction of tag-based QA-NIZK scheme QANIZK = (CRSGen,

Prove,VrfyNIZK,SimGen,Sim) for the gap language GLρ = (Lρ, L̃ρ) proposed in
[34, Subsect. 4.2] is presented in Fig. 10.

In [34], Libert et al. proved the tightness-preserving of the transformation,
i.e., the resulting tag-based QA-NIZK scheme has tight zero-knowledge and tight
USS as long as the building blocks are tightly secure. Formally, we recall the
following theorem from [34].

Theorem 17 ([34]). The ZK and USS of the generic tag-based QA-NIZK con-

struction for the gap language GLρ = (Lρ, L̃ρ) proposed in Fig. 10 can be tightly
reduced to the security and property of the underlying building blocks: (1) The
security of the trapdoor Σ-protocol; (2) The pseudorandomness of PRF; (3) The
security of CIH; (4) The key indistinguishability of R-LPKE; (5) The strong
MU-OT security of OTS.

Concretely, if the trapdoor Σ-protocol has special zero-knowledge with statis-
tical distance at most εzk, then the advantage of zero-knowledge for any (even all
powerful) adversary A′ is given by AdvzkQANIZK,A′(λ) ≤ εzk + 2−Ω(λ). Meanwhile,
the advantage of USS for any PPT adversary A is given by

AdvussQANIZK,A(λ) ≤ Advstr-otOTS,B1,Q(λ) + Advind-1R-LPKE,B2
(λ) + AdvindCIH,B3

(λ)

+ Advind-2R-LPKE,B4
(λ) + 2 · AdvpsePRF,B5

(λ) + 2−Ω(λ),
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crs ←$ CRSGen(ρ):

crs′ ←$ Σ.CRSGen(ρ), (pk, sk, tk)←$ LPKE.LGen(0λ).
k ←$ CIH.Gen, ppSIG ←$ OTS.Setup.
Return crs := (crs′, pk, k, ppSIG).

π ←$ Prove(crs, τ, x, w):

Parse crs := (crs′, pk, k, ppSIG).
(vk, sigk) ←$ OTS.Gen(ppSIG).
tc ←$ {0, 1}λ.
For all i ∈ [λ]:

(a′i, sti) ←$ Σ.Prove1(crs
′, x, w).

ri ←$ DRLPKE
.

ai ←$ LPKE.Enc(pk, (tc, vk), a
′
i; ri).

a′ := (a′1, · · · , a′λ).
r := (r1, · · · , rλ).
a := (a1, · · · , aλ).
ch := h(k, (x,a, tc, vk)) ∈ {0, 1}λ.
Parse ch = (ch1, . . . , chλ) ∈ {0, 1}λ
For all i ∈ [λ]:

z′i ←$ Σ.Prove2(sti, a
′
i, chi).

z′ := (z′1, · · · , z′λ).
z := (z′,a′, r).
σ ←$ OTS.Sign(sigk, (x, tc,a, z, τ)).
Return π := ((tc, vk), (a, z), σ).

0/1← VrfyNIZK(crs, τ, x, π):

Parse crs = (crs′, pk, k, ppSIG).
Parse π = ((tc, vk), (a, z), σ).
If OTS.Vrfy(vk, (x, tc,a, z, τ), σ) ̸= 1:

Return 0.
ch := h(k, (x,a, tc, vk)) ∈ {0, 1}λ.
Parse ch = (ch1, . . . , chλ) ∈ {0, 1}λ.
Parse a = (a1, · · · , aλ).
Parse z = (z′,a′, r).
Parse z′ = (z′1, · · · , z′λ).
Parse a′ = (a′1, · · · , a′λ).
Parse r = (r1, · · · , rλ).
If for all i ∈ [λ]:

ai = LPKE.Enc(pk, (tc, vk), a
′
i; ri)

and Σ.Vrfy(crs′, x, a′i, chi, z
′
i) = 1 :

Return 1;
Else: Return 0.

(crs, tdcrs)←$ SimGen(ρ):

crs′ ←$ Σ.CRSGen(ρ).
(pk, sk, tk)←$ LPKE.LGen(0λ).
k ←$ CIH.Gen.
ppSIG ←$ OTS.Setup.
crs := (crs′, pk, k, ppSIG).
tdcrs := sk.
Return (crs, tdcrs).

π ←$ Sim(crs, tdcrs = sk, τ, x):

Parse crs = (crs′, pk, k, ppSIG).
(vk, sigk)←$ OTS.Gen(ppSIG).
tc ←$ {0, 1}λ.
For all i ∈ [λ]:

ri,0 ←$ DRLPKE
.

ai ←$ LPKE.Enc(pk, (tc, vk), 0; ri,0).
a := (a1, · · · , aλ).
ch := h(k, (x,a, tc, vk)) ∈ {0, 1}λ.
Parse ch = (ch1, . . . , chλ) ∈ {0, 1}λ.
For all i ∈ [λ]:

(a′i, z
′
i)←$ Σ.Sim(crs′, x, chi).

ri ←$ LPKE.LOpener(sk, (tc, vk), ai, a
′
i).

a′ := (a′1, · · · , a′λ).
z′ := (z′1, · · · , z′λ).
r := (r1, · · · , rλ).
z := (z′,a′, r).
σ ←$ OTS.Sign(sigk, (x, tc,a, z, τ)).
Return π := ((tc, vk), (a, z), σ).

Fig. 10. The generic construction of QANIZK = (CRSGen,Prove,VrfyNIZK, SimGen, Sim)

for the gap language GLρ = (Lρ, L̃ρ) from trapdoor Σ-protocol, RPRF-LPKE, CIH and
OTS, proposed in [34, Subsect. 4.2].
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where Q is the number of oracle queries by A and PPT algorithms B1, · · · ,B5
run in about the same time as A.

QA-NIZK from LWE. Finally, by compiling the LWE-based trapdoor Σ-
protocols proposed in Appendix G.3 with the help of the instantiations of other
building blocks in Appendix G.1 via the generic transformation proposed by
Libert et al. in [34, Subsect. 4.2], we are able to obtain a tag-based QA-NIZK

scheme for the gap language GL(QANIZK)
ρ′ = (L(QANIZK)

ρ′ , L̃(QANIZK)
ρ′ ) specified by

(53) and (54) and a tag-based QA-NIZK scheme for the gap language GLρ =

(Lρ, L̃ρ) specified by (55) and (56) based on the LWE assumptions, serving
as building blocks for our SIG and PKE constructions. Formally, we have the
following corollary.

Corollary 1 (Almost Tight Security of LWE-based QA-NIZK). Given
the instantiations of the building blocks in Appendix G.1 and the instantiations of
trapdoor Σ-protocol in Appendix G.3, we obtain a specific tag-based QA-NIZK

scheme for the gap language GL(QANIZK)
ρ′ = (L(QANIZK)

ρ′ , L̃(QANIZK)
ρ′ ) specified by

(53) and (54) and a specific tag-based QA-NIZK scheme for the gap language

GLρ = (Lρ, L̃ρ) specified by (55) and (56), both of which have almost tight zero-
knowledge and USS based on the LWE assumption.

Concretely, the advantage of zero-knowledge for any (even all powerful) ad-
versary A′ is given by AdvzkQANIZK,A′(λ) ≤ 2−Ω(λ). Meanwhile, the advantage of
USS for any PPT adversary A is given by

AdvussQANIZK,A(λ) ≤ AdvSIS[n,q,m,β],B1
(λ) + 2λ2 · AdvLWE

[λ,q,χ,m],B2
(λ) + 2−Ω(λ),

where PPT algorithms B1 and B2 run in about the same time as A.
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