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Abstract. In this work, we construct the first digital signature (SIG)
and public-key encryption (PKE) schemes with almost tight multi-user
security under adaptive corruptions based on the learning-with-errors
(LWE) assumption in the standard model. Our PKE scheme achieves al-
most tight IND-CCA security and our SIG scheme achieves almost tight
strong EUF-CMA security, both in the multi-user setting with adaptive
corruptions. The security loss is quadratic in the security parameter A,
and independent of the number of users, signatures or ciphertexts. Previ-
ously, such schemes were only known to exist under number-theoretic as-
sumptions or in classical random oracle model, thus vulnerable to quan-
tum adversaries.

To obtain our schemes from LWE, we propose new frameworks for
constructing SIG and PKE with a core technical tool named probabilis-
tic quasi-adaptive hash proof system (pr-QA-HPS). As a new variant of
HPS, our pr-QA-HPS provides probabilistic public and private evaluation
modes that may toss coins. This is in stark contrast to the traditional
HPS [Cramer and Shoup, Eurocrypt 2002] and existing variants like ap-
proximate HPS [Katz and Vaikuntanathan, Asiacrypt 2009], whose pub-
lic and private evaluations are deterministic in their inputs. Moreover,
we formalize a new property called evaluation indistinguishability by re-
quiring statistical indistinguishability of the two probabilistic evaluation
modes, even in the presence of the secret key. The evaluation indistin-
guishability, as well as other nice properties resulting from the probabilis-
tic features of pr-QA-HPS, are crucial for the multi-user security proof
of our frameworks under adaptive corruptions.

As for instantiations, we construct pr-QA-HPS from the LWE as-
sumption and prove its properties with almost tight reductions, which
admit almost tightly secure LWE-based SIG and PKE schemes under our
frameworks. Along the way, we also provide new almost-tight reductions
from LWE to multi-secret LWE, which may be of independent interest.

1 Introduction

Tight Security. In modern cryptography, the security of cryptographic prim-
itives like digital signatures (SIG) and public-key encryptions (PKE) is estab-
lished by security reductions. Roughly speaking, a reduction turns an efficient


https://orcid.org/0000-0002-8156-7089
https://orcid.org/0000-0003-1366-8256
https://orcid.org/0000-0002-0504-9538

adversary A breaking the security of the considered scheme with running time
t 4 and advantage € 4 into an efficient algorithm B solving some computationally
hard problem with running time ¢z and advantage €3, and establishes a relation
eafta <l-ep/tg, where ¢ is called the security loss factor.

Usually, ¢ is a large polynomial in the number of users, signatures and/or
ciphertexts in a deployed system. When instantiating the scheme in a theoret-
ically sound manner, we have to compensate the security loss £ by increasing
key lengths, group sizes or vector dimensions of the scheme. However, it might
not be clear at the time of deployment that how many users will be involved
and how many signatures or ciphertexts will be generated in the lifetime of the
cryptographic system. If the estimation is too small, the provided security guar-
antee will not be backed by the security proof. Therefore, it is desirable that ¢
is a small constant or a small polynomial in the security parameter A\. Such a
security reduction is called a tight one or an almost tight one. We do not distin-
guish tightness and almost tightness, but we will detail the security loss in the
security theorems and scheme comparisons to reflect almost tightness.

Multi-User Security under Adaptive Corruptions (MU€). The standard
security notion for SIG is existential unforgeability under chosen-message attacks
(EUF-CMA) and that for PKE is indistinguishability under chosen-plaintext/ciph-
ertext attacks (IND-CPA/CCA). Both of the security notions are defined in a
single-user setting. However, in practice, SIG and PKE are usually deployed in
multi-user (and multi-challenge for PKE) settings, and leave more opportunities
to adversaries implementing new attacks. An important attack is user corruption
in that the adversary takes full control of some users and of course their secret
keys. This happens since some adversary may snatch secrets from some user by
system hacking or from key exposure due to the user’s bad key management.
Therefore, it is reasonable for us to consider EUF-CMA and IND-CPA/CCA secu-
rities in the multi-user (and multi-challenge) setting under adaptive corruptions
[6, 33], denoted by MU*-CMA and MUMC<-CPA/CCA, respectively. For ease of
exposition, we also refer to them in a unified way as the MUS security.

Apart from the motivations for the security itself, another important reason
for considering MU€ security is that it captures the actual security requirements
of many cryptosystems that use SIG and/or PKE as building blocks. A well-
known example is authenticated key exchange (AKE) protocols which use SIG to
authenticate protocol transcripts and use key encapsulation mechanism (KEM)
or PKE to encapsulate elements contributing to session keys. Standard AKE
security models, such as the Bellare-Rogaway [9] and the (extended) Canetti-
Krawczyk [17, 32] models, are in multi-user settings and allow adversaries to
corrupt secret keys of some users. In particular, Bader et al. [6] present the
first tightly MUS-CMA secure SIG and tightly MUMCS-CPA secure KEM (and
PKE), and use them to construct the first tightly secure AKE protocol. An-
other example is signcryption, which can be built from SIG and PKE in various
ways like “Encrypt-then-Sign”, “Sign-then-Encrypt” and “Encrypt-and-Sign”
[3]. The insider security model, which is concluded by Badertscher et al. [8] as
the standard for signcryption and followed up by Bellare and Stepanovs [10],



is also in multi-user settings and allows adaptive corruptions. In such scenarios,
MU¢-CMA security for SIG and MUMCES-CPA /CCA security for PKE play central
roles. Tight MU€ security of SIG and PKE would lead to tight security of the
applied cryptosystems.

On Achieving Tight MU Security. Due to their importance, SIG and
PKE with tight MU® security have become an active area recently, including
impossibility results [7, 39] and feasibility constructions [6, 25, 33, 26, 20, 40, 27].

On the one hand, it is quite challenging to construct SIG and PKE with
tight MU security. In general, single-user security can only non-tightly imply
MU¢€ security by a guessing strategy, which incurs a security loss linear in the
number of users. As shown by Bader et al. [7], it is even impossible to achieve
tight MUS-CMA and tight MUMCE-CPA/CCA securities if the relation between
public key and secret key satisfies certain properties, which are satisfied by many
existing SIG and PKE schemes. Alternatively, if the signing algorithm of SIG is
deterministic, tight MUS-CMA security is also impossible to achieve [39].

On the other hand, there are very few SIG and PKE constructions in the
literature proved to have tight MU® security, even in the random oracle (RO)
model. To the best of our knowledge, SIG schemes in [6, 25, 26, 20, 40, 27] and
PKE schemes in [6, 33, 27] are the only ones with tight MU® security. Almost all
of them base their security on number-theoretic assumptions, such as the Diffie-
Hellman assumptions in cyclic groups or ¢-hiding assumptions, which lead to
insecurity in the presence of powerful quantum adversaries. The only exception is
the SIG scheme of Pan and Wagner [20], which can be instantiated under either
the learning-with-errors (LWE) or isogeny-based assumptions. However, their
tight MUS-CMA security proof is based on the classical RO model, and it is left
as an open problem in [20] to extend their approach in the quantum RO model,
or even in the standard model. As for PKE, there is currently no construction
with tight MUMCES-CCA security based on post-quantum assumptions, no matter
in the RO model or in the standard model. This raises the following question:

Can we construct SIG and PKE schemes with tight MU security based on
post-quantum assumptions (such as LWE) in the standard model?

Our Contributions. In this work, we answer the above question affirmatively.

e We present the first SIG and PKE schemes whose MU€ security can be almost
tightly reduced to the LWE assumptions in the standard model. The security
loss is quadratic in the security parameter A. Our PKE scheme achieves
almost tight MUMCS-CCA security, and our SIG scheme achieves almost
tight MUS-CMA security with strong existential unforgeability, denoted by
strong MUS-CMA security, which even guarantees the hardness for adversary
to forge a new signature for an already signed message.

e We obtain our schemes by proposing new frameworks for tightly MUS se-
cure SIG and PKE. The core technical tool in our frameworks is a new
variant of hash proof system (HPS) named probabilistic quasi-adaptive HPS
(pr-QA-HPS), with new properties resulting from its probabilistic features.



We instantiate pr-QA-HPS from the LWE assumption and prove its proper-
ties with almost tight reductions, which is crucial for the almost tight MU
security of the resulting SIG and PKE schemes.

e Along the way, we also provide new almost-tight reductions from LWE to
multi-secret LWE, which serves as pivots for the almost tight MU security
of our SIG and PKE schemes.

Technical Overview. In a recent work, Han, Liu and Gu [27] provided nice
solutions to almost tightly MU€ secure SIG and PKE in the standard model, with
the help of quasi-adaptive HPS (QA-HPS). Here “quasi-adaptive” means that
the projection key of HPS may depend on the language for which HPS hash
values are generated. Note that their frameworks apply only when QA-HPS
has exact correctness and their framework for SIG also requires QA-HPS to be
publicly verifiable. For the LWE-based cases, however, their frameworks (named
HLG frameworks) do not work any more, because of the following obstacles.

— Obstacle 1: There is no LWE-based QA-HPS with exact correct-
ness. It is not an easy task to instantiate (traditional) HPS under LWE, as
there are many subtleties regarding the correctness (aka projectiveness) of
HPS, let alone QA-HPS. Loosely speaking, HPS has two evaluation modes
for computing HPS hash values, a public mode Pub using a projection key
and a private mode Priv using a secret key. The (exact) correctness requires
that the two evaluation models result in the same value for element in the
language. Due to the noise inherent in LWE, it is hard (and even seems im-
possible) to achieve exact correctness. Instead, there are several attempts in
the literature [24, 31, 11, 46, 29] to instantiate HPS under LWE by relaxing
the exact correctness to approximate correctness, i.e., requiring only that the
two evaluation models result in sufficiently close values. We refer to such HPS
as approzimate HPS. This is sufficient for the purpose of [31, 11, 46, 29], but
it is insufficient for the HLG framework [27] in proving MU® security. Similar
to the Cramer-Shoup argument [19], the computations of HPS hash value
need to be switched from one mode (e.g., the real scheme uses the public
mode) to the other mode (e.g., the security proof uses the private mode),
without being noticed by the adversary. However, in the MU® security proof,
the adversary can first see the evaluated hash value, then ask to corrupt the
user and obtain its secret key. With the secret key, the adversary is able
to recompute the hash value in the private mode and compare it with the
obtained hash value. Thus, any difference between the evaluated hash values
in the two modes will be caught by the adversary.

— Obstacle 2: There is no LWE-based QA-HPS with public verifica-
tion. In the HLG framework, in order to construct MU-CMA secure SIG,
the QA-HPS is required to support public verification of hash values given an
extra verification key. Such QA-HPS is termed as publicly-verifiable QA-HPS
(PV-QA-HPS) in [27]. PV-QA-HPS is necessary for the public verification
of their SIG [27], but it only has instantiations over pairing groups, as it
relies on the pairing operations to accomplish the public verifiability of hash



values. In the LWE setting, there is no counterpart to pairing operations, so
it is hard to obtain PV-QA-HPS and the HLG framework does not apply.

To circumvent the above obstacles, we propose the concept of probabilistic
QA-HPS and new approaches to tight MU€ security with the help of pr-QA-HPS.

(1) Probabilistic QA-HPS (pr-QA-HPS) from LWE. Recall that QA-
HPS = (a(+), Pub, Priv) for NP-language £ C X is associated with a subset mem-

bership problem (SMP) so that {c <—s £} ~ {c +s X'}. Its projection function
a(-) maps a secret key sk to a projection key pk = «a(sk), its public evaluation
algorithm Pub(pk, ¢, w) computes the hash value Ay (c) for ¢ € £ with witness w,
and its private evaluation algorithm Priv(sk, ¢) computes the hash value Az (c)
for ¢ € X. The (exact) correctness asks that Pub(pk, ¢, w) = Priv(sk, c) = Agx(c)
for all ¢ € £ with witness w.

Now we consider the LWE case. All the LWE samples for matrix A € Zg*™
and error bound B constitute an NP-language

La={c=ATs+e|secZ'ec|[-B B"} (1)

Then the LWE problem just serves as the SMP for £5. Now we define sk =
k € {0,1}™, pk = p = Ak and the hash value of instance ¢ € Zg" is Ak(c) :=
c'k € Z4. However, with pk = p and witness (s,e), public evaluation can
only obtain a value like s'p = s'(Ak), which is hardly equal but close to
Ag(c)=c'k=(sTA+el)k.

To circumvent the problem of lacking exact correctness, we put forward a
new variant of QA-HPS, called probabilistic QA-HPS (pr-QA-HPS). In stark
contrast to the traditional HPS [19] and variants like approximate HPS [31] or
QA-HPS [28], whose public and private modes are deterministic in their inputs,
our pr-QA-HPS has probabilistic public and private modes (denoted by prPub
and prPriv, respectively), the outputs of which are probabilistic distributions
over the hash value space. Instead of requiring exact correctness, we require the
statistical indistinguishability of the two probabilistic evaluation modes, even in
the presence of the secret key. We formalize this as the property of evaluation
indistinguishability. See Definition 7 in Sect. 3 for the formal definition.

The property of evaluation indistinguishability enables the switch of evalu-
ation mode from one to the other in a statistically indistinguishable way, even
in the view of adversaries who can implement corruption attacks and obtain the
secret key, thus serving well for our MU€ security proof, as shown later.

Below we give an overview of our LWE-based pr-QA-HPS. Let B and B’ be
error bounds satisfying B’ > mB - 2908 with X the security parameter.

— The secret key is sk = k € {0,1}™, and for language Lo = {c = ATs+e|s €
Zy,e € [-B, B]™}, the projection key is pk = p = Ak € Zj.
— The hash value of an instance ¢ € Z]" is defined by Ax(c) := ¢k € Z,.

— For an instance ¢ = A's + e in the language L4, the probabilistic public
evaluation mode prPub generates a hash value by first sampling a random



value ¢/ <—s [—B’, B'] uniformly, then computing s ' p+¢’ using the projection
key pk = p and the witness s for ¢ € La. Namely,

s'p+ ¢ <sprPub(p,c,s) with ¢ «s[-B’,B’]. (2)

— For an instance ¢ € Z' (no matter in L£a or not), the probabilistic private
evaluation mode prPriv generates a hash value by first sampling a random
value €’ ¢s [~B’, B'] uniformly, then computing ¢k -+ ¢’ using the secret
key sk = k. Namely,

c'k+¢e s prPriv(k,c) with ¢ <s[-B', B (3)

That is to say, the HPS hash function Ay is still deterministic, while there are
two probabilistic ways to evaluate it. Our LWE-based pr-QA-HPS has evaluation
indistinguishability, since the bigger noise ¢ smudges the small error to make
the statistical distance between the two probabilistic modes negligibly small:

A(sTp + 8/7 CTk + 6/) = A(—S%—f— e’,sLKE—i— eTk —+ e/) < mB/B/ < 2—w(log )\).

(2) New Framework for Constructing SIG with pr-QA-HPS (from
LWE). In the HLG framework for SIG, QA-HPS is required to support pub-
lic verification of hash values with an extra verification key (i.e., the so-called
publicly-verifiable QA-HPS), since a QA-HPS hash value is part of the signa-
ture. However, in order to instantiate such QA-HPS, they rely on the pairing
operations, which have no counterpart in the LWE setting.

In our case, it seems very hard to define an extra verification key vk for our
aforementioned LWE-based pr-QA-HPS, so that the correctness of hash values
in (2) or (3) can be publicly checked with vk.!

To circumvent the problem, we propose a new framework for SIG. Instead
of requiring the public verifiability of hash values from QA-HPS, we resort to
tag-based quasi-adaptive non-interactive zero-knowledge argument (QA-NIZK)
[30] and augment the HPS hash value verification to QA-NIZK. Meanwhile,
we also make use of dual-mode commitment, which has two computationally
indistinguishable modes (i.e., a binding mode and a hiding mode), to bind the
signing key and the verification key of SIG.

Below is our new framework for SIG from pr-QA-HPS = («(+), prPub, prPriv),
dual-mode commitment Com and QA-NIZK = (Prove, Vrfy), where QA-NIZK is
for the language Lqanizk :=

{(c,vk,d) ‘ A(k,r, e’ € [-B',B’]),s.t.c € Lo Avk = Com(k;r) Ad = ch—i—e’}.
(4)

— The signing key sigk = (k,r) contains the secret key k of pr-QA-HPS and
random coins r, and the verification key is the commitment vk = Com(k;r).

L Of course, we cannot simply set sk to vk, since vk is public and the properties of
(pr-)QA-HPS should not be harmed in the presence of vk.



— The signature for message m is given by o :=
(c<s La, d<sprPriv(k,c), m <s Prove(tag = m, (c, vk, d), (k,7,€')) ).
— The verification of (m,o = (c,d,w)) is just the QA-NIZK verification.

Now we roughly sketch the proving idea for the strong MU®-CMA security
of our SIG. We aim to show that the fresh message-signature pair (m*,o* =
(c*,d*, 7)) forged by the adversary hardly passes the verification of QA-NIZK,
even if the adversary can query messages for signatures via a signing oracle and
corrupt the signing keys of some users.

e To generate signature o = (c, d, 7) for message m, the signing oracle invokes
the simulator of QA-NIZK using a simulation trapdoor, instead of invoking
algorithm Prove using the witness (k,r,e’), to generate the proof . This
change is indistinguishable due to the zero-knowledge of QA-NIZK.

e To generate signature o = (c, d, 7) for message m, the signing oracle switches

the language from £ to La,, where A and Ay are uniformly and indepen-
dently chosen. That is, it samples ¢ <—s L4, instead of c <—s La. Note that
La is still used to determine the language Lqanizk in (4). By the LWE as-
sumption, (A, ATs +e) & (A u s Z7) ~ (A, A] s+ e), so this change is
indistinguishable.
Consequently, by the evaluation indistinguishability of pr-QA-HPS, the gen-
eration of d <—s prPriv(k, ¢) can be changed to d <—s prPub(py = Agk,c,s),
where s is the witness for ¢ = AJs + e € La,. This holds even if the
adversary corrupts the user and obtains its signing key k.

e The binding property of commitment makes sure that the unbounded simulation-
soundness (USS) of QA-NIZK applies to the forged signature o* = (c*, d*, 7*).
So a successful forgery for a target user must satisfy that ¢* € LA and
d* lies close to c*Tk = (s*TA + e*T )k, where (s*,e*) is the witness for
c* =ATs* +e* € La and k is the signing key of the target user.

e The dual-mode commitment is switched to the hiding mode, then vk does
not leak information about the secret key k. Now all information about k
learned by the adversary is bounded by Agk, if the adversary never corrupts
the target user to obtain its signing key k. When m = 2nlogq + w(log \),
there is still nlog ¢ + w(log A) bits of information left in k. Taking A as an
extractor, then Ak is statistically close to the uniform distribution (this is
characterized as the (La,, LA )-one-time-extracting property of pr-QA-HPS).
As a result, the adversary can hardly forge a d* such that d* lies close to
c*Tk =s*T Ak + e*"k.? Then strong MU-CMA security follows.

Overall, the strong MU-CMA security proof is accomplished by the evaluation
indistinguishability & (La,, La)-one-time-extracting property of pr-QA-HPS,
SMP, zero-knowledge & USS of QA-NIZK, and indistinguishability of binding
and hiding modes of commitment. Due to the nice properties of pr-QA-HPS,

2 The bad case that s* = 0 has been excluded in the language £a, see Footnote 6 for
more details. We forgo making this explicit for the sake of simplicity.



we stress that all reduction algorithms can generate the signing keys of all users
themselves, and hence can deal with adaptive corruptions by the adversary.

(3) Extending the HLG Framework for Constructing PKE with pr-
QA-HPS (from LWE). The HLG framework for PKE needs the exact correct-
ness of QA-HPS. To circumvent the obstacle in the LWE setting, we extend their
framework by replacing QA-HPS with our pr-QA-HPS and augmenting error-
correction code ECC = (Encode, Decode) to deal with the LWE errors. Below is
our extended framework.

— The secret key of PKE is just the secret key sk = k of pr-QA-HPS, and the
public key is the projection key pk = p = Ak.
— The encryption of message m results in the ciphertext ct :=

(c<s La, d<sprPub(p,c,s) + Encode(m), m <—s Prove(tag, c, (s,€e)) ),

where tag is a collision-resistant hashing of (pk, d) and QA-NIZK = (Prove, Vrfy)
is for the language L4 in (1).

— The decryption of ¢t = (c,d, 7) needs a successful verification of 7 by Vrfy
and then the computation of m := Decode(d — prPriv(k, c)).

Now we sketch the proving idea for the MUMC®-CCA security of our PKE. We
aim to show that the multiple challenge ciphertexts (may under different public
keys) {ct* = (c*,d*,n*)} for plaintexts {mg} are indistinguishable from those
for {m1}, even if the adversary has access to a decryption oracle and can corrupt
the secret keys of some users (but not those for the challenge ciphertexts).

e To generate challenge ciphertexts {ct* = (c*,d*,n*)} for plaintexts {m;}
with b € {0, 1}, the encryption oracle switches public evaluation prPub(p, c*, s*)
to the private one prPriv(k, c*) for the computation of d*, so

d* +s prPriv(k,c*) + Encode(my) = ¢* "k 4 ¢’ + Encode(my).  (5)

Clearly pr-QA-HPS ensures the evaluation indistinguishability. Then the
witness for ¢* € La is not needed any more, and the proof n* can be
computed by the simulator of QA-NIZK, instead of algorithm Prove. This
change is indistinguishable due to the zero-knowledge of QA-NIZK.

e To generate challenge ciphertexts {ct* = (¢*,d*,7*)}, the encryption oracle
switches the language from L£a to L£a,. That is, it samples c¢* <—s L4, in-
stead of ¢* <—s L. By the LWE assumption, {ATs* +e*} ~ {u < Zyy ~
{AJs* + e*}, so this change is indistinguishable.

Consequently, for ¢* = A]s* +e* € La,, (5) can be changed to

d* s prPub(po = Aok, c*,s*) + Encode(m;) = s* T Agk + ¢’ + Encode(my)

due to the evaluation indistinguishability of pr-QA-HPS.
e To decrypt a ciphertext ¢t = (c,d, ), the decryption oracle rejects ct if ¢ ¢
L. This change is indistinguishable, since m hardly passes the verification



of QA-NIZK when ¢ ¢ La, thanks to the USS of QA-NIZK. Then due to the
evaluation indistinguishability of pr-QA-HPS, the decryption of ¢t = (¢, d, )
with ¢ € LA can be done with prPub so that

m := Decode(d — prPub(p, c,s)) = Decode(d —s' Ak — ¢’). (6)

e Now for any user 4, let its secret key be k(?. The public key and decryption
oracle only leak Ak via pk() = p() = Ak® and (6). When m = 2nlog ¢+
w(log M), there is still nlog g +w(log \) bits of information left in k(*). Taking
Ag as an extractor, then Agk(? is uniform (this is characterized by the
(LA, LA,)-key switching property of pr-QA-HPS). So when computing ct*,
we have

(C*T _ S*TAO + e*T,S*TAQk(i) + e/) é S*T(Aola(i)) + (e*T|e/) é u('L’)7

where a(®) ¢ Ly ul® s ZZI”H, and the last step is due to the LWE as-
sumption. Therefore, we can use a random element, instead of prPub(pg, c*,s*),
to perfectly hide my in d* (this is characterized by the La,-multi-key multi-
extracting property of pr-QA-HPS), and the MUMCES-CCA security follows.

Overall, the MUMCS-CCA security proof is accomplished by the evaluation in-
distinguishability & (LA, La,)-key switching & L£a,-multi-key multi-extracting
property of pr-QA-HPS, SMP, zero-knowledge & USS of QA-NIZK. Due to the
nice properties of pr-QA-HPS, all reduction algorithms can generate the secret
keys of all users themselves, and hence can deal with adaptive corruptions.

(4) Almost Tight MU€ Security from Reduction for Multi-Secret LWE.
In the MU*€ security model for SIG/PKE, there are multiple signing queries/mul-
tiple challenge ciphertexts. Therefore, we need multi-fold SMP requiring that

(A,SA +E) = (A, U) (7)

with A s Zy™™, S < Z?X" and U <—s Zgzxm, which is in fact the multi-secret
LWE. We show that the LWE assumption almost tightly implies multi-secret
LWE, i.e., (7). The idea is inspired by [2]. Firstly, A can be divided into the first

column A; € Z; and the rest, which is denoted by Ay € ng(mfl). Then Ay can

be sampled with a lossy sampler Ay := CB+F, where C s Z;’XZ, B s ng(m_l),

F e ng(mfl) follows the error distribution and ¢ < n. This change is indistin-
guishable based on the LWE assumption, with a reduction loss n by a standard
hybrid argument. With a lossy As, SAs does not leak too much information
about S. Then the uniformly random A; functions as an extractor so that SA;
is uniformly distributed. Consequently, the first column of SA + E can be re-
placed with a uniform column. Column by column, SA + E can be replaced
with a uniform matrix, and thus (7) follows. Overall, there are totally m steps
and each step loses a factor n, so the overall loss factor is O(mn). Thus it is an
almost tight reduction from LWE to multi-secret LWE.

In Sect. 5, we give a fine-grained almost tight reduction, with loss factor
further decreased to O(cn) (c < m), which can be as small as O(\?).



Instantiation of Our Frameworks. In addition to our LWE-based pr-QA-
HPS described earlier, we also need tightly secure dual-mode commitment and
QA-NIZK from LWE to obtain tightly MU secure SIG and PKE schemes via
our frameworks. For the dual-mode commitment scheme, we instantiate it by
adapting the Regev’s PKE scheme [45]. As for QA-NIZK, we instantiate it based
on the recent advances in LWE-based NIZK in the standard model [16, 43, 34].
In particular, we follow one of the most efficient paradigms for LWE-based NIZK
to date, which is due to Libert et al. [34], and construct tightly-secure QA-NIZK
based on LWE directly for the languages defined in (4) for SIG and (1) for PKE
respectively, bypassing a heavy reduction to an NP-complete problem [16, 43].
To this end, we first construct trapdoor X-protocols based on LWE, then compile
them via the tightness-preserving transformation proposed by Libert et al. [34]
to obtain tightly-secure QA-NIZKs. See Subsect. 6.4 for more details.

To deal with the LWE errors, all the building blocks pr-QA-HPS, dual-mode
commitment and QA-NIZK must support gap language (i.e., a pair of languages
L C LN) For simplicity, we do not make this explicit in our overview and refer
to the main body for more details.

On Efficiency of Our Schemes. Finally, we discuss the efficiency of our
LWE-based SIG and PKE schemes with tight MU security. For our SIG, the
verification key is a single matrix®, the secret key consists of a bit-string plus a
matrix, and the signature is made up of a single vector and a QA-NIZK proof.
For our PKE, the public key is a single vector, the secret key is a single bit-string,
and the ciphertext is made up of a single vector and a QA-NIZK proof.

Although we instantiate LWE-based QA-NIZK following one of the most
efficient paradigm to date by Libert et al. [34], it is not quite practical at the
moment. Consequently, our tightly MUS secure SIG and PKE schemes may not
be as efficient as the existing LWE-based SIG (e.g., [14, 38, 12, 22]) and PKE
schemes (e.g., [44, 41, 38]) in the standard model, almost all of which do not have
tight reductions even in the single-user setting. However, we stress that the main
purpose of this work is taking the first theoretical step to study whether tightly
MU¢€ security from LWE in the standard model is possible and how to achieve
it. We believe that our ideas may open the door to further improvements, e.g.,
by improving the efficiency of LWE-based QA-NIZK.

Furthermore, similar to [27], we note that we can obtain more cryptographic
primitives with tight MU€S security from our SIG and PKE schemes, including
signcryption (SC), message authentication code (MAC) and authenticated en-
cryption (AE) schemes.

2 Preliminaries

Notations. Let A € N denote the security parameter throughout the paper,
and all algorithms, distributions, functions and adversaries take 1* as an implicit

3 Here we do not count the public parameters in the verification key, as it can be
shared among all users. The same applies to the public key of PKE.
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input. Let () denote the empty set. If  is defined by y or the value of y is
assigned to x, we write z := y. For i € N, define [i] := {1,2,...,4}. For a set X,
denote by x <—s X the procedure of sampling = from X uniformly at random.
If X is distribution, x <—s X means that z is sampled according to X. We use
y <s A(x) to define the random variable y obtained by executing algorithm A
on input . We use y € A(x) to indicate that y lies in the support of A(z). If A
is deterministic we write y « A(x). We also use y + A(x;r) to make explicit
the random coins 7 used in the probabilistic computation. Denote by T(.A) the
running time of A. “PPT” abbreviates probabilistic polynomial-time. Denote by
poly some polynomial function and negl some negligible function.

For distributions X, Y, Z, let A(X,Y) := % -y | Pr[X =z] — PrlY = ]
denote the statistical distance between X and Y, A(X,Y |Z) a shorthand for
A((X,2), (Y, Z)), and Hoo (X |Y) := —log (Eye.y [ max, Pr[X = z|Y = y]])
the average min-entropy of X conditioned on Y. If A(X,Y) < negl()\), we say
that X and Y are statistically indistinguishable (close), and denote it by X Y.
If |Pr[D(X) = 1] — Pr[D(Y) = 1]| < negl()\) for all PPT distinguishers D,
we say that X and Y are computationally indistinguishable, and denote it by
X & Y. For a metric space M with metric dist, we use Ball, (m) = {m €
M | dist(m,m’) < e} to denote the ball centered at m € M of radius € > 0.
We use lower-case bold letters (like v) to denote column vectors and upper-case
bold letters (like A) to denote matrices. For a vector v, we let ||v|| (resp., ||V]| )
denote its £ (resp., infinity) norm. For a matrix A, we define ||A|| (resp., ||A]| )
as the largest £o (resp., infinity) norm of A’s rows. A distribution x is B-bounded
if its support is limited to [-B, B]. Let Z, be the ring of integers modulo ¢, and
its elements are represented by the integers in (—q/2,q/2].

Lemma 1 ([21]). Let X,Y,Z be three (possibly correlated) random wvariables.
If Z has at most 2* possible values, then Hoo(X | (Y, Z)) > Hoo(X|Y) — A

In Appendix A, we present additional preliminaries. More precisely, we present
the syntax of digital signature (SIG) and its strong MUS-CMA security in Ap-
pendix A.1, the syntax of public-key encryption (PKE) and its MUMCS-CCA se-
curity in Appendix A.2, the syntax of tag-based quasi-adaptive non-interactive
zero-knowledge argument (QA-NIZK) for gap language and its zero-knowledge
and unbounded simulation-soundness (USS) in Appendix A.3, the definition of
collision-resistant hash functions in Appendix A.4, and the definition of error-
correcting codes in Appendix A.5.

2.1 Gap Language Distribution

In this work, we consider gap languages (i.e., a pair of NP-languages £ C £) and
formalize a collection of gap languages as a gap language distribution.

Definition 1 (Gap Language Distribution). A gap language distribution
Z is a probability distribution that outputs a language parameter p as well as

11



a trapdoor td, in polynomial time. The language parameter p publicly defines a
gap language GL, = (ﬁp,Ep) satisfying L, C Zp C X, with X the universe.
Moreover, £ is associated with three PPT algorithms (Sample,, Sample ., Check7):

Sample,(p) samples an instance x from L, together with a witness w; Sample
samples an instance x from X'; Checkz(p, td,, x) is a deterministic algorithm that
outputs a decision bit about whether x is in Ep, with the help of td,. We require

that for all (p,td,) € £ and x € X, Checkz(p,td,,v) = 1 holds if and only if

T € Zp. For simplicity, we will slightly abuse notations “x <—s L,” and “c <—s X”

to denote sampling x according to Sample,(p) and Sample,,, respectively.

A gap language distribution .Z is associated with a subset membership prob-
lem (SMP), which asks whether an element is randomly chosen from £, or X.
SMP can be extended to multi-fold SMP by considering multiple elements.

Definition 2 (SMP). The subset membership problem (SMP) related to £
is hard, if for any PPT adversary A, it holds that Adv’ig®,(X) := | Pr[A(p,z) =
1] — Pr[A(p, 2') = 1]| < negl(N), where (p,td,) s L, v s L, and 2’ s X.

Definition 3 (Multi-fold SMP). The multi-fold SMP related to £ is hard,
if for any PPT adversary A and any polynomial Q = poly(\), it holds that

AdVETE o (V) = |Pr[A(p, {z;}jeiq) = 1] — PrlA(p, {z]}jeq) = 1| < negl(N),
where (p,td,) s L, x1,...,xqQ s L, and x’h...,x’Q —s X

Multi-fold SMP can generally be reduced to SMP with a security loss of
the number of folds. In this work, we will instantiate gap language distributions
based on LWE and show an almost tight reduction from SMP to multi-fold SMP.

2.2 Commitment Scheme

A dual-mode commitment scheme has two indistinguishable parameter genera-
tion modes, i.e., a binding mode and a hiding mode. Below we propose a new
variant called dual-mode gap commitment scheme, by requiring the hiding prop-
erty hold for messages in a message space M but the binding property hold for
messages in a possibly larger message space M.

Definition 4 (Dual-Mode Gap Commitment Scheme). A dual-mode gap
commitment scheme CMT = (BSetup, HSetup, Com) consists of PPT algorithms:

— ppcmT s BSetup/HSetup: The binding-mode/hiding-mode setup algorithm
outputs a public parameter ppcut, which implicitly defines two message
spaces M C M and two randomness spaces R C R.

— com + Com(ppcmt,m;r): Taking as input ppeyt, @ message m € M and a
randomness r € R, the committing algorithm outputs a commitment com.

Moreover, there exist negligible functions €ynging ANd Epiging (N ), such that the
following properties hold:

12



e Parameter Indistinguishability: For any PPT A, it holds that

Ad"z?\;afi,rﬁ(A) = | Pr[A(ppcmt) =1 | PPcmT <5 BSetup]
—Pr[A(ppcmt) = 1 | ppemt ¢ HSetup]| < negl(\).

® chnang-Statistical Binding for M under BSetup: It holds that

Hm#m'eﬂ,r,r’eﬁ,

P +s BSetup :
T |PPemT 2 U st Com(ppemt, m; 1) = Com(ppemt, m'; ')

< Ebinding-
o cLungs-Statistical Hiding for M under HSetup: It holds that

max A((PPcMw Com(ppcmt; m0; 7)), (PPcmT> Com(pPemT; M1 T)))S Ehiding 5

mo,m1€

where the probability is over ppcyt s HSetup and r <—s R.

2.3 Lattice Backgrounds

For ¢ > 0 and ¢ € R™, we define the Gaussian function on R" centered at c
with parameter o by psc(x) := e~mlx=¢l*/o* The discrete Gaussian distribu-
tion Dy e over an n-dimensional lattice A C R™ is defined by Dy gc(x) =
Po.c(X)/po,c(A) for any lattice vector x € A, where pyc(A) = >, 4 po.c(2).
The subscript c is taken to be 0 when omitted.

We will use the following variant of the leftover hash lemma.

Lemma 2 (Particular case of [37, Lemma 2.3]). Let n,m,q € N be
integers and € € (0,1). Suppose s is chosen from some distribution over Zq' and
A s Zy*™, u <= Zy are chosen independently of s from uniform distribution.
Furthermore let Y be a random-variable (possibly) correlated with s.

— If q is a prime, and ﬁoo(s mod ¢|Y) > nlogq + 2log (%) . Then we have:
A((AAs), (A u)|Y) <e

— If q is a composite number, and ITIOO(S mod p|Y) > 2nlogq + 2log (%) for
any q’s prime factor p. Then we have: A((A,As), (A, u) |Y) <e

Definition 5 (LWE Assumption [45]). Let n,m,q € N, and x be a distribu-
tion over Zq. The LWE,, 4\ .m-assumption holds, if for any PPT adversary A, it
holds that AdviVE (A) == |Pr[A(A,sTA+e") =1 - Pr[A(A,u’) =1]| <

[n,q,x,m], A
negl(\), where A «—s Zy*™, s <—s Zy, € <—s X" and u <s Z;".

q’

Definition 6 (Multi-secret LWE Assumption). Letn,m,q,Q € N, and x

be a distribution over Zq. The Q-LWE,, , \ m-assumption holds, if for any PPT
A it holds that AdvZ " (3) = |Pr[A(A,SA + E) = 1] — Pr[A(A,U) =
1]’ < negl(A), where A < Z3*™, S < ZqQX”, E s x9™ and U s ZqQX"L.
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A simple hybrid argument can show that Adv[cfz',:\f\f’m] N < Q-Advl[;\i\ﬁx,m] (N).
However, the security loss factor depends on the number of the secrets. In this
paper, we will show an almost tight security reduction from LWE to multi-secret
Q-LWE (see Theorem 3 in Sect. 5).

In [1, 38], an algorithm named TrapGen is proposed to sample a “nearly”
uniform random matrix A along with a low-norm trapdoor matrix T such
that A - Ta = 0 (cf. Lemma 3). Meanwhile, another algorithm called Invert is
proposed to make use of Tz to invert an LWE sample (A,s" A +e') to obtain
s and e (cf. Lemma 4).

Lemma 3 ([1, 38]). There exists a PPT algorithm TrapGen that takes as input
positive integers n, q (g > 2) and a sufficiently large m = O(nlogq), outputs a
matriz A € Zngm and a trapdoor matriz Ta € Zg”xm such that A is statistically
close to the uniform distribution, A - Ta =0, and | Ta| = O(v/nloggq).

Lemma 4 ([38, Theorem 5.4]). There exists a deterministic polynomial-time
algorithm Invert that takes as inputs the trapdoor information Ta* and a vector
sTA+e' withs € Z and ||| < q/(10y/m), and outputs s and e.

‘We recall the tail bound about the discrete Gaussian distributions over Z™.

Lemma 5 (Tail Bound [36]). For anyt > 0, we have Pry s p,, [|z| >
too] <2 T and Pry s py [IIx] > Xl > t-oym] <7 e300,
In particular, for t > w(y/log\), the probability that |z| > t - o and ||x|| >

%], > t-ov/m is negligible.

The next smudging lemma shows that a uniform distribution over a suffi-
ciently large interval [—B’, B'] can swallow any distribution over a small interval
[ B, B] and yield a nearly uniform distribution over [—B’, B'].

Lemma 6 (Smudging Lemma, [5, Lemma 1]). Let B, B’ be positive inte-
gers, and e € [—B, B] a fized integer. Then for a uniformly chosen e’ +s [—B’, B'],
it holds that A(e +¢€',¢’) = B/B’.

3 Probabilistic QA-HPS

Hash proof system (HPS) was proposed by Cramer and Shoup [19], and turned
out to be a powerful tool in a wide range of applications. Han et al. [28, 27]
generalized HPS in a quasi-adaptive setting, termed as Quasi-Adaptive HPS
(QA-HPS), by allowing the projection key to depend on the specific language
L, for which hash values are computed. (For completeness, the formal definition
of QA-HPS is recalled in Appendix A.6.)

In this section, we propose a new primitive called Probabilistic QA-HPS
(pr-QA-HPS), by further generalizing QA-HPS in two aspects. Firstly, pr-QA-HPS

4 More precisely, the trapdoor information is not Ta itself, but some sensitive infor-
mation used to generate Ta. Here we abuse them for simplicity.
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has probabilistic public and private evaluation algorithms (denoted by prPub and
prPriv) that may toss coins. In other words, the outputs of prPub and prPriv are
probabilistic distributions over the hash value space. Regarding correctness, in-
stead of requiring exact correctness as for (QA-)HPS, we require an approximate
correctness for pr-QA-HPS. Moreover, we require a statistical indistinguishabil-
ity of the two probabilistic evaluation algorithms. Secondly, pr-QA-HPS is de-
fined for a gap language distribution. Some properties of pr-QA-HPS, e.g., the
evaluation indistinguishability in Definition 7 and the one-time extracting in
Definition 11, require the underlying language distribution to be a gap one.
Firstly, we present the syntax of probabilistic QA-HPS.

Definition 7 (Probabilistic QA-HPS). A probabilistic QA-HPS (pr-QA-
HPS) scheme prQAHPS = (Setupyps, a .y, prPub, prPriv) for a gap language dis-
tribution £ consists of four PPT algorithms:

— PPups s Setupyps: The setup algorithm outputs a public parameter ppyps,
which serves as an implicit input of other algorithms. ppyps “mplicitly de-
fines a hashing key space SKC, a hash value space HYV, and a family of hash
functions Ay : X — HV indexed by hashing keys sk € SK, where X is the
universe for languages output by Z .

We require that Ay is efficiently computable and there are PPT algorithms
for sampling sk <s SK uniformly and sampling hv <—s HY uniformly. We
also require the hash value space HV to be a metric space.

- pk, < a,(sk): On input a hashing key sk € SK, the deterministic projection
algorithm indezed by language parameter p outputs a projection key pk,,.

— hv «=s prPub(pk ,, z,w): Taking as input a projection key pk, = a,(sk) spec-
ified by p, an instance r € Ep and a witness w for x € Ep, the probabilistic
public evaluation algorithm outputs a hash value hv € HV .

— hv <s prPriv(sk, x): On input a hashing key sk € SK and an instance x € X,
the probabilistic private evaluation algorithm outputs a hash value hv € HV .

Moreover, there exist negligible functions €ypuw, Eppriv ANA Eevaia (N ), such that
the following properties hold:

® (Enpubs Eppriv)-Approximate Correctness for L,: For all (p,td,) € Z,
PPups € Setupyps, sk € SK, = € L, with witness w, and pk, = a,(sk), it
holds that Prhv s prPub(pk,, z,w) : hv € Ball,,,, (A (2))] =1

and  Pr[hv <s prPriv(sk,x) : hv € Balle,,, (A (z))] = 1.

Here hv € Ball,,, (Ask(x)) (resp., hv € Ball,,, (Ask(z))) means that hv is
within distance at most €ypuw, (T€SP., Eppav) Of the Teal hash value Agp(x).

e c..n-Evaluation Indistinguishability for Zp: Forall (p,td,) € Z, ppyps €
Setupyps, sk € SK, = € L, with witness w, and pk, := a,(sk), it holds that

A(prPub(pk,, z,w), prPriv(sk, z)) < €wainas

where the probability is only over the inner coin tosses of prPub and prPriv.
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Note that the approximate correctness is required to hold for instances in £,
while the evaluation indistinguishability is required to hold for instances in [Zp.
Moreover, we can naturally define pr-QA-HPS for two gap language distributions
Z and %, by requiring the above two properties to hold not only for language
parameters p output by £, but also for language parameters pg output by %.

Next, we recall and adapt some useful properties defined in [28, 27] for
QA-HPS to our pr-QA-HPS. We start by recalling a statistical property called
(&, L) -key-switching from [28], parameterized by two gap language distribu-
tions .Z and .%. Informally speaking, it stipulates that in the presence of a
projection key a,(sk) w.r.t. a language parameter p output by .Z, the projec-
tion key ap,(sk) w.r.t. another language parameter py output by % can be
switched to «,, (sk') for an independent sk’.

Definition 8 ((&Z, %)-Key-Switching). Let ¥ and % be two gap language
distributions. A pr-QA-HPS scheme prQAHPS supports (£, %) -key-switching,
if for any (possibly unbounded) adversary A, it holds that

L, %) -k
€ranmnacy = | PrlA(pPyps, p: po, ap(5h), g (5K)) = 1]

— PrLA(PPrps: 1 905 tp (5K), 1 (5K) = 1]| < negl(N),
where ppyps < Setuppps, (p,td,) s L, (po,td,,) s Lo, and sk, sk’ «s SK.

We recall another statistical property from [27], called projection key diversity
(PK-diversity), which expresses statistical collision resistance of projection keys
under different hashing keys.

Definition 9 (PK-Diversity). A pr-QA-HPS scheme prQAHPS for £ has
projection key diversity (PK-diversity), if ES:(C-)(XLPS = Prla,(sk) = a,(sk")] <
negl(\), where (p,td,) <—s £, ppups < Setupyps and sk, sk’ +s SK.

In [28, 27], a computational property called .Z-multi-key-multi-extracting is
defined for QA-HPS, which demands the pseudorandomness of multiple hash
values {Agy, (x;)}; ; for multiple instances {z; <—s L,,},; (where py € %) under
multiple keys {sk; +s SK},.

Below we adapt the property to pr-QA-HPS, by requiring the pseudorandom-
ness of {prPriv(sk;, x; j)}, ; for multiple instances {x; j s L, }; ; under multiple
keys {Sk‘i s S’C}Z

Definition 10 (%-Multi-Key-Multi-Extracting). A pr-QA-HPS scheme
prQAHPS supports Ly-multi-key-multi-extracting, if for any PPT adversary A,
any polynomial N and any polynomial Q, it holds that

Lo-mk- .
Ader&prgef\t,N,Q()\) = |PY[A(PPHP57PO» {zi g, prPriv(ski, zi ;) Yie vy je) = 1

— Pr[A(ppyps; po. {2ij, hvij icin,jeiq) = 1] < negl(X),

where ppyps <—s Setupyps, (po,tdp,) s Lo, ski,...,sky s SK, z11,....,2Nn,0
s L,y and hvy g, ..., hon g s HV.
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In [27], a statistical property called (%, Z)-one-time(OT)-extracting is de-
fined for QA-HPS. Informally speaking, it demands high min-entropy of Agx(x)
for any x € L, with p output by £, when sk is uniformly chosen from SK,
even in the presence of a projection key a,,(sk) w.r.t. po output by Z,. This
min-entropy makes sure that any (unbounded) adversary is unable to guess the
correct hash value Ak (z).

Below we generalize it to €..-(-%, -£)-OT-Extracting for pr-QA-HPS, where
€t > 0, by stipulating the hardness even for any x € Zp and even for finding a

hash value hv close to Agx(z), i.e., finding hv € Ball.,, (Ask(x)).

Definition 11 (e..-(-%,-Z)-OT-Extracting). Let % and £ be a pair of
language distributions. A pr-QA-HPS scheme prQAHPS supports €..-(-%o, L )-

OT-extracting, if for any (possibly unbounded) adversary A, it holds that eZ:&}ﬁfﬁ’sﬁ'meXt

PPHps ¢ Setupyps, (po, tdp,) < 2o, el A
= Pr (p,td,) s L, sk <s SK, Co i Lo [ S negl(N).
(2%, h0") s A(PPups: 0, oy 0py (sk)) 10" € Balle, (As(27))

4 Generic Constructions of SIG and PKE with Tight
MU¢ Security from Probabilistic QA-HPS

Recently, Han et al. [27] proposed generic constructions of digital signature (SIG)
and public-key encryption (PKE) with tight MU® security from QA-HPS and
QA-NIZK. In this section, we propose a new generic SIG construction and extend
their PKE construction, by using our probabilistic QA-HPS formalized in Sect.
3 as a central building block instead of QA-HPS, allowing instantiations from
the LWE assumptions as shown later.
More precisely, we present our constructions of SIG with tight strong MU<-CMA

security in Subsect. 4.1 and PKE with tight MUMC®-CCA security in Subsect. 4.2.

4.1 Generic Construction of SIG with Tight Strong MU°-CMA Security

We present our generic construction of strongly MUS-CMA secure SIG. Let M
be an arbitrary message space. The underlying building blocks are as follows.

e Two gap language distributions .Z and %, both of which have hard SMPs.

o A probabilistic prQAHPS = (Setupyps, (.), prPub, prPriv) for both . and %
with hashing key space SK, satisfying (&upub, Eppriv)-apPproximate correctness
and €..-(-%, -Z)-OT-extracting with €,pn, < €eu-

e A dual-mode gap commitment scheme CMT = (BSetup, HSetup, Com) with
message spaces Mcyt = SK C SK and randomness spaces R C R.

e A tag-based QANIZK = (CRSGen, Prove, Vrfyyzk, SimGen, Sim) for the gap

language QE(;)ANIZK) = (L'(?ANIZK),EE)?ANIZK)) defined in Fig. 1, with tag

space 7. It is clear to see that ﬁ(p?ANIZK) C ZE),QANIZK) since £, C Zp, SK C
3\16, R C R and Eppriv < Eoq- (See Appendix A.3 for the definition.)
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e A family of collision-resistant hash functions H = {H : M — T}.

Our generic construction of SIG = (Setupg,g,Gen,Sign,Vrfyg,c) is shown in Fig.
1. Tt is easy to see that the correctness of SIG follows from the (&pub, Eprpriv)-
approximate correctness of prQAHPS and the completeness of QANIZK, since d
generated by d <s prPriv(sk, z) always satisfies d € Ball ,, (A (2)).

PPsi < Setupsg:

(p.tdy) <=5 2, ppyps ¢ Setupups, PPeMT <3 Bsfgi\?u]zm (QANIZK)  A(QANIZK)

p" = (p, PPups, PPcmt) defines a gap language gL, = (L, Ly ), where
z € L, with witness w

LQANZK) (z,vk,d)

" 3 (w,sk € SK,r € R), st. A wvk= Com(ppcyr, sk;r)

Ad e Ball,, (Ask(2))
~ . N z € L, with witness w
,CE)C,)ANIZK) =< (z,vk,d) | 3 (w,sk € SK,r € R), s.t.

crs <—s CRSGen(p'). H <—s H.
Return ppsjg := (0; PPups, PPcmT; 1S, H ).

A vk = Com(ppcmT, sk; )
Ad € Balle, (A (x))

(vk, sigk) <s Gen(ppgig):
sk s SK, r s R.

vk := Com(ppcw, 5k; 7)-
Return (vk, sigk := (sk,r)).

o s Sign(sigk = (sk,r),m):
x s L, with witness w.

d s prPriv(sk, z).

vk := Com(ppcwr, Sk; 7).

0/1 < Vrfygg(vk,m,0):

Parse o = (z,d, 7).
T:=H(m)eT.

If Vrfynizk (crs, 7, (z, vk, d), ) = 1:

T:=H(m)eT.
m s Prove(crs, 7, (z, vk, d), (w, sk, )).
Return o := (2, d, 7).

Return 1.
Else: Return 0.

Fig. 1. Generic construction of SIG = (Setupg, Gen,Sign, Vrfyg,;) from prQAHPS,
CMT, tag-based QANIZK and H. The message space is M.

Next, we show the strong MUS-CMA security of SIG via the following theorem.

Theorem 1 (Strong MUS-CMA Security of SIG). Assume that (i) £ and %
have hard SMPs, (ii) prQAHPS is a probabilistic QA-HPS for both & and %,
having (€,pubs Eppriv) ~APPTOTIMALE COTTECENESS, Eeyaima-eValuation indistinguishabil-
ity, and supporting €..-(-Zo,-L)-OT-extracting, where €.c > Eppny, (i11) CMT
is a dual-mode gap commitment scheme that is €ynang-statistical binding and
Eniging-Statistical hiding, (iv) QANIZK is a tag-based QA-NIZK for the gap lan-
guage QEESANIZK) defined in Fig. 1, satisfying both zero-knowledge and unbounded
simulation-soundness, (iv) H is collision-resistant. Then the proposed SIG scheme
in Fig. 1 is strongly MU -CMA secure.

Concretely, for any number N of users and any adversary A making at most
Qs times of Ogiex queries, there exist adversaries By, -+ By, s.t. T(By) ~ -« &

T(Bs) =~ T(A) + (N + Qs) - poly(A), with poly(X) independent of T(A), and

AdVSéTGCEaNC()\) < AdvékANIZK,Bl (A) + Adv%‘;-,Bg (A) + Advy%Z,Qs (A) + AdVET&,@ (M)

uss

+ Advganizk. s, (A) + Advzah;la{i'ge(/\) + statist. loss,

. ot~ (ZL0,L) - —
where statist. 0SS = 2 - Euinding + Qs * Ecvaing + IV - eer/iHS'Syl%"teXt + Ending + W/\SIC\.
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We refer to Sect. 1 for an overview of the proof, and postpone the formal
proof to Appendix B. Here we provide the game sequence Gp-G7 used in the
formal proof in Table 1. According to Theorem 1, SIG has tight strong MU°-CMA
security as long as both the multi-fold SMPs related to .Z and %, have tight
reductions (e.g., to the LWE assumptions), and CMT and QANIZK are tightly
secure.

Table 1. Brief Description of Games Go-G7 for the strong MU°-CMA security proof
of SIG. Here column “Ogiey” suggests how a signature o = (z,d, 7) is generated: sub-
column “x from” refers to the language from which z is chosen; sub-column “d using”
indicates the keys that are used in the computation of d; sub-column “7 via” indicates
the way (Prove or Sim) that 7 is computed. Column “Ocor” shows the key returned by
Ocor. Column “Win’s additional check for forgery (i*,m*, 0" = (z*,d",7"))” describes
the additional check that A’s forgery wins, besides the routine check i* ¢ Qcor A
(#*,m",0") ¢ Qsian A Vrfyyzk(crs, 7%, (z*, vksx,d™), 7*) = 1, where 7 := H(m™).

O, i,m Win’s additional check for f y
sion(i ™) Oconr(i) n sf (1*101:& ¢ ef *or *orger} Remark /Assumption
T from‘ d using ‘ ™ via (*,m*, 0" = (z*,d*, 7))
Go L, sk; Prove sk; The strong MUS-CMA experiment
Abort if verification keys collide:
Gy L, sk Prove| sk; by statistical binding of CMT under BSetup
& secret keys hardly collide
Go L, sk; Sim sk; By zero-knowledge of QANIZK
G3 L, sk; Sim sk; (7%, (&*, vki», d*), 7*) ¢ Qg By collision-resistance of H.
G|l Ly, ski Sim | sk (7, (z*, vk, d*), 7) & Qs By multi-fold SMP of .% and .%,
Gl ¢ e | s e | ”kt A7), ) ¢ Qbm By USS of QANIZK
B ro i m st z* € L,, d* € Ball, (A ) & statistical binding of CMT under BSetup
) . N (T (o, L]w L"), 7r*)¢Qw TR,
Go || Lpy | @py(ski) | Sim sk; NS /L,) i € Ball,,, (A, () By e on wguishability of prQAHPS
Change to ppcyr s HSetup:
by parameter indistinguishability of CMT
ol Lo | apolsk) | Sim | sk | (T vkead) ) & Qs - -
¥ € E,J, d* e BaII ... (Ask,. (%)) Pr[Win] = negl in G;:
by €ea-(-L0, L)-OT-extracting of prQAHPS
& statistical hiding of CMT under HSetup

4.2 Generic Construction of PKE with Tight MUMCCS-CCA Security

We present our generic construction of MUMCS-CCA secure PKE. Let M be an
arbitrary message space. The underlying building blocks are as follows.

Two gap language distributions . and %, both of which have hard SMPs.
A probabilistic prQAHPS = (Setupyps, (), prPub, prPriv) for both £ and
% with hashing key space SIC, projection key space PK and hash value
space HYV, satistying (&upu, Epprv)-approximate correctness. We require HV
to be an (additive) group.

A tag-based QANIZK = (CRSGen, Prove, Vrfyyzk, SimGen, Sim) for the gap
language GL, = (£,, Zp) generated by ., with tag space 7.

A family of collision-resistant hash functions H = {H : PK x HV — T}.
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e An error-correcting code ECC = (Encode, Decode) from M to HV, which is
able to correct (ypuw + Eppry) errors efficiently. (See Appendix A.5 for the
definition.)

Our generic construction of PKE = (Setuppkg, Gen, Enc, Dec) is shown in Fig. 2.
It is easy to check that the correctness of PKE follows from the (€,pub, €ppriv)-
approximate correctness of prQAHPS, the (€,pu + Eppry )-correctness of ECC and
the completeness of QANIZK: (1) by the (€upup, Epprv)-approximate correctness
of prQAHPS, the hv generated by hv <s prPub(pk,z,w) in Enc and the hv’
generated by hv' <s prPriv(sk,z) in Dec are within distance at most (€upu +
Eppiv); 1€, W' € Balle,, te,,. (Av), (2) then d — hv' = hv — hv' + Encode(m) €
Ball., ., te,.. (Encode(m)), and by the (&,pu+Eppa)-correctness of ECC, it follows
that Decode(d — hv') = Decode(hv — hv' + Encode(m)) = m.

(pk, sk) <—s Gen(pppke): , _

sk s SK, pk = a,(sk). | T /=T 2O /L« Dec(sk, c):
PPpKE <5 Setuppke: | Return (pk, sk). Parse ¢ = (z,d, 7).
(p,td,) < Z. pk = a,(sk).
PPHps s Setupyps. | ¢ s Enc(pk,m): 7= H(pk,d) € T.
crs <—s CRSGen(p). x s L, with witness w. | If Vrfyy s (crs, 7,2, m) = 1
H s H. hv <s prPub(pk, z, w). hv' s prPriv(sk, x).
Return pppgg = d := hv + Encode(m). m’ := Decode(d — hv').

(P, PPNIZKs Crs, H). | T 5= H(pk,d) € T. Return m/.
7 <—s Prove(crs, 7, 2, w). Else: Return L.
Return ¢ := (z,d, 7).

Fig. 2. Generic construction of PKE = (Setuppyg,Gen,Enc,Dec) from prQAHPS, tag-
based QANIZK, H and ECC. The message space is M.

Next, we show the MUMCS-CCA security of PKE via the following theorem.

Theorem 2 (MUMCS-CCA Security of PKE). Assume that (i) £ and %
have hard SMPs, (ii) prQAHPS is a probabilistic QA-HPS for both £ and %,
having &..me-evaluation indistinguishability, PK-diversity, and supporting both
(&, L) -key-switching and Lo-multi-key-multi-extracting, (i) QANIZK is a tag-
based QA-NIZK for the gap language GL, = (L,, E,,) generated by £, satisfying
both zero-knowledge and unbounded simulation-soundness, (iv) H is collision-
resistant. Then the proposed PKE scheme in Fig. 2 is MUMCS-CCA secure.

Concretely, for any number N of users and any adversary A who makes
at most Q. times of Opne queries and Qg times of Opge queries, there exist
adversaries By, - , By, such that T(B1) ~ --- = T(Bs) =~ T(A) + (N + Q. +
Qq) - poly(X), with poly()\) independent of T(A), and

AdvEge 4 n(N) < AdeQkAMZK,B1 (A) + Advg, 5,(A) + AdV_m;,TgZ,QC () + AdVﬂ”gZT&,@ (\)

+ Advganizk s, (M) + Ade&"hkﬁfs"féZ,N,Qc(A) + statist. loss,

where statist. loss = Y510 egfédAiLPS + (3Qe +2Q4) - €evaina + N - eé‘%ﬁiﬁé‘fk.
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We refer to Sect. 1 for an overview of the proof, and postpone the formal
proof to Appendix C. Here we provide the game sequence Go-Gg used in the
formal proof in Table 2. According to Theorem 2, PKE has tight MUMC®-CCA
security as long as both the multi-fold SMPs related to .Z and .4, have tight
reductions, prQAHPS has tight £y-multi-key-multi-extracting, and QANIZK is
tightly secure.

Table 2. Brief Description of Games Go-Gg for the MUMC-CCA security proof of
PKE. Here column “Ogne” suggests how a challenge ciphertext ¢* = (z*,d*,7") is
generated: sub-column “z* from” refers to the language from which z* is chosen; sub-
column “hv* using” indicates the keys that are used in the computation of hv*; sub-
column “7* via” indicates the way (Prove or Sim) that 7* is computed. Column “Opgc”
suggests how a decryption query (i,c = (x,d,w)) is answered: sub-column “additional
check” describes the additional check made by Opgc besides the routine check (i, c) ¢
OQgene A Vrfyyzk(crs, 7,x,m) = 1, where 7 := H(pk,,d); Opsc outputs L if the check
fails; sub-column “hv’ using” indicates the keys that are used in the computation of
hv'. Column “Ocor” shows the key returned by Ocor. Recall that it is not allowed to
query Ogne and Ocor for a same user index i.

el Mo, 1 Opeli,c
(i mo, 1) prc(i, ) Oconr(i) Remark/Assumption
z* l'rum‘ hv* using 7 via additional check ‘hv’ using
Go L, Pk Prove ski ski The MUMC®-CCA security experiment,
Abort if public keys collide:
G L, ke P k, k,
! ” P rove st i by PK-diversity of prQAHPS
§ . N N By evaluation indistinguishability of prQAHPS
Gz L alir Sim ski ski & zero-knowledge of QANIZK
Gs L, sk Sim (1, 2,7) ¢ Qs sk ski By collision-resistance of H
Gy Lo sk Sim (r,2,7) ¢ Qsin sk; sk; By multi-fold SMP of ¥ & %
Gs L, skie Sim | (r,2,7) ¢ Qs £ € L, | sk ski By USS of QANIZK
Gg Ly, ap, (ski) Sim | (7,2,7) ¢ Qs @ € Z/, a,(ski) sk; By evaluation indistinguishability of prQAHPS
ap,(ski.) if it <n X ~ R
{G70}nelv) Ly, Sim | (1,2,7) ¢ Qs @ € L, | ap(ski) sk; By (£, %)-key-switching of prQAHPS
ap,(ski-), ifi* >n
Gr.v Ly, Qpo (8K} Sim | (r.a,7) & Qswia € L, | ap(ski) | ski
Gg Ly, ski. Sim | (r.z,7) ¢ Qsna € L, sk; sk; | By evaluation indistinguishability of prQAHPS
. ~ By Z-multi-key-multi-extracting of prQAHPS
Gg Ly, = rand Sim | (r,2,7) ¢ Qsn,z € L, sk; sk;
Pr[Win] =} in Gy

5 Tighter Reduction from LWE to Multi-Secret LWE

In this section, we will show an almost tight reduction from LWE to multi-secret
LWE, which supports the almost tight security of our LWE-based instantiations
as shown later in Sect. 6. We note that similar results could be derived from [2].
Nevertheless, our proof is simpler, more flexible and results in tighter reduction
compared with [2].

We first recall a useful lemma presenting the spectral norm upper bound of
discrete Gaussian matrices. Then we recall the definitions of continuous Gaus-
sian distribution D, and multi-secret LWE with continuous Gaussian distribu-
tion D,, which will serve as an intermediate assumption in our reduction to
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obtain better parameters by applying the noise lossiness approach in [15] (i.e.,
Lemma 11 and Lemma 13 in Appendix D.1). We also recall the randomized
rounding technique due to Peikert [42]. Finally we show Theorem 3 that ad-
dresses the almost tight reduction from LWE to Multi-secret LWE for prime
modulus. We also extend the result for composite modulus in Appendix D.3.

Lemma 7 ([38, Lemma 2.8, 2.9]). Let F < D;”™ and m > n. Then with
all but 2™ probability it holds that the spectral norm or of F satisfies op <
~ - C - /m where C is a global constant.

Definition 12 (Multi-secret LWE Assumption with Continuous Gaus-
sian [15]). Foro > 0, the continuous Gaussian distribution D, over R centered
at 0 is defined by the probability density function Dy (x) := py(x)/ps(R) for any
z € R, where py(z) =™/ and p,(R) := Jg po(2)dz = 0.

Let n,m,q,Q € N. The Q-LWE,, 4 p, m-assumption holds, if for any PPT A
it holds that AVZ LD (V) := |Pr[A(A,SA+E) = 1] - PrlA(A, U+ E) =
1]’ < negl(\), where A < Z3*™, S s ZqQX", E s D@*™ and U +s Zqum.

Lemma 8 (Particular case of [42, Theorem 3.1]). Let o >0 and r > V/\.
For e <—s Dy and v <—s Dy_. ,, the distribution of e + v is statistically close to
Dy jozrz, with statistical distance at most 27X,

Theorem 3 (LWE = Multi-secret LWE with Prime Modulus). Let
n,m,f,q €N, and q be a prime. Let o,00,01,7,7v > 0 such that o = /oo + 12,

o9 > v-C-\/m-oy, U% >4/ IH(TM) and r > /X, where C is the global constant from

Lemma 7. For any adversary A, there exists an adversary B, such that T(B)

T(A)+Q - poly(\) with poly(\) independent of T(A), and Advﬁ:;\f\gmm]’A()\) <

2en - Advl[‘ev,\ffDZMm]’B()\) + w, where ¢ is an integer such that
m' =[2] and n>(m'logq+llogq+2X+1)/log(oy). (8)

Proof sketch. We will use the multi-secret LWE with continuous Gaussian D,
defined in Definition 12 as an intermediate assumption, and show that there
exists an adversary B’ such that T(B) ~ T(B')+Q-poly’(\) ~ T(A)+Q-poly()\)
and

AWVE A S ANGE e () + G ()
AdVE S e ) < 20n - AQVEYEL, () + QAetl) (10)

Then Theorem 3 follows directly from (9) and (10).

To prove (9), we construct B’ to break the Q-LWE, 4 p, m-assumption by
invoking A. Given a challenge (A, B), B’ wants to distinguish B = SA +E from
B = U+E, where A < Z*™, § s Z@X" E s D@*™ and U s Z2*™. To
decide which case it is, B’ parses B = (i j)ic[q),je[m], Samples v; j s Dz_p, ; »
for all i € [Q],] € [m], sets B' := (bi j + v4,j)icq],jem]> feeds (A, B’) to A, and
returns whatever A outputs. We analyze the advantage of B'.
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In the case B = SA + E. We parse SA = (; 5)ic[q],jc[m] and E = (€4 ;)ic(q],je[m]-
Then we have b, ; = t;; + e;; and B = (tij + €ij + vij)icjoljcim] =
SA + (eij + vij)ic(Qlje[m)- Since t;; € Z, v;; follows the distribution
Dz v, ;r = Dz—t; ;—e;;r = Dz—c, ;- Then together with the fact that
e; j follows D, by Lemma 8, the distribution of e; j 4+ v; ; is within statis-
tical distance 27> of Dz, = Dy, yoorrrz- Let E' = (eij + vij)ic(q)jeim]-
Then B’ = SA + E’ with E' = (¢; ; + Uw)ze[Q] jelm) following a distribution
statistically close to DQX , with statistical distance at most Qm/2*.

In the case B =U + E. Slmllar to the above analysis, we can get that B’ =
U + E’ with E' = (e;; + vi 5)ic[q],je[m] distributed over Zqum. Since U is
uniformly distributed over Zqum and independent of E/, B’ = U+E/ is also
uniformly distributed over Zqum.

Thus, B’ successfully distinguishes B = SA + E from B = U + E as long as A
can distinguish B’ = SA+E’ (with E’ nearly following D% X™) from the uniform
distribution, i.e., breaking the Q-LWE,, 4 p, . m-assumption. This proves (9).

Next we turn to the proof of (10). Here we describe the main ideas behind
the proof, and postpone the formal proof of (10) to Appendix D. We aim to
prove that the Q—LWEnyq,DGO,m—assumption holds, i.e.,

(A, SA+E) %~ (A, U+E), (11)

based on the LWEy 4 p, ., m-assumption, and determine the security loss factor.
Here A <—s Z*™, S < Z9*", E s DZ*™ and U <5 ZZ*™.

In the first step, we break A € ZI*"™ into (A1|A;) € ZP*™ x ZZX(m_m/)
and E € D™ into (Eqi|E;) € DL*™ x DEZ*™™™) \where the block A,
contains the first m’ columns of A. Then we change A; into a lossy one A; =
CB + F, where C s Z, B s Z*™ ™) and F € 2™ ™) follows the

error distribution D"X(m ™) This change is indistinguishable due to the n-

secret LWEy 4 p,  m—m/-assumption. Therefore,

(A,SA+E) = ((A1]A1), (SA1+E;[SA,+E1)) & ((A1|A1), (SA+E,|SA, +E,))

but it incurs a loss factor of n since hybrid arguments yield Advf}:z\f\gzz;%m_m,] N <

n- AdVI[_X\:;E,DZW,mfm/](A) ~§ n- Advl[‘XxIEyDme]()\). Now given a lossy A, the infor-
mation of S leaked by SA; is bounded. By taking A as extractor, we can extract

the remaining entropy of S, and result in SA; 2 U, where Uy < Zqum/. So
we have

((A1]A,), (SA; + E1|SA; +E))) = ((A|A,), (U, + E,|SA, + E))).
Next, we change the lossy A back to uniform A;, and have

((A1]Ay), (Ug + E1[SA; + Ey)) = ((A1]A4), (Uy + E{[SA; + Ey)).
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Then we have loss factor n again.
In the second step, we break A = (A;|A;) further into (A;|As|As) €

Zrxm g’ s ziX M) and B = (BB into (B [Es|Es) € DX x
Df,?oxml X D(%X(M_Qm,), where the block A contains the second m’ columns of

A. Then we change Astoa lossy one Ag and have

((A1]A1), (U1 + E1|SA; + Eq)) = ((A1|A2]As), (Uy + E1|SA; + Eo[SA; + Ey))
~ ((A1|A2]As), (Uy 4+ E{|SA, + Eo|SA, + By))

with a lossy factor n. With a similar argument, the uniform A, can extract the
remaining entropy of S so that SAs ~ Uy, where Uy s Z?X"’l. So

((A1|A2|A2)7 (Ui +E{|SA; + E2|SA2 + Ez)) ~ ((Al\Az\Az), (U; + E1|Uz + Ez\SAz + Ez))

Changing lossy A, back to uniform A, yields

[

((A1|A2]Ay), (Uy + E1|Uy + Eo|SAs + Ey)) & ((A1]As|Ay), (Uy + Eq|U, + Ey|SA, + Ey))

with a price of another loss factor n.
Overall, with at most ¢ ~ - steps, we can prove (11) with a loss factor of 2cn.
It should be noted that we analyze the entropy of S with the so-called “lossiness
approach” in [15], which results in more flexible parameters. This finishes the
proof sketch of (10), and we refer to Appendix D for the formal proof of (10).
Finally, taking (9) and (10) together, Theorem 3 holds. O

Some Useful Setting of Parameters. Our reduction holds for a wide range
of parameters. Here we describe two settings of parameters in Table 3, both of
which satisfy the constrains in the statements of Theorem 3.

Table 3. Parameter setting for Theorem 3, where C' denotes the global constant in
Lemma 7.

Parameters| 7 [m ] 4 []oi] 7 | @ | + | o |

Setting I |[36A[72A] A | A® [40[ VX [12V/A] 102CAE® [v/205CAL-5[103C L5
Setting TT || 4X | A2 | A [22VA]20[2VA] X [¥2)259VA|2)\259VA | \259VA

Setting I in Table 3 allows a constant factor ¢, resulting in a loss factor
as small as O()\). In many applications, more constrains of parameter setting
are considered. For example, the number of LWE samples m should be set as
O(nlog q) when applying the leftover hash lemma (i.e., Lemma 2), and the mod-
ulus ¢ should be set as 2096 when we use smudging lemma (i.e., Lemma 6).
Setting I in Table 3 also takes these additional constrains into account. In this
setting, the factor ¢ can be set as O()), resulting in a loss factor of O(A?).
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Remark 1 (Comparison with the almost tight reduction in [2]). If we use tech-
niques in [2], we can also obtain an almost tight reduction from LWE to multi-
secret LWE. However, the loss factor would be O(mn), as shown in the technical
overview in Sect. 1 of our paper.

In contrast, our reduction in the proof of Theorem 3 is fine-grained and
tighter, where the loss factor is O(en) with ¢ < m. In fact, due to the flexible
setting of o1, we can always set log(o1) = O(log ¢). Then the parameter ¢ can be
set as small as O("*) to satisfy the constrain n > O((*2 log ¢ + ¢log q)/ log(a1)).
Consequently, the loss factor of our reduction can be as small as O(cn) = O(m),
saving a factor at least O(n) compared with [2]’s reduction loss factor.

For example, in Setting I and Setting II in Table 3, their loss factor should
be O(A?) and O(A3) respectively, while ours are O()\) and O(\?) respectively.

6 Instantiation from LWE

In this section, we instantiate our generic SIG and PKE constructions proposed
in Sect. 4 from the LWE assumptions. More precisely, we will show how to in-
stantiate the underlying building blocks, including gap language distributions in
Subsect. 6.1, probabilistic QA-HPS in Subsect. 6.2, dual-mode gap commitment
in Subsect. 6.3 and compatible tag-based QA-NIZK in Subsect. 6.4.

For simplicity, all instantiations in this section take LWE-related public pa-
rameters ppywe = (n,m,¢,q,0,7,x, B,B,B',B',(, () as implicit input, where
n,m,t,q,0,v are parameters satisfying the constrains in Theorem 3, x is the
discrete Gaussian distribution Dy , as described in Theorem 3, B, B,B',B' e N
are error bounds such that y is B-bounded, and ¢, (' are parameters for Gaus-
sians. (Some instantiations use only part of ppwe.) According to Lemma 5 (the
tail bound), x = Dz, is VA - o-bounded, except with exponentially small prob-
ability 27*,% so we can set B = v/ - 0. The requirements for these parameters
will be stated in the following theorems, and the concrete choices satisfying all
requirements will be suggested in Table 4 in Subsect. 6.5.

6.1 Gap Language Distributions from LWE

Let ppywe = (n,m, ¢, q,0,7v,x, B, B,-- -) be the LWE-related public parameters

that serve as implicit input to all algorithms and satisfy B < B < ¢/(10m)
and x a B-bounded distribution. Our LWE-based gap language distribution .Z
samples a language parameter p and its trapdoor td, as follows.

— £ invokes (A, Ta) <—s TrapGen(n,q,m) (cf. Lemma 3) and outputs (p :=
A € ZPX™ td, = Tp € Z75™).

According to Lemma 3, A is almost uniform over Zy*™ and || Ta||, = O(v/nlogq).
The language parameter p = A determines a gap language GLA = (EA,ZA),

5 We will not mention this exponentially small probability hereafter for simplicity, and
take for granted that x is B-bounded.
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where LA and L A define “noisy linear” subspaces as follows®
La:={ceZ|IsczZ\{0},ec[-B,B|", st.c' =s' -A+e'},
La:= {ce ZZI"|3 s €Z; \{0},e € [-B,B™, st.c’ =s' ‘A+e’}

Clearly, LA C L A and both of them are contained in the universal set X' := Z".
The associated algorithms (Sample,, Sample ., Check7) are defined as follows.

— (c,we) s Sample,(p = A): It chooses s <= Z7', e <= x™, computes ¢’ =

s" - A +e', and returns the instance ¢ with its witness w, := (s, e).

— ¢ <=s Sampley: It outputs a uniformly chosen ¢ s Zj".

— 0/1 « Checkz(p = A,td, = Ta,c): It invokes (s,e) < Invert(Ta,c) (cf.
Lemma 4), and outputs 1 if e € [-B, B]™ and 0 otherwise.

Given that e € [-B, B]™ and B < q/(10m), we have |le|| < /mB < q/(10y/m).
Then according to Lemma 4, Checkz(p, td,,c) outputs 1 iff c € La.

The subset membership problem (SMP) for £ is exactly the LWE, ¢y .m
problem, and the multi-fold SMP is just the multi-secret LWE,, 4 y,m problem.
Since we set x = Dz », by the almost tight reduction from LWE to multi-secret
LWE in Sect. 5, i.e., Theorem 3, we have the following lemma.

Lemma 9 (LWE; ¢ p, m = Multi-fold SMP for .Z). Let x = Dz, in
Sample,. For any adversary A, there exists an adversary B such that T(B) ~
T(A) + Q - poly(\) with poly()\) independent of T(A), and AdVZ"P H(N) <
2en - Advl[‘lv’vaZwm],B()\) + w, where x = Dz, , and Dz~ are the discrete
Gaussian distributions as described in Theorem 3, and c is an integer satisfying

(8).

6.2 Probabilistic QA-HPS from LWE

In this subsection, we instantiate probabilistic QA-HPS from the LWE assump-
tion. Let ppywe = (n,m, ¢, q,0,7,x, B, B, B’, ) be the LWE-related public pa-
rameters that serve as implicit input to all algorithms. Let both .Z and £ be the
gap language distribution specified in Subsect. 6.1. Here we use two distributions
% and % to indicate the independence of them. We present our LWE-based
scheme prQAHPS,\ve = (Setupyps, (., prPub, prPriv) for .# in Fig. 3. The hash
value space HV = Z, is a metric space with metric dist(hv, hv') := |hv — hv'| for
hv, hv' € Zq. Then Ballg (hv) := {hv'" € Zg | |hv — hv'| < €}.
Firstly we prove that prQAHPS g is a pr-QA-HPS scheme in Theorem 4.

Theorem 4. The prQAHPS,\wg proposed in Fig. 3 is a pr-QA-HPS scheme that
has (€upubs Epmprv) -aPPTOTIMALE COTTECTNESS AN eevalnd-egaluation indistinguishabil-
Zty with EprPub = B/ + mB, EprPriv = B/ and Eevalnd — mB/B/.

5 For technical reasons (concretely, for the €q.-(%, .Z)-OT-extracting property of the
pr-QA-HPS scheme constructed later), the vector 0 must be excluded from the set
Zg that s is chosen from. For simplicity, we forgo making this explicit in the sequel.
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PPHps <—s Setupyps: hv s prPub(pk,,, ¢, we = (s, e)),

Return ppyps := ppywe; which implicitly defines | where ¢ € Ep forp=A: fJc' =s" -Atel
(SK:={0,1}", HV :=Zg, A,)), Parse pk, = p € Z7.

where Ag(c):=c' -k €Z, e s [-B', B|.
for sk =k € SK and c € X = Z". Return hv :=sT -p+¢' € Z,.

pk, < a,(sk), where p = A € Z3*™: hv «s prPriv(sk,c € X):

Parse sk =k € {0,1}™. Parse sk =k € {0,1}™.

p=A-keZy. ¢/ <s [-B',B'].

Return pk, := p. Return hv :=c' -k +¢' € Z,.

Fig. 3. The probabilistic QA-HPS scheme prQAHPS ¢ from LWE.

See the technical overview in Sect. 1 for a proof sketch of evaluation indis-
tinguishability. We postpone the proof of Theorem 4 to Appendix E.1.

Through the following theorems, we show the (%, %)-key-switching, PK-
diversity and .Zp-multi-key-multi-extracting of prQAHPS,\yg, as needed for the
MUMCE-CCA security of our PKE in Subsect. 4.2 (cf. Theorem 2), then show
the €..-(%, ZL)-OT-extracting of prQAHPS,\yg, where €.; > €,pn, as needed
for the strong MUS-CMA security of our SIG in Subsect. 4.1 (cf. Theorem 1).

The high-level ideas behind the proofs of these theorems are implicitly con-
tained in the security proof sketches for our SIG and PKE schemes using LWE-
based pr-QA-HPS as a building block in Sect. 1. We postpone the proofs of these

theorems to Appendix E.2, E.3, E.4 and E.5, respectively.

Theorem 5 ({Z, %)-Key-Switching of prQAHPS \wg). Let m > 3nlogq +
2(A+1). The proposed prQAHPS e in Fig. 3 supports (L, L) -key-switching
with eé‘ziogs < 27 for any (possibly unbounded) adversary A.

Theorem 6 (PK-Diversity of prQAHPS,_WE) The proposed prQAHPS g in

Fig. 3 has PK-diwersity with eprQAHPS =2""4q "

Theorem 7 (Almost Tight .4,-Multi-Key-Multi-Extracting of prQAHPS,\yg)-
Let m > 2nlog q + 2. If the L\WE ¢ p, . m assumptions hold, then the proposed
prQAHPS \we in Fig. 3 supports Lo-multi-key-multi-extracting. Concretely, for

any adversary A, any N and any Q, there exist adversaries By and Bs, such that
T(B;) = T(By) ~ T(A) + NQ - poly(\) with poly()) independent of T(A), and
Adva et v oA < 2en - AdVRy b, s, (V) + 200 - AV D, s, (M) +
w + NQ - (m+1)B/B’, where c is an integer satisfying (8).
Theorem 8 (e.-(%, £ )-OT-Extracting of prQAHPS \we). Let € > €pprv,
m > 3nlog qg+2X and q be a prime. The proposed prQAHPS e in Fig. 3 supports
€t~ (L0, L) -OT-extracting with eprQAfPO’Sij et < 9=A —|—mB/B’—|— (260 + 2B’ +
1)/q for any (possibly unbounded) adversary A.

6.3 Commitment Scheme from LWE

Let ppywe = (n,m, ¢, q,0,7v,x, B, B, -++) be the LWE-related public parameters
that serve as implicit input to all algorithms. We present our LWE-based dual-
mode gap commitment scheme CMTwe = (BSetup, HSetup, Com) in Fig. 4, with
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two message spaces M = {0,1}™ C M = [~ B, B]™ and two randomness spaces
R ={0,1}m*™ C R = [~ B, B]™*™. The scheme uses a modulus ¢>.

ppcwt < BSetup: /Binding mode | PPcmT <5 HSetup: /Hiding mode
X s Z;,zxm' X s Zég*l)xm.

S ‘s Z;‘Q, e s x™. Return ppeyr == X.

bT:=s'X+e’ modg”. com ¢ Com(ppeyr = X,m:R):  /me [-B,B|", Re [-B, B™"
X = (bf‘r) S ngﬂ)xm- com:=X R+ (qq?lT) e Zf}zﬂ)xm. //Here 0 is an n X m zero matrix
Return ppeyr == X. Return com.

Fig. 4. The dual-mode gap commitment scheme CMT wg from LWE.

This commitment scheme is essentially adapted from the Regev’s PKE scheme
[45]. Here, the public parameter in the binding mode is just the public key of
Regev’s scheme, while the committing algorithm is just Regev encryption algo-
rithm. The decryption correctness of Regev’'s PKE guarantees the property of
statistical binding. According to the LWE assumption, the public key of Regev’s
scheme is computationally indistinguishable from a uniform matrix, which serves
as the public parameter in the hiding mode. The statistical hiding property in
the hiding mode relies on the fact that a uniform matrix is a good extractor (cf.
Lemma 2). Formally, we have Theorem 9 with proof appeared in Appendix F.

Theorem 9. Letq > 2mBB and m > 4(n+1) log g+2(A\+1). If the LWE,, 2. m
assumption holds, then the proposed CMT we in Fig. 4 is a dual-mode gap com-
mitment scheme that has €ynang-statistical binding and €nq4ing-statistical hiding
With Epinding = 0 and Epiging = M - 2. Moreover, for any adversary A, there exists
an adversary B s.t. T(B) ~ T(A) and Advza,'\;l;ifirj()\) < Advl[;\fquz%m]’B()\).

6.4 QA-NIZK from LWE

In this subsection, we instantiate tag-based QA-NIZK for gap language based
on the LWE assumptions. We will follow the generic transformation proposed
by Libert et al. in [34, Subsect. 4.2] that compiles any trapdoor X-protocol for
gap language into tag-based QA-NIZK for the same gap language, and more-
over, the transformation is tightness-preserving, i.e., the resulting tag-based QA-
NIZK has tight zero-knowledge and tight USS as long as the building blocks are
tightly secure. The formal definitions of the building blocks including trapdoor
Yl-protocol are provided in Appendix G.1. Therefore, all we need to do is to
instantiate trapdoor Y-protocol for gap language from LWE.

The Gap Language for QA-NIZK. Note that the gap languages needed
in our generic SIG and PKE constructions are different. More precisely, for

the SIG construction in Subsect. 4.1, the gap language is the Qﬁ(p?AMZK) =
(EE)?ANIZK), Z(p?ANIZK)) defined in Fig. 1, which is determined by the gap language
distribution .Z, the pr-QA-HPS scheme prQAHPS and the commitment scheme

CMT, while for the PKE construction in Subsect. 4.2, the gap language is exactly
the GL, = (L,, L,) generated by .Z, as defined in Subsect. 6.1.
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We make the gap language Q£ (QANIZK) (L’(QANIZK) Z(QANIZK)) concrete by
instantiating it with our LWE- based £ in Subsect. 6.1, prQAHPS,,\¢ in Sub-

sect. 6.2 and CMTwe in Subsect. 6.3. Let ppywe = (n, m, Z ¢,0,7,x,B,B,B'",B',- -

be the LWE-related public parameters that serve as implicit input to all algo—

rithms, where B < B and B’ < B’. More precisely, let p = A € Zy*™ be a
language parameter output by .Z, and let ppcytr = X € ZEIZH)X"L
eter generated by BSetup. Then according to Fig. 1, we have p’ = (A, X) and

the gap language QES/QAN'ZK) = (EESANIZK), LNE)?ANIZK)) is instantiated as follows:

be a param-

J(s€Zyec|-B,B", ¢ =s" - A+e'

LA — {(c,vk,d) Re {0,1}™" ke {0,1}™, st. Avk=X-R+ () } (12)
€[-B,B) ANd=cT -k+¢
I(s€Zyec|-B,B", c'=s"-Ate

LA - {(c,yk.,d) Re[-B B]’”X’” ke[ B,BI™, st. Avk=X- R+(qk7)} (13)
¢ e[-B,B)) ANd=c' -k+e

The Trapdoor X-protocol from LWE. Observe that no matter the gap
language QEESANIZK) = (EE)?ANIZK),EESANIZK)) defined in (12) and (13) or the

gap language GL, = (Lp,/jp) defined in Subsect. 6.1, both of them are defined
with linear equations, i.e., the instance is linear in the witness, and parts of
the witness are bounded. To build trapdoor X-protocol for these gap languages,
we are inspired by the trapdoor X-protocol for ACPS ciphertexts [4] with tight
security constructed by Libert et al. in [34, Sect. 5], where the gap languages
defined by ACPS ciphertexts enjoy similar properties described as above.

(QANIZK)

Roughly speaking, our trapdoor X-protocol for QL works as fol-

lows. To prove (c,vk,d) € c LOANIZK) with the help of a witness (s, e,R,k,¢€’),
the prover first generates a fresh instance (cg,vko,dp) by sampling witness
(so0, €0, Ro, ko, €)) appropriately and sends it to the verifier, then the verifier
chooses a challenge ch € {0,1} uniformly at random. According to the linear
properties, the “mixed” (sg+ch-s,eq+ch-e,Rg+ch-R,ko+ch-k, e;+ch-e)
is also a witness for the “mixed” instance (cg + ch - ¢, vk + ch - vk, do +ch - d) to
satisfy the equations in (12) and (13). Therefore, the prover sends the “mixed”
witness to the verifier, and the verifier checks the equations in (12) and (13)
for the “mixed” instance and witness and also checks whether the corresponding
parts of the “mixed” witness (namely eg+ch-e, Ro+ch-R,ko+ch-k,ej+ch-¢’)
are bounded. _

The trapdoor X-protocol for the gap language GL, = (L,, L,) is a simplified
version of that for gcﬁf,“"\“ZK) = (EEJ(,QANIZK), E;?ANIZK)), since GL, is much simper.

We put the formal descriptions of the LWE-based trapdoor X-protocols and
their security proof in Appendix G.3.

The QA-NIZK from LWE. Finally, by compiling the LWE-based trapdoor
XY-protocols via the generic transformation proposed by Libert et al. in [34,
Subsect. 4.2], we are able to obtain tag-based QA-NIZK schemes for the gap
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language QEE}?AMZK) = (L'E)(?ANIZK), E;?ANIZK)) and GL, = (L,, Zp) from the LWE
assumptions, serving as building blocks for our SIG and PKE constructions.
For completeness, in Appendix G.4, we first recall the generic transformation
in [34, Subsect. 4.2], then describe how to compile our LWE-based trapdoor X-
protocols into tag-based QA-NIZK schemes for gap languages. Especially, we

obtain the following corollary in Appendix G.4.

Corollary 1 (Almost Tight Security of LWE-based QA-NIZK) We o0b-

tain a tag-based QA-NIZK scheme for the gap language QEE)(,QANIZK) = (E(p?ANIZK),

Z;(,QANIZK)) specified by (12) and (13) and a tag-based QA-NIZK scheme for the
gap language GL, = (L, Ep) specified in Subsect. 6.1, both of which have almost
tight zero-knowledge and USS based on the LWE assumption.

Concretely, the advantage of zero-knowledge for any (even all powerful) ad-
versary A’ is given by AdngN|ZK7A/ () < 272N Meanwhile, the advantage of
USS for any PPT adversary A is given by

AdquSZN'ZK’AO\) < AdV[SEq:mﬁ],Bl (A) + 202 - Advl[_x\,/qE,x,m],Bzo\) + Q_Q(A)7

where PPT algorithms By and By run in about the same time as A.

6.5 Setting the Parameters

We give a suggestion for parameters ppywe = (n,m, ¢, q,0,7,x, B, B,B', B',(,{’)
in Table 4, so that all conditions of the theorems in the section can be met. More-
over, our parameter suggestion in Table 4 corresponds to the parameter Setting
IT in Table 3, thus the conditions in Theorem 3 (almost tight reduction from LWE
to multi-secret LWE) are also satisfied. By instantiating our generic construc-
tions in Sect. 4 with the LWE-based building blocks proposed in this section, we
obtain LWE-based SIG and PKE schemes with almost tight strong MUS-CMA
and MUMCE-CCA security, respectively. Under the parameters in Table 4, the
security loss factor of our schemes is O(\?).

Table 4. Parameter setting, where A denotes the security parameter.

Parameters[n [m[¢] ¢ | @ [2] x|

| Setting [[4A] A2 [ A [22V3]x25 23] A Dy e nus

‘ParamctorsH B ‘ B ‘ B’ ‘ B ‘ ¢ ‘ ¢ ‘
’ Setting H/\3.2\5‘)\6.2\5‘21.5\5‘/\.21.5\5‘)\4.5,Qﬁ‘ﬁ,21.5ﬁ‘
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Appendix

A Additional Preliminaries

A.1 Digital Signature and Its Strong MU°-CMA Security

Definition 13 (SIG). A signature (SIG) scheme SIG = (Setupgc, Gen, Sign,
Vrfyg ) with message space M consists of four PPT algorithms:

— Ppsic <8 Setupgig: The setup algorithm outputs a public parameter ppg,
which serves as an implicit input of other algorithms.

— (vk, sigk) <s Gen(ppgig): Taking ppsc as input, the key generation algo-
rithm outputs a pair of verification key and signing key (vk, sigk).

— o <s Sign(sigk,m): Taking as input a signing key sigk and a message m €
M, the signing algorithm outputs a signature o.

— 0/1 < Vrfygc(vk,m,0): Taking as input a verification key vk, a message
m € M and a signature o, the deterministic verification algorithm outputs
a bit indicating whether o is a valid signature for m w.r.t. vk.

Correctness requires that for all ppg g € Setupgg, (vk, sigk) € Gen(ppgg), m €
M, it holds that Pr[o <s Sign(sigk,m) : Vrfygc(vk,m,o) = 1] > 1 — negl(\).

In [6], Bader et al. defined existential unforgeability for digital signatures
under chosen-message attacks (CMA) in a Multi-User setting with adaptive
corruptions of secret keys (MU-CMA). Moreover, strong MU°-CMA requires that
the adversary cannot even forge a new signature for a message that it has ever
queried. Below we present the definition of strong MU*-CMA security.

Definition 14 (Strong MU°-CMA Security for SIG). A signature scheme
SIG is strongly MUS-CMA secure, if for any PPT A and any polynomial N, it
holds that AdvgicTa s (A) := PrlExpgica'ny = 1] < negl(X), where the experiment
ExpSiciN is defined in Fig. 5.

ExpSiciain:
PPsic s Setupgg Osion(i,m):
For i € [N]: (vki, sighi) +s Gen(ppsig) o s Sign(sigki, m)
Qsiey =0 //Record the signing queries Qsian := Qsiex U {(4,m, o)}
Qcor =10 //Record the corruption queries Return o
(i* € [n],m*,0") s A5 () CconC) (ppe o Lvk;}iein)
OCun(i)I
If (4% ¢ Qcor) A ((i",m™,0") ¢ Qsien) A (Vrfygg(vkix,m™,0™) = 1): Qcon i= Qcon U {i}
Return 1; Return sigk;
Else: Return 0

Fig. 5. The strong MU°-CMA security experiment ExpZjc“ix for SIG.
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A.2 Public-Key Encryption and Its MUMCC®-CCA Security

Definition 15 (PKE). A public-key encryption (PKE) scheme PKE = (Setuppge,
Gen, Enc, Dec) with message space M consists of four PPT algorithms:

— PPpke <3 Setuppke: The setup algorithm outputs a public parameter pppke,
which serves as an implicit input of other algorithms.

— (pk, sk) <s Gen(pppkg): Taking pppke as input, the key generation algorithm
outputs a pair of public key and secret key (pk, sk).

— ¢ <s Enc(pk,m): Taking as input a public key pk and a message m € M,
the encryption algorithm outputs a ciphertext c.

— m'/L + Dec(sk,c): Taking as input a secret key sk and a ciphertext c, the
deterministic decryption algorithm outputs either a message m’ € M or a
special symbol L indicating the failure of decryption.

Correctness requires that for all pppe € Setuppke, (pk, sk) € Gen(pppke) and
m € M, it holds that Pr[c <—s Enc(pk, m) : Dec(sk,c) = m] > 1 — negl()).

In [33], Lee et al. defined indistinguishability for PKE schemes under chosen-
ciphertext attacks (CCA) in a Multi-User Multi-Challenge setting with adap-
tive corruptions of secret keys, which was originally called MUC™ in [33] and
is denoted by MUMCES-CCA in this paper. Below we present the definition of
MUMCe-CCA security.

Definition 16 (MUMCS-CCA Security for PKE). A PKE scheme PKE is
MUMCE-CCA secure, if for any PPT A and any polynomial N, it holds that
Advpge 4 n(A) = |Pr[Exp§f,2§A$N = 1] - %’ < negl()\), where the experiment
EXppKe 4 N 15 defined in Fig. 6.

Expikea, v Oeeli, ¢):

PPeKe ¢S SetupPpye Ogxe(i*, mo, m1): If (i,¢) € Qrxc: Return L
For i € [N]: (pki, ski) <s Gen(pppke) If |mo| # |mal: Return L Return Dec(sk, ¢)

Qpne =10 //Record the encryption queries If i* € Qoon: Return L

Qoo =0 //Record the corruption queries " s Enc(phs, ms) Oconli):

B s {0101} . i //Single challenge bit Qbne i= Opne UL, ¢} | If (3, ) € Qine: Return L
B s A, O Ocon() (ppgye {pki}ieiny) Return ¢* Qcor 1= Qeor U {i}

If B/ = 3: Return 1; Else: Return 0 Return sk;

Fig. 6. The MUMC®-CCA security experiment Exppgg 4 n for PKE. Note that to avoid
trivial attacks, A is not allowed to submit a same user index ¢ to both Ogxe and Ocor.

A.3 Quasi-Adaptive Non-Interactive Zero-Knowledge Argument

Quasi-Adaptive Non-Interactive Zero-Knowledge argument (QA-NIZK) was pro-
posed by Jutla and Roy [30], where the common reference string (CRS) may
depend on the specific language £, for which proofs are generated. Tag-based
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QA-NIZK additionally takes a tag as input when generating and verifying proofs.
Below we formalize tag-based QA-NIZK according to [34], for a gap language
gL, = (/.ZP,E,,) (L, € E,,) indexed by language parameter p. Intuitively, com-
pleteness and zero-knowledge of QA-NIZK are guaranteed for instances in £,
while soundness is guaranteed for instances outside Zp.

Definition 17 (Tag-based QA-NIZK for Gap Language). A tag-based
QA-NIZK scheme QANIZK = (CRSGen, Prove, Vrfyyzx, SimGen, Sim) for a gap
language GL, = (L,, L,) with tag space T consists of five PPT algorithms:

— crs s CRSGen(p): Taking as input the language parameter p, the CRS gen-
eration algorithm outputs a common reference string (CRS) crs.

— m 4 Prove(crs, 7,2, w): Taking as input crs, a tag 7 € T, x € L, and a
witness w for x € L,, the proof generation algorithm outputs a proof .

- 0/1 « Vrfyyzk(crs, 7,2, 7): Taking as input crs, a tag 7 € T, x € X and
a proof w, the deterministic verification algorithm outputs a bit indicating
whether 7 is a valid proof.

— (crs, tders) <—s SimGen(p): Taking as input the parameter p, the simulated
CRS generation algorithm outputs a crs and a simulation trapdoor tdes.

— 7 s Sim(crs, tdes, 7, ) Taking as input crs, a simulation trapdoor tdys, a
tag T € T and x € X, the simulation algorithm outputs a simulated proof .

Completeness requires: for all crs € CRSGen(p), 7 € T and x € L, with witness
w, it holds Pr[m s Prove(crs, T, x,w) : Vrfyyizx(crs, 7,2, m) = 1] > 1 — negl()).

Below we define the zero-knowledge and the unbounded simulation-soundness
(USS) according to [34].

Definition 18 (Zero-Knowledge of Tag-based QA-NIZK). A tag-based
QA-NIZK scheme QANIZK for gap language GL, = (L,, L,) has zero-knowledge,
if for any PPT A, it holds that AdvakANIZK,A(A) = ’Pr[ExpgA(,S,)ZKA = 1] —

Pr[Expg(A(,\h)ZKA = 1] ’ < negl(\), where the experiments Eng(A(l\(l)I)ZK,A and Expg(A(hlll)ZK,A

are defined in Fig. 7.

zk, (0) ZK,(1)

Expoanizk, 4 Expoanizk, 4
crs <—s CRSGen(p) (crs, tders) <—s SimGen(p)
o0 (... oM (.,
B s A%rw07)(pcrs) B s A% (p crs)
Return 8 Return 8
0 1
If w is not a witness for x € £,: Return L If w is not a witness for x € £,: Return L
Else: m <—s Prove(crs, 7,2z, w), Return « Else: m <—s Sim(crs, tdas, 7,2), Return 7

Fig. 7. The zero-knowledge experiments EXpé;A,E\IOI)ZK,A and EXpé;A,(NlI)ZK,A for QANIZK.

We note that the above definition captures a notion of multi-theorem zero-
knowledge, which allows the adversary to obtain proofs for multiple statements.
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Definition 19 (USS of Tag-based QA-NIZK). A tag-based QA-NIZK scheme

QANIZK for gap language GL, = (L,, Ep) has unbounded simulation-soundness
(USS), Zf fOT’ any PPT ./4, it holds tha:t AdVE)SZleK.A(A) = Pr[EXpE)SZleK,.A =
1] < negl(\), where the experiment ExpQanizk, 4 is defined in Fig. 8.

uss .
Expganizk,.4°

(crs, tders) s SimGen(p)
Ogi(T, x):

7 <3 Sim(crs, tders, T, x)
Qs := Qs U {(77 z, 77)}

Return 7

Qs :=10 //Record the simulation queries
(%, &%, ) s A%nC) (p td,, crs) //Recall that td, is a trapdoor

for testing membership of Zp
If (z* ¢ Ep) A (7", 2", 7") & Qsim) A (Vrfyyzk(crs, 7%, 2%, ) = 1): Return 1;
Else: Return 0

Fig. 8. The unbounded simulation-soundness experiment Expgayizk 4 for QANIZK.

We note that the above USS definition is different from the usual one in [23]
in the following three aspects.

— Firstly, A is given the trapdoor td, of the language parameter p. Recall that
td, contains enough information for deciding whether an instance z is in Ep.

— Secondly, A is allowed to output a forgery with a reused tag.

— Thirdly, the instance «* in A’s forgery should be outside £, rather than £,,.

A.4 Collision-Resistant Hash Functions

Definition 20 (Collision-Resistant Hash Functions). A family of hash
functions H is collision-resistant, if for any PPT adversary A, it holds that

Adv;—;,A(/\) = Pr[H s H, (;thg) —s .A(H) txy FE X A H(wl) = H(l’g)} < negl()\).

A.5 Error-Correcting Code

Definition 21 (Error-Correcting Code). An error-correcting code ECC =
(Encode, Decode) from a message set M to a codeword set C consists of two
deterministic polynomial-time algorithms:

— ¢ + Encode(m): Taking a message m € M as input, the encoding algorithm
outputs a codeword ¢ € C.

— m//L + Decode(c): Taking an element ¢ € C as input, the decoding algo-
rithm outputs either a message m’ € M or a special symbol L indicating the
failure of decoding.

We say that ECC is able to correct € errors (e-correctness), if for all m € M,
¢ := Encode(m) and ¢’ € Ball(c), it holds that m = Decode(c’).
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A.6 Quasi-Adaptive Hash Proof System
We recall the formal definition of QA-HPS according to [28].

Definition 22 (QA-HPS). A quasi-adaptive hash proof system (QA-HPS)
scheme QAHPS = (Setupyps, a(.y, Pub, Priv) for a language distribution £ con-
sists of four PPT algorithms:

~ PPups < Setupyps: The setup algorithm outputs a public parameter ppyps,
which implicitly defines a hashing key space SK, a hash value space HV,
and a family of hash functions Ay : X — HYV indezed by hashing keys
sk € SK, where X is the universe for languages output by £ .
We require that A,y is efficiently computable and there are PPT algorithms
for sampling sk <—s SK uniformly and sampling hv <—s HYV uniformly. We
require ppyps to be an implicit input of other algorithms.

- pk, < a,(sk): Taking as input a hashing key sk € SK, the projection algo-
rithm indezed by language parameter p outputs a projection key pk,,.

— hv < Pub(pk,, z,w): Taking as input a projection key pk, = o, (sk) specified
by p, an instance x € L, and a witness w for x € L,, the deterministic public
evaluation algorithm outputs a hash value hv € HV.

— hv « Priv(sk,x): Taking as input a hashing key sk and an instance x € X,
the deterministic private evaluation algorithm outputs a hash value hv € HV .

Correctness requires: for all (p,td,) € £, ppups € Setupyps, sk € SK, x €
L, with witness w, pk, = a,(sk), it holds that Pub(pk,,z,w) = Ag.(z) =
Priv(sk, ).

B Proof of Theorem 1 (Strong MUS-CMA Security of SIG)

Theorem 1 (Strong MU-CMA Security of SIG) Assume that (i) £ and £
have hard SMPs, (ii) prQAHPS is a probabilistic QA-HPS for both £ and %,
having (€ypubs Eppriv) -APPTOTIMALE COTTECINESS, Eevaima-€eValuation indistinguishabil-
ity, and supporting €..-(%p,-L)-OT-extracting, where €. > Eppv, (113) CMT
15 a dual-mode gap commitment scheme that s €pnang-statistical binding and
Eniging -Statistical hiding, (iv) QANIZK is a tag-based QA-NIZK for the gap lan-
guage QEE),QANIZK) defined in Fig. 1, satisfying both zero-knowledge and unbounded
simulation-soundness, (iv) H is collision-resistant. Then the proposed SIG scheme
in Fig. 1 is strongly MU -CMA secure.

Concretely, for any number N of users and any adversary A making at most
Qs times of Ogiex queries, there exist adversaries By, -+ By, s.t. T(By) ~ -« &

T(Bs) = T(A) + (N + Qs) - poly(A), with poly()\) independent of T(A), and
AdVEETRR (A) < Advganizk s, (V) + Advs, s, (V) + AVETR o (\) + AVETE o (V)
+ Adv@iniz s, (A) + AdVEVETS () + statist. loss,

. ot~ (ZL0,L) - —
where statist. 1088 = 2 - Euinding + Qs * Ecvaing + IV - eer/iHS'Syl%"teXt + Ending + W/\SIC\.
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Proof of Theorem 1. We prove the theorem by defining a sequence of games
Go—G7 and showing adjacent games indistinguishable. A brief description of
differences between adjacent games is summarized in Table 1. By Pr;[-] we denote
the probability of a particular event occurring in game G;.

Game Go: This is the Expgic3°y experiment (cf. Fig. 5).

Let (vk;, sigk; = (sk;,7;)) denote the verification/signing key pair of user
i € [N]. In this game, when answering an Ogoy query (i,m), the challenger
samples z s £, with witness w, computes d s prPriv(sk;,x), 7 = H(m)
and 7w <s Prove(crs, 7, (z,vk;, d), (w, sk;,r;)). Then, the challenger returns o :=
(z,d, ) to A and puts (i,m, 0) to set Qgien. For an Ocor query i, the challenger
returns sigk; = (sk;,7;) to A and puts i to set Qcor.

At the end of the game, A outputs a forgery (i*,m*,o* = (z*,d*,7*)). Let
Win denote the event that

i* ¢ Qcor A (1%, m",0%) & Osien N Vrfyyize(crs, 77, (™, vk, d¥), %) = 1,

where 7% := H(m*). By definition, Advgic3 (A) = Pro[Win].

Game Gj: It is the same as Gy, except that, after generating n pairs of ver-
ification/signing keys {(vk;, sigk; = (ski,7:))}ie[n), the challenger aborts im-
mediately if there are two verification keys collide, i.e., 931 < i < j < N, s.t.
U]{JZ‘ = ’Ukj.

Claim 1. | Pro[Win] — Pry [Win] ‘ < Epinding T W/LS'IQ

Proof. Let VKColl denote the event that 31 <7 < j < N, s.t. vk; = vk;, and let
SKColl denote the event that 31 < i < j < N, s.t. sk; = sk;. Clearly, Go and Gy
are the same until VKColl occurs, thus

| Pro[Win] — Pry [Win] | < Pr;[VKColl] < Pry[SKColl] + Pry[-SKColl A VKColl].
(14)
It suffices to bound Prq[SKColl] and Pr;[-SKColl A VKColl].

e Since sk; and sk; are independently and uniformly chosen from SK, by a
union bound, we have Prq[SKColl] < 37, ;v Pr[sk; = sk;] < W/\SIC\

e Since vk; = Com(ppcmT, ski;ri) and vk; = Com(ppcmT, Skj;7;), the event
—SKColl A VKColl means 31 < i < j < N, s.t. sk; # sk; but vk; =
Com(ppcmt, ski; i) = Com(ppemt, skj;rj) = vk;. By the ynqng-statistical
binding property of CMT under BSetup (the binding mode), this can happen
with probability at most €pinging. Therefore Prq[-SKColl A VKColl] < &pinging-

Overall, Claim 1 holds by plugging the above two bounds into (14). 1

Game Gs: It is the same as Gy, except that, at the beginning of the game, the
challenger generates crs via (crs, tde,s) <—s SimGen(p') instead of crs «—s CRSGen(p').
Moreover, when answering Og,qy(i,m), the challenger computes 7 via the Sim
algorithm of QANIZK by using the simulation trapdoor tdcs:
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o 7 s Sim(crs, tders, 7, (2, vk;, d)).

Note that the witness w for z € £, is no longer needed.
Claim 2. | Pri[Win] — Pro[Win] | < Advianizk. 5, ().

Proof. Note that when answering Ogion (4, m), (1) @ is chosen from £, with wit-
ness w, (2) vk; = Com(ppcmr, ski; 7i), and (3) d s prPriv(sk;, ), which satisfies
d € Ballg,,, (Ask, (z)) by the (€ppub, Epprv)-approximate correctness of prQAHPS.
Therefore, (x,vk;,d) € £OANIZK) ith witness (w, ski,r;). Then by the zero-
knowledge of QANIZK (cf. Definition 18), the crs generated via SimGen and the
7’s generated via Sim in Go are computationally indistinguishable from the crs
generated via CRSGen and the 7’s generated via Prove in G;. Consequently, we
have | Pry[Win] — Pry[Win] | < AdVékAMZK,Bl()‘) and Claim 2 follows. |

Game Gg: It is the same as Gg, except that, when answering Ogex (i, m),
the challenger also puts (7, (x,vk;,d),7) to a set Qgn, and for the forgery
(i*,m*, 0" = (z*,d*, 7)) output by A, the event Win is now defined as

"¢ Qcor N (1",m",0") & Qgien A Vrfynize(crs, 7%, (2%, vk, d¥), 7%) = 1
A (T*,(I*ﬂ}ki*,d*),ﬂ'*) ¢ QSIM .

Claim 3. | Pra[Win] — Pr3[Win] | < Adv§] 5, (A).

Proof. By Bad denote the event that A’s forgery (i*,m*,o* = (z*,d*,7*))
satisfying 3 (i,m,0 = (z,d, 7)) € Qsian, St

i ¢ QCOR A (i*,m*,a* = (.T*,d*771'*)) # (i777l,0' = (fl},d, 7T)) € QSIGN
A Vrfynize (ers, 77, (% vk, d¥), %) =1 A (77, (%, vk, d¥), 7)) = (7, (z, ki, d), 7) € Qg

where 7% := H(m*) and 7 := H(m). Clearly, Gy and G3 are the same until Bad
occurs, thus | Pra[Win] — Prs[Win]| < Prs[Bad].

To bound Pr3[Bad], we first note that (7%, («*, vk;«, d*), 7*) = (7, (z, vk;, d), 7)
in Bad implies (7, z*,i*,d*, n*) = (7,z,1,d, ), since there are no verification
key collisions (due to the game change in G;). Together with (i*,m*,o* =
(x*,d*, 7)) # (i,m,0c = (z,d, 7)) in Bad, it follows that m* # m but 7* =
H(m*) = H(m) = 7. Therefore, Bad suggests a collision of H. It is straight-
forward to construct an adversary By so that Prz[Bad] < Advy 5, (A). (B2 can
sample all signing keys itself, simulate Gz honestly for A, and successfully find
a collision as long as Bad happens.)

Overall, | Pra[Win] — Prs[Win] | < Prs[Bad] < Adv§] 5, ()). |

Game Gy: It is the same as Gz, except that, at the beginning of the game, the
challenger picks (po,td,,) s -2y besides (p,td,) <—s £, and for all the Ogy
queries, the challenger samples x <—s £, instead of x <—s £,. We stress that the
challenger still uses p to define the QANIZK’s gap language parameter p’ :=
(p, PPHps; PPemT) for which (crs, tdes) s SimGen(p') is generated.

40



Claim 4. \ Pr3[Win] — Pry[Win] \ < Advo";fg‘;@s () + Advf;:‘g%Qs (A).

Proof. We introduce an intermediate Game G3 5 between G3 and G4, where the
challenger samples = <—s X" for all the Ogcy queries.

Since witness w for z is not used at all in Gz, G35 and G4 (due to the game
change in Gy), we can directly construct two adversaries B3 and By for solving the
multi-fold SMP related to £ and the multi-fold SMP related to % respectively,
s.t. | Pra[Win] — Pra 5[Win]| < AdVZP o () and | Pras[Win] — Pry[Win]| <
AdV'PTE, o.(A)- The full description of Bs and B, can be found in Appendix B.1.
(B3 and B, can sample all signing keys themselves, simulate G3/Gs 5/G4 honestly
for A depending on the challenges that Bs and By receive, and succeed as long
as A behaves differently in these games.) |

Game Gjs: It is the same as Gy4, except that, the event Win is now defined as
"¢ Qcor N (1",m",0") & Qgien A Vrfynizk(crs, 7%, (2¥, vk, d¥), 7%) = 1

A (7%, (2, vk, d*), ) ¢ Qsiu A x* € L, A d* € Balle, (Ag,. (%)) -

Claim 5. | Pr4[Win] — Pr5[Win] ‘ < Advgf;MZK_’BS()\) + Ebinding-

Proof. By Forge denote the event that A’s forgery (i*,m*, o* = («*,d*,7*))
s.t.
i ¢ Qcor N (1",m",0") ¢ Qgien A Vrfypize(crs, 7%, (2%, vk, d¥), 7%) = 1

A (77, (2%, vkix,d*), ") & Qsn A (2" ¢ Zp v d* ¢ Balle,, (Ask,. (z7))).

G4 and Gj are the same unless Forge occurs, so ’ Pr4[Win]—Prs[Win] ’ < Prj[Forge].

Note that by the &nang-statistical binding property of CMT under BSetup,
vk = Com(ppcmt, ski=;7i=) cannot be a commitment of messages in SK other
than sk;-, except with probability at most €nang- We take this for granted in
the following analysis. Therefore, the event (z* ¢ Ep v d* ¢ Balle,, (Ask,. (z%)))
in Forge implies (z*, vk;-,d*) ¢ E;(?ANIZK) where p" = (p, PPpps, PPcu)- Conse-
quently, Forge implies Vrfyyzx (crs, 7, (2%, k=, d*), 7*) = 1 A (7%, (z*, vk, d*),
™) & Qsiu A (2%, vk, d*) ¢ Z(p(,QANIZK), which directly breaks the USS prop-
erty of tag-based QANIZK. Formally, we can build an adversary Bs such that
Prs[Forge] < Advganizk 5. () Bs can sample all signing keys itself, simulate Gs
honestly for A (using its own oracle Ogyy defined in Fig. 8 to generate simulated
proofs 7 when answering Og;cn queries for A), output the (7%, (x*, vk;«, d*), 7*)
extracted from A’s forgery to its own challenger, and succeed as long as Forge
occurs. We also provide a full description of B5 in Appendix B.2.

By taking the aforementioned &g into account, we have Prj[Forge] <
Adv@anizk. 5, (M) + Einding- This completes the proof of Claim 5. |

Game Gg: It is the same as Gs, except that, when answering Ogiox (i, m), the

challenger computes d via the prPub algorithm of prQAHPS by using the projec-
tion key v, (sk;) and a witness w of x € L,:
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o d <s prPub(a,,(sk;), z, w).

Since z is chosen from £,, C Zpo with witness w, by the &.nq-evaluation in-
distinguishability of prQAHPS (cf. Definition 7), the d <—s prPub(a,, (sk;), z, w)
in Gg is statistically close to the d s prPriv(sk;,z) in Gs, with statistical dis-
tance at most €.,,,q- By a union bound over all Og,qy queries, we have | Pr5[Win]—
PrG[Win} ‘ S QS * Eevalnd-

Game Gr: It is the same as Gg, except that, at the beginning of the game, the
challenger generates ppcyt via ppemt s HSetup (the hiding mode) instead of
PPcmT s BSetup (the binding mode).

By the parameter indistinguishability of the two modes of CMT, Gg and G7
are computationally indistinguishable, and it is straightforward to construct an
adversary Bg so that | Prg[Win] — Prz[Win]| < AdvET&f}"fE’JA). (Bg receives ppemr
from its own challenger, simulates Gg/G7 honestly for A by using the ppcyt it
received and by sampling all signing keys itself, and successfully distinguishes
the two modes as long as A behaves differently in Gg and G7.)

Finally, we have the following claim regarding Pr7[Win].

N H ext” 3 72 -
Claim 6. Pr7[Win] < N - EingngS,B?:teXt ~+ Eniding-
Proof. Let i* denote the user index contained in A’s forgery. In the case that
A corrupts user i* (i.e., i* € Qcor), Win does not occur, thus the claim trivially
holds. Next we prove the claim in the case that A never corrupts user ¢* (i.e.,
i* ¢ Qcor). We analyze the information about sk;- that A may obtain in Gy.

e Firstly, the verification keys contain vk;» = CMT (ppcpmr, Skix; 7+ ).
Due to the game change in Gz, ppcy is generated by HSetup. By the &piging-
statistical hiding property of CMT under HSetup (the hiding mode), vk;« =
CMT (ppem, skix; mi+ ) is statistically close to a commitment CMT (ppep, sk; )
of any sk € SK with 7 <—s R. Therefore, vk;x = CMT (ppemr, Skix; rix) sta-
tistically hides the information about sk;«.

e Due to the game change in Gg, Ogiox (7%, m) for user i* uses only a,, (ski-)
instead of the whole sk;«.

e Since i* ¢ Qcor, A never queries Ocop(i*).

Overall, the information about sk;« that A learns in G; is limited in c,, (sk;+).

Then we analyze the probability Pr7[Win]. For A’s forgery (i*,m*,o* =
(x*,d*, 7)), Win will not occur unless z* € Ep A d* € Ball, (Agk,. (7).
Intuitively, by the e..-(%,-Z)-OT-extracting property of prQAHPS (cf. Defi-
nition 11), we know that z* € Zp A d* € Ballg, (Agk,. (z*)) holds with only
a negligible probability, even in the presence of «,,(ski+). Hence Win hardly
happens in Gy.

Formally, we build an (unbounded) adversary By against the e..-(-%,.Z)-
OT-extracting property of prQAHPS. By is given (ppyps, Po, p; @p,(sk)), where
sk +—s SK is chosen by its own challenger. B; will simulate G; for A. Firstly,
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B7 guesses the user index ¢* for which A forges a signature (with a security loss
N) and implicitly sets the signing key of user i* as the sk chosen by its own
challenger. By samples ppcyt s HSetup and computes the verification key of
user i* as vk;x 1= CMT(ppCMT,;\E;F) for an arbitrary sk € SK, where 7 s R.
By the epging-statistical hiding property of CMT under HSetup (the hiding mode),
this simulation is statistically close to G7, with statistical distance at most €piging-
For the remaining N — 1 users, B; samples signing keys itself, thus can hon-
estly answer Og; ey and Ocor queries made by A for these users. For user i*,
B can answer Ogcy queries using the projection key ozpo(sk:) contained in its
own input (since z <—s L£,,) and abort immediately if A corrupts i*. Finally, B7
receives a forgery (i*,m*,o* = (z*,d*,n*)) from A, and returns (z*,d*) to its
own challenger. Overall, B7’s simulation is statistically close to Gy and By suc-

ceeds (i.e., z* € L, A d* € Balle, (Asx,. (z*))) as long as i* is correctly guessed

. et~ (Z0,-L)-otext . . . .
and Win occurs, thus e;QgHSS B>7° ot > % - Pr[Win occurs in B7’s simulation] >

% . ( Pr7[Win] —8hiding). We also provide a full description of B; in Appendix B.3. |

Taking all things together, Theorem 1 follows. ad

B.1 Full Description of Reductions B3 and B4 for Claim 4
We introduce an intermediate game Gz 5 between Gz and Gy:

— Game Gg 5: It is the same as game Gz, except that, for all the Og,qy queries,
the challenger samples x s X.

Note that the witness w for x is not used at all in games Gz, G35 and Gy
(due to the game change in Gg).

Below we construct two adversaries B3 and B, for solving the multi-fold SMP
related to £ and the multi-fold SMP related to % respectively, s.t. | Prs[Win] —
Prj 5[Win] | < AdVyR . (A) and | Pra.5[Win] — Pry[Win] | < AdVLTE, 0. (M)

We first provide the full description of Bs for solving the multi-fold SMP
related to . (cf. Definition 3). Bs is given (p, {z;};¢[q.]), Where (p,td,) s 2,
and B3 aims to decide whether z1,...,2g, <= £, or z1,...,2¢g, s X. Bs will
simulate Gs or Gs 5 for A, depending on the input that B3 receives.

o Firstly, Bs invokes ppyps s Setupyps, pPcmt s BSetup, and sets p' :=

(P, PPHPs, PPcvT) Which defines the gap language QES,QANIZK) as in Fig. 1.
Then Bs invokes (crs, tders) <—s SimGen(p’), samples H <—s H, and sets ppg ¢ :=
(s PPHPSs, PPcMmT €fs, H ). Then for each user i € [N], B3 sets the signing key
sigk; := (sk;,r;) itself with sk; <—s SK and r; <—s R, and computes the cor-
responding vk; := Com(ppcyT, ski; 7). Bz sends (ppsig, {vki}icin)) to A.

e For Oggy queries, when answering the j-th (j € [Qs]) Osien query (i,m),
Bs sets = as the z; in its own input, and computes d s prPriv(sk;, ),
T = H(m) and 7 s Sim(crs, tders, 7, (2, vk;, d)), without knowing a wit-
ness of . Bs returns o := (z,d, ) to A, puts (i,m,c) to Qgiey and puts
(1, (z,vk;,d), m) to Qgpy.
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In the case that x = x; is uniformly chosen from £,, Bs perfectly simulates

Gs for A; in the case that + = x; is uniformly chosen from X', B3 perfectly
simulates Gz 5 for A.

e For an Ocopr query i, Bs returns sigk; = (sk;,r;) to A and puts i to Qcor,
the same way as Gz and Gs 5.

e Finally, Bs receives a forgery (¢*,m*,o* = (a*,d*,7n*)) from A. B3 uses
the signing keys {sigk;}ic[n] to decide whether the event Win defined in G3
(which is the same as that defined in G35 and G4) occurs, i.e.,

i* ¢ Qcor N (1*,m*,0%) ¢ Qgian A Vrfynize(crs, 77, (2™, vk, d¥), 7%) = 1
A (T*a (Z'*,Uki*,d*),ﬂ'*) ¢ QS[M~

Bs returns 1 to its own challenger if and only if Win occurs.

Overall, B3 simulates G3 for A in the case x1,...,2q, <s £, and simulates Gs 5
for A in the case x1,...,z¢, s X, thus Bs successfully distinguishes the two
cases as long as the probability that Win occurs in Gz differs non-negligibly from
that in Gz 5. Consequently, we have AdviZ o (M) > | Pr3[Win] — Prs 5[Win]|.

Next, we provide the description of By for solving the multi-fold SMP related
to £ (cf. Definition 3). By is given (po, {Z;}e[0.]), Where (po, td,,) <—s £, and
B, aims to decide whether x1,...,zg, s L,, or T1,...,xg, s X. By simulates
exactly the same way as Bz does, except that, B4 samples (p,td,) s .2 it-
self to generate the p contained in ppgg. In particular, when answering the
J-th (j € [Qs]) Osien query (i,m) made by A, By sets = as the x; in its
own input. In the case that x = x; is uniformly chosen from L, , By per-
fectly simulates G4 for A; in the case that x = x; is uniformly chosen from
X, By perfectly simulates G5 for A. Therefore, By successfully distinguishes
Z1,..,2Q, +s Ly, from z1,...,29, +—s X as long as the probability that Win
occurs in Gy differs non-negligibly from that in Gz 5. Consequently, we have
AdVZTE. . (A) > | Prs 5[Win] — Pry[Win] |.

This completes the proof of Claim 4. |

B.2 Full Description of Reduction Bjs for Claim 5

To bound Pr;[Forge], we construct an adversary Bs against the USS of tag-based
QANIZK (cf. Definition 19) for the gap language GL2 ') = (£IANHO | £IQANIZIO)
defined in Fig. 1, where p’ = (p, ppups, PPcm). The full description of Bs is as
follows. Bs is given (p' = (p, PPups, PPcmT), td,r ; crs) and has access to the oracle
Ogy defined in Fig. 8 (cf. Definition 19). Bs simulates Gy for A as follows.

e Firstly, Bs samples H <s H, and sets ppgic := (P, PPups, PPcmTs Crs, H).
Bs also invokes (po,td,,) <—s £p. Then for each user i € [N], Bs samples
sk; <—s SK and r; «s R itself, sets sigk; := (sk;,7;), and computes the cor-
responding vk; := Com(ppcy, ski; 7). Bs sends (ppsig, {vki}icin]) to A.

e For an Ogen query (i,m) made by A, Bs samples = s L,,, computes
d s prPriv(sk;, z) and 7 := H(m). Then Bs sends (7, (x,vk;,d)) to its own
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Ogy oracle and obtains m, which is generated by Ogyy via m <—s Sim(crs, tdeys,
7, (z,vk;, d)). Bs returns o := (z,d, 7) to A, puts (i,m, o) to Qgien and puts
(1, (z,vk;,d), 7) to Qsy.
e For an Oc¢or query i, Bs returns sigk; = (sk;, ;) to A and puts i to Qcor-
e Finally, Bs receives a forgery (i*, m*, o* = (z*,d*,7*)) from A. B5 computes
7% := H(m*), and outputs (7%, (z*, vk;,d*),7*) to its own challenger.
It is clear to see that Bs simulates Gs perfectly for A, and By outputs a suc-
cessful forgery (7%, (x*, vk;«,d*), 7) to its own challenger so that (z*, vk;~,d*) ¢
L;?ANIZK) A (7%, (%, vk, d¥), %) & Qsiu A Vrfyyzi(crs, 7%, (%, vk, d*), ) =
1 as long as Forge occurs. By taking the aforementioned statistical binding pa-
rameter €gqing into account, we have Prs[Forge] < Advg;MZK,BS (A) + Ebinding- This
completes the proof of Claim 5. |

B.3 Full Description of Reduction B; for Claim 6

To bound Pr7[Win], we construct an (unbounded) adversary B; against the €-
(L, L)-OT-extracting property of prQAHPS (cf. Definition 11). The full de-
scription of By is as follows. By is given (ppyps, po, p; @, (5k)), where sk s SK
is chosen by its own challenger. B; simulates G7 for A as follows.

e Firstly, B; invokes ppcyt s HSetup, and sets p’ := (p, ppups, PPcmt) Which
defines the gap language Q,CE)(?ANIZK) as in Fig. 1. Then By invokes (crs, tdes)
s SimGen(p'), H <—s H, and sets ppgic := (0, PPupss PPcmT; €S, H ).
Br samples an index i s [N] uniformly, sets sk := sk implicitly for user
2, where sk is the hashing key chosen by B;’s own challenger, and computes
the verification key of user 7 as vk = CMT(ppCMT,;E;F) for an arbitrary
sk € SK, with 7 < R. By the e,gn.-statistical hiding property of CMT
under HSetup (the hiding mode), this simulation is statistically close to Gy,
with statistical distance at most €pging-
For all other users ¢ € [N]\ {2}, Br samples sk; <—s SK and 7; ¢s R
itself, sets sigk; := (sk;,7;), and computes vk; := Com(ppcmT, ski; 74)-
By sends (ppsg, {vki}ien]) to A.
e For an Og ey query (i, m) made by A, B7 computes a signature o as follows.
By first samples = <—s L£,, with witness w. If ¢ # ?, B; computes d
via d s prPub(a, (ski),z,w) using o, (sk;), the same as Gz; if i = i, Br
computes d via d <s prPub(a,,(sk),z,w) using the projection key a,,(sk)
contained in its own input, which is also the same as G7. Then, B; computes
7 := H(m), invokes 7 <—s Sim(crs, tders, 7, (2, vk;, d)) and sets o = (x,d, 7).
B7 returns o to A, puts (i,m,0) to Qsiexy and (7, (x, vk;, d), 7) to Qg
e For an Ocoy query i made by A, if ¢ 752, B7 returns sigk; = (ski,r;) to A,
if 4 :Z B; aborts immediately.
e Finally, B7 receives a forgery (i*,m*,o* = (a*,d*,7*)) from A. If i* = 1,
B outputs (x*,d*) to its own challenger; if i* 7&7, B; aborts the game.
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It is clear to see that if i = i* (which happens with probability %) and A never
corrupts ¢*, By’s simulation is statistically close to G7, and B7’s output (x*,d*)
succeeds (i.e., z* € L, A d* € Ball (A (z*))) as long as Win occurs. Thus,

o= (-ZL0,-L)-otext . . . . .
e;(‘QﬁHgs’go &t > % -Pr[Win occurs in B7’s simulation] > % . (Pr7 [Win] — shiding)

and Claim 6 follows. 1

C Proof of Theorem 2 (MUMCE®-CCA Security of PKE)

Theorem 2 (MUMCE-CCA Security of PKE) Assume that (i) £ and %y have
hard SMPs, (ii) prQAHPS is a probabilistic QA-HPS for both £ and £, having
Eevaina -€Valuation indistinguishability, PK-diversity, and supporting both (&£, %)
key-switching and Zy-multi-key-multi-extracting, (i4i) QANIZK is a tag-based
QA-NIZK for the gap language GL, = (L’p,Ep) generated by £, satisfying
both zero-knowledge and unbounded simulation-soundness, (iv) H is collision-
resistant. Then the proposed PKE scheme in Fig. 2 is MUMCC-CCA secure.

Concretely, for any number N of users and any adversary A who makes
at most Q. times of Ogne queries and Qg times of Opge queries, there exist
adversaries By, - , By, such that T(B1) ~ --- =~ T(Bs) =~ T(A) + (N + Q. +
Qq) - poly(N), with poly(\) independent of T(A), and

Advige an(A) < Advé)kANIZK,Bl (A) + Advyy g, (\) + AVETR o (N) +AVETE o (M)

Lo-mk- '
+ Advganizk ss (A) + Advpr&/&LPg%(Z,N,Qe()‘) + statist. loss,

U)here StatiSt' ZOSS = N(]gil) ’ eill’((;i\i\lgps + (3QC + 2Qd) * €evalnd + N - eéﬁﬁ'ﬁ£§i@7

Proof of Theorem 2. We prove Theorem 2 by defining a sequence of games
Go—Gg and showing adjacent games indistinguishable. A brief description of
differences between adjacent games is summarized in Table 2. By Pr;[-] we denote
the probability of a particular event occurring in game G;.

Game Go: This is the Exppgg 4 v experiment (cf. Fig. 6). Let Win denote the
event that 8/ = . By definition, AdvERg 4 n(A) = | Pro[Win] — &|.

Let (pk;, sk;) denote the public/secret key pair of user ¢ € [N]. In this game,
when answering an Ogye query (i*,mg,m1), the challenger samples z* s L,
with witness w*, computes hv™ <—s prPub(pk;., z*, w*), d* := hv* +Encode(mg),
7% := H(pk;.,d*) and 7* <—s Prove(crs, 7%, 2*, w*). Then, the challenger returns
the challenge ciphertext ¢* := (a*,d*,7*) to A and puts (i*,¢*) to set Qpne-
Upon an Opge query (i,¢ = (x,d, 7)), the challenger computes 7 := H(pk;, d),
hv' <—s prPriv(sk;, z), returns m := Decode(d — hv') to A if (i,¢) ¢ Qe A
Vrfynizk (crs, 7,2, ) = 1 holds, and returns L otherwise. For an Ocor query 4,
the challenger returns sk; to A and puts i to set Qcor-

Game Gj: It is the same as Gg, except that, the challenger aborts immediately
if there are collisions in {pk; }ic[ny, i-e., 31 <i < j < N, s.t. pk; = pk;.
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Since sk; and sk; are chosen independently from SK for each 1 < i <
j < N, by a union bound and by the PK-diversity of prQAHPS, it follows that

. . N(N— k-div
| Pro[Win] — Pry[Win] | < 37, iy Prlay(sks) = a(sh;)] < 2E=1 - ebeli o

Game Gs: It is the same as Gy, except that, at the beginning of the game, the
challenger generates crs via (crs, tders) <—s SimGen(p) instead of crs <—s CRSGen(p).
Moreover, when answering Ogxc(i*,mg, m1), the challenger computes hv* and
7 without using the witness w* for z* € L,:

o hw* s prPriv(sk;«, z*), o T < Sim(crs, tdgs, 75, ).
Olalm 7. | Prl [W|n] - Pr2 [W|n] | S Advg(AN|ZK,Bl (A) + Qe * Eevalnd -

Proof. Since z* is chosen from £, with witness w*, by the zero-knowledge of
QANIZK (cf. Definition 18), the crs generated via SimGen and the 7*’s generated
via Sim in Gg are computationally indistinguishable from the crs generated via
CRSGen and the 7*’s generated via Prove in Gj, and more precisely, A can
distinguish them with probability at most Advé‘A,\“ZKﬁ1 (N).

Moreover, by the €.,.n-evaluation indistinguishability of prQAHPS (cf. Defini-
tion 7), the hv™ <—s prPriv(sk;«, z*) in G is statistically close to the hv™ <—s prPub(pk,.,
x*,w*) in Gy, with statistical distance at most €q.na. Then by a union bound
over all Ogye queries, all hv™’s generated via prPriv in G, are statistically indis-
tinguishable from the hv*’s generated via prPub in Gp, with statistical distance
at most Q¢ - Eevaing-

Overall, we have | Pri[Win] — Prao[Win] | < Adv@anizk s, (\) + Qe - €arna- |

Game Gs: It is the same as Gg, except that, when answering Oy (7%, mg, m1),
the challenger also puts (7, 2*, 7*) to a set Qgy, and when answering Opyc (i, ¢ =
(x,d,m)), the challenger adds the following new rejection rule:

o If (7,2,m) € Qgny, return L directly.

Clearly, Go and Gz are the same unless that A ever queries Opgc(i,¢ =
(z,d, 7)) s.t.

3 (¢, ¢ = (a*,d*, 7)) € Qpxe, St (i,¢= (z,d, 7)) # (i*, " = (z*,d*,7%))

A VrnyIZK(CrS7va77T) =1A (T,l?,ﬂ') = (’T*,$*,7T*) € QSIM7

where 7 := H(pk;,d) and 7 := H(pk;.,d*).

Note that by (i,¢c = (z,d, 7)) # (i*,¢* = (z*,d*,7*)) and (r,z,7) =
(7%, z*,7*), it follows that (i,d) # (i*,d*) and 7 = H(pk,,d) = H(pk,.,d*) =
7*. Since there are no public key collisions (due to the game change in Gy),
(i,d) # (i*,d*) implies (pk;,d) # (pk;-,d*). Consequently, the above event sug-
gests a collision of H, and we have | Pry[Win] — Prs[Win]| < Adv§; 4, (A).

Game Gy: It is the same as Gz, except that, at the beginning of the game, the

challenger picks (po,td,,) <—s £y besides (p,td,) <—s £, and for all the Opyc
queries, the challenger samples z* <—s £, instead of z* < L,,.
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By the multi-fold SMP related to . and by the multi-fold SMP related to
£y, we can first change Gz to an intermediate game Gs 5 where the challenger
samples ¥ <—s X for all the Oy queries, then further change G35 to G4. Overall,
we have the following claim.

Claim 8. | Pr3[Win] — Pry[Win] | < AdVER o (A) +AdVETE . (M)

The proof is similar to that for Claim 4 in the proof of Theorem 1, thus we omit it.

Game Gs: It is the same as Gy, except that, when answering Opgc(i,c =
(x,d,m)), the challenger adds another new rejection rule:

e lfz ¢ Zp, return L directly.

Note that the challenger can use the trapdoor td, to check = ¢ Ep efficiently.
Clearly, G4 and G; are the same unless that A ever queries Opgc(i,¢c =
(xz,d, 7)) s.t.

(i,c = (z,d, 7)) & Qpxc A Vrfynize(crs, 7,2, m) =1 A (1,2,7) ¢ Ogiu A x ¢ Zp.

This event implies Vrfyyzx(crs, 7,2, m) =1 A (1,2, 7) ¢ Qgu A ¢ Zp. Thus by
the USS of QANIZK, we have the following claim.

Claim 9. | Pra[Win] — Prs[Win] | < Advganizk s, (A)-

We provide a formal proof for Claim 9 in Appendix C.1. A subtlety is that By
obtains the language trapdoor td, from its own challenger, thus can use td, to

efficiently decide the membership of Ep when answering Opygc queries for A.

Game Gg: It is the same as Gy, except that, when answering Oy (7%, mg, m1),
the challenger computes hv* via the prPub algorithm of prQAHPS by using the
projection key a,,(sk;+) and a witness w* of z* € L,,:

o hw* < prPub(a,, (ski-), z*, w*).

Moreover, when answering Opgc(i, ¢ = (z,d, 7)), the challenger computes 7 :=
H(pk;,d), checks whether (i,¢) ¢ Qpxe A Vrfyyizk(crs, 7z, m) = 1A (T, 2,7) ¢
Qs AT € Ep holds, and returns L to A directly if the check fails. If the check
passes, the challenger uses brute force to find a witness w for x € Ep, and
computes hv’ via the prPub algorithm by using the projection key a,(sk;):

o W' s prPub(a,(sk;), z,w),
and returns m := Decode(d — hv') to A.

We note that the challenger in this game may not be PPT. This does not
matter, since the following arguments (before the challenger is changed back to
PPT) are statistical.

Below we show that Gg is statistically close to Gs. For Ogxc queries, since
w* is a witness for 2* € L,, C L,,, by the €..n-evaluation indistinguishabil-
ity of prQAHPS (cf. Definition 7), the hv™ s prPub(ay, (sk;-),z*, w*) in Gg is
statistically close to the hv™ <s prPriv(sk;-,z*) in Gs, with statistical distance

*
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at most &g Similarly, for Opge queries, since w is a witness for z € Zp, the
hv' s prPub(a,(sk;), z, w) in G is statistically close to the hv' «s prPriv(sk;, x)
in Gy, with statistical distance at most €.,mq- By a union bound over all Ogy¢
queries and all Opg¢ queries, we have | Pr5[Win] — Prg[Win] | < Qe+ Qd)  Eevaina-

Game G7,, 0 <n < N: It is the same as Gg, except that, at the beginning of the
game, the challenger picks another sk <—s SK besides sk; for each user i € [N].
Moreover, when answering Ogxc(i*,mg,mq) for users i* < 7, the challenger
switches sk;« to the new secret key sk}. in computing hv*:

o hv* s prPub(ay,, (ski.), z*, w*),

where w* is a witness of * € L. The challenger still uses {sk;};c[n] to compute
the public keys for all users i € [N], to answer Ogyc queries for users i* > 1,
and to answer Opye and Ocoy queries for all users i € [N].

It is clearly that Gz is identical to Gg, thus Prg[Win] = Pry o[Win].

For each 1 € [N], note that the difference between G7.y—1 and Gy, lies in the
Ogne oracle for user n: in Gr.,,—1, Opxe computes hv™ <—s prPub(ay, (sky), z*, w*)
using sk,, while in G7,, Opyxe computes hv™ s prPub(apo(sk;]),x*,w*) using
sk;]. By the (&, %)-key-switching property of prQAHPS (cf. Definition 8), the
challenger can safely switch sk, to sk;, when answering Ogy¢ for user 7, and we
have the following claim.

Claim 10. For each 1 € [N], |Pr7.,—1[Win] — Prr, [Win]| < elaitidS .

We provide a formal proof for Claim 10 in Appendix C.2.

Game Gg: It is the same as Gy_y, except that, when answering Ogy¢ (4, mo, m1),
the challenger computes hv* via the prPriv algorithm of prQAHPS by using sk'.,
without using a witness w* of * € L,;:

® hv™ <—s prPriv(skl.,z*).
Moreover, when answering Opgc (i, ¢ = (z,d, 7)), the challenger computes 7 :=
H(pk;,d), checks whether (i,c) ¢ Opxc A Vrfyyze(crs, 7,2z, m) = 1A (1, 2,7) ¢
Qs Az € L, holds, and returns L to A directly if the check fails. If the check
passes, the challenger does not use brute force anymore, but computes i~w' via
the prPriv algorithm of prQAHPS, without knowing a witness w for x € £,:

o hv' < prPriv(sk;, ),
and returns m := Decode(d — hv') to A.

We note that the challenger in this game is now PPT again, since it can use
the language trapdoor td, to decide the membership of £, efficiently.

The change from G; n to Gg is reverse to that from Gs to Gg. By a similar
argument, we have | Pr7 n[Win] — Prg[Win] | <(Qe + Q) * Ecvaina-

Game Gg: It is the same as Gg, except that, for all the Ogyc queries, the chal-
lenger samples hv* <—s H) uniformly, instead of computing hv* with {sk;}ie[ N]-
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Note that the only place that Gg differs from Gg lies in the computations of
hv* in the Opyc oracle for all users i* € [N], where hv* <—s prPriv(sk’.,z*) in Gg
while hv* <—s HV in Gg. Since {sk;};c[n] is used only in the computations of hv*
in Ogxe, and 2* in Ogye are uniformly chosen from L£,,, by the Zp-multi-key-
multi-extracting property of prQAHPS (cf. Definition 10), we have the following
claim.

Claim 11. | Prs[Win] — Pro[Win] | < AdvZaast%t | o (M.
We provide a formal proof for Claim 11 in Appendix C.3.

Finally in Gg, hv" is uniformly chosen from HV and d* := hv™ +Encode(mg),
thus the challenge bit § is completely hidden to A. Then Prg[Win] = %
Taking all things together, Theorem 2 follows. a

C.1 Proof of Claim 9

Claim 9. | Pry[Win] — Pr5[Win] | < Adv@anizk s, (A)-
Proof. By Forge denote the event that A ever queries Opgc(i,¢c = (z,d, 7)) s.t.
(i,c = (x,d,m)) & Quxc A Vrfynz(crs, 7,2, m) =1 A (T,2,7) ¢ Oy A x ¢ Ep.

Gy and Gj are the same until Forge occurs, so | Pry[Win]—Pr5[Win] | < Prs[Forge].

To bound Prs[Forge], we construct an adversary Bs against the USS of tag-
based QANIZK (cf. Definition 19) for the gap language GL, = (£,, E,,) as follows.
Bs is given (p,td,,crs) and has access to the oracle Ogy defined in Fig. 8 (cf.
Definition 19). Bs simulates Gy for A as follows.

o Firstly, Bs invokes ppypg s Setupyps, samples H <—s H, and sets pppyg 1=
(P, PPups, cfs, H). Then for each user i € [N], Bs samples secret key sk; +s SK
itself and computes the corresponding public key pk; := «,(sk;). Bs also
picks (po, td,,) s ZLo. Bs sends (pppke, {Pkitien]) to A.

e For an Ogye query (i*,mg, m1) made by A, Bs samples * <—s L, computes
hv* <s prPriv(sk;-,x*), d* := hv" + Encode(mg) and 7* := H(pk;.,d").
Then Bs sends (7%, z*) to its own Ogpy oracle and obtains 7*, which is gen-
erated by Ogpy via 7% <—s Sim(crs, tdg,s, 7, 2*). Bs returns ¢* := (z*,d*, 7*)
to A, puts (i*,¢*) to Qrne and puts (7%, 2%, 7%) to Qgm-

e For an Opgc query (i,¢ = (z,d,n)) made by A, Bs computes 7 := H(pk;, d),
checks whether (i, ¢) ¢ Qrne AVrynizk(crs, 7,2, m) = 1A (1,2, 7) ¢ Qgy, and
returns L to A if the check fails. Then Bs uses td, to further check whether
x € Ep. Ifx ¢ Zp, Bs returns L to A, the same as Gs, and sends (7, z, 7) to its
own challenger as its forgery. If = € Zp, Bs computes hv' <s prPriv(sk;, x),
and returns m := Decode(d — hv') to A, the same as Gs.

e B uses {sk;}ic[n) to answer Ocor queries for A, the same as Gs.

It is clear to see that Bs simulates G5 perfectly for A, and B outputs a successful
forgery (7, x, ) to its own challenger so that Vrfyyzx(crs, 7,2, 7) = 1 A (1,2, 7) ¢
Qs A = ¢ L, as long as Forge occurs. Therefore, Prs[Forge] < Advganizk s, ()
and Claim 9 follows. I
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C.2 Proof of Claim 10

Claim 10. For each n € [N], |Pr7.,_1[Win] — Pry_,[Win]| < eéﬁ’ﬁoggj;f

Proof. Note that the only difference between G7.,_1 and Gz, lies in the Ogye
oracle for user n: in Gz ,—1, Opne computes hv™ <—s prPub(a,, (sky), z*, w*) using
sky, while in Gz, Opxe computes hv™ s prPub(apo(sk;,),x*,w*) using sk%.

Let Cor,, denote the event that A corrupts user 7, i.e., A ever queries Ocor (1)
when (7, ) ¢ Qrnc and obtains sk;,. In the case that Cor,, occurs, 1 is appended
to Qcor, thus A is not allowed to query Ogxc(n, mo, m1) for user n, and G7.,,—1
is identical to Gr.,. Consequently,

| Pr7.,—1[Win] —Pr7 ,[Win]| = | Pr7,,_1[Win A=Cor,] — Pr7_,[Win A=Cor,]|. (15)

To bound (15), we first analyze the information about sk, (resp. sk, and

sk, ) that A may obtain in G7,_1 (resp. Gz, ) in the case that —Cor, occurs.

e Firstly, the public keys contain pk, = a,(sky).

e In Ogpyc(n, mo, m1), due to the game change in Gg, the behavior of Ogy for
user 7 is determined by av,, (sky) (resp. ap,(sky) ).

e In Opgc(n, ¢), due to the game change in Gg, the behavior of Opgc for user
7 is determined by a,(sk,).

e In the case that ~Cor,, A never queries Ocor (7).

Overall, the information about sk, (resp. sk, and sk:;7 ) that A learns in Gz,

(resp. Gr.p ) is limited in v, (sky) and oy, (sky) (vesp. ap,(sky,) ).

Then we analyze (15). Intuitively, by the (£, %)-key-switching property of
prQAHPS (cf. Definition 8), ap,(sky) is statistically close to ap,(sky) , even
in the presence of a,(sky). Thus, the Opye for user n in G7,_1 (using sk,) is
statistically close to that in Gz, (using skj, ).

Formally, we build an (unbounded) adversary B7 against the (£, .%)-key-
switching property of prQAHPS. B is given a challenge (ppyps; p, po, @ (sk), ap, (sk))
(say b = 0) or (Ppups; P, Po, Ap(sk), ap(sk') ) (say b=1), where sk, sk’ +s SK
are chosen by its own challenger, and B; wants to decide which case it is. To
this end, Br will simulate G7,_1 (or Gr, ) for A. B; picks a challenge bit
B < {0,1}. Intuitively, By will implicitly set sk, as sk and set sk/n as sk’ for
user 7, where sk and sk’ are the hashing keys chosen by its own challenger, and
explicitly define the public key of user n as the a,(sk) contained in its input. For
the remaining N — 1 users i € [N]\ {n}, Br samples secret keys sk;, sk’ itself,
thus can honestly answer Opye queries (sampling z* from L), Opgc queries
(using brute force to decide the membership of £, and find witness) and Ocor

queries made by A for these users. For user 7, B7 can answer Opyg queries using
the projection key «,(sk) contained in its own input (since Opge will output L
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unless = € Zp & B7 can decide the membership of Ep and find witness using
brute force), and aborts immediately if A corrupts 1. To answer Ogye queries
of user n, By samples z* from L£,,, and uses the projection key a,,(sk) (or

@p,(sk') ) contained in its own challenge to compute hv*. Finally, By receives

a bit 8’ from A and returns 1 to its own challenger as the guessing of b if and
only if 8 = f and —Cor, occurs (i.e., A never corrupts user n). Overall, B;

simulates G7.,—1 perfectly for A if b = 0 and —Cor,, occurs, and simulates Gy,

perfectly for A if b=1 and —Cor, occurs. Therefore, B7 successfully distin-
guishes b = 0 from b = 1 as long as the probability that 3’ = § in G7,_; differs
non-negligibly from that in G, in the case —~Cor,, and consequently, we have
eéfé’ﬁ"g's% > | Pr7.,—1[Win A =Cor,] — Pr7 ,[Win A =Cor,]|.

The full description of By is as follows.

e 3; is given a challenge (ppups, P, L0, ap(sk),}/?\/;b), where ;Elgo =y, (sk) and
},7\12'1 =y, (sk") with sk, sk’ <—s SK are chosen by B;’s own challenger.

e Firstly, B7 invokes (crs, tdes) <—s SimGen(p), samples H <s H, and sets pppxe
:= (p, PPups, crs, H ). Br also samples (pg,td,,) +s £y, and samples a chal-
lenge bit 8 <—s {0,1} for A.

For user n, By sets sk, := sk and slc;7 := sk’ implicitly and defines
pky = a,(sk) explicitly, where sk and sk’ are the hashing keys chosen by
B7’s own challenger and «,(sk) is part of B7’s own input. For all other users
i € [N]\ {n}, Br samples secret keys sk;, sk, <—s SK itself and computes
pki := a,(sk;). By sends (pppke, {Pkitie[n]) to A.

e When answering an Ogye query (i*,mg,mq) for user i* # n made by A, By
computes a challenge ciphertext ¢* the same way as G7,—1 and Gr.,,.

More precisely, Br samples z* <—s L, with witness w*, computes hv™ <—s
prPub(a, (ski. ), x*,w*) using skj. if i* < n and computes hv* s
prPub(cy, (ski+), x*, w*) using sk;» if i* > 7. Then Br computes d* := hv™ +
Encode(mg), 7" := H (pk;~,d*), invokes 7* <—s Sim(crs, tdes, 7%, ) and sets
¢ = (a*,d*, 7).

B7 returns ¢* to A, puts (i*,¢*) to Qpne and puts (7%, 2%, 7*) to Qg-

e When answering an Ogye query (n,mg, mq) for user n made by A, B; com-
putes a challenge ciphertext ¢* as follows. .

Br samples 2* s L,, with witness w*, and computes hv* <—s prPub(pk,, z*, w*)
using the projection key pk, contained in B;’s challenge. Then B; computes
d* := hv" + Encode(mg), 7 := H(pk,,d*), m* <—s Sim(crs, tdes, 7, 2*) and
sets ¢* 1= (z*,d*, 7*).

Bz returns ¢* to A, puts (1,c*) to Qxe and puts (77, 2%, 7*) to Qs

In the case b = 0, note that pk, = «,, (sk) and B; implicitly sets sk,, := sk,
it follows that hv™ <s prPub(pky, z*, w*) = prPub(a,, (sk,), z*, w*), thus Br
perfectly simulates G7 ,_; for A; in the case b = 1, note that 1/%1 = ap,(sk)

and By implicitly sets skj, := sk , it follows that hv™ <s prPub(pk,, 2*, w*) =

prPub( apo(sk;) , *,w*), thus By perfectly simulates Gz, for A.
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e For an Opge query (i,¢ = (z,d, 7)) made by A, B; decrypts the same way
as Gr,—1 and G7,,.

More precisely, By computes 7 := H(pk;,d), checks whether (i,¢) ¢ Qpxc
AVrfynize(ers, 7, x,m) = 1 A (1,2,7) ¢ Qsi, and returns L to A if the
check fails. Then B; uses brute force to further decide whether =z € 13,).
If « ¢ Zp, B; returns 1 to A. If x € Ep, B uses brute force to find a
witness w for x € Zp, computes hv' <s prPub(a,(sk;), =, w) using sk; if
i # 1 and computes hv' <s prPub(a,(sk), z,w) using the projection key
a,(sk) contained in its own input if i = 5, and returns m := Decode(d — hv')
to A.

e For an Ocor query ¢ made by A, if ¢ # n, By returns sk; to A; if i = n, By
aborts immediately.

e Finally, B; receives a bit 8 from A, and outputs 1 to its own challenger as
the guessing of b if and only if ' = 3 and A never corrupts n (i.e., =Cor,)).

It is clearly that B; simulates oracles Ogye w.r.t. users i* # 1 and Opgc
perfectly for A, and simulates oracle Oc¢or perfectly for A as well in the case
of =Cor,,. Moreover, B;’s simulation of oracle Ogyc w.r.t. user 7 is the same as
G7.p—1 in the case b = 0 and the same as G, in the case b = 1. Overall, By
simulates G7.,—1 perfectly for A in the case b = 0 and —Cor,, and simulates Gr
perfectly for A in the case b =1 and —Cor,,. Therefore, we have

Eamipats = | Pr[Br = 1|b = 0] — Pr[B; = 1|b = 1]|
=|Pr[' =8 A —Corylb=0] - Pr[f' =8 A —Cor,lb=1]| (16)
= | Pr7.,—1[Win A =Cor,] — Pr7_,,[Win A =Cor,]|.

Taking (15) and (16) together, Claim 10 follows. |

C.3 Proof of Claim 11

Claim 11. | Prg[Win] — Pro[Win] | < AdvZaasT% v o (V).

Proof. The only place that Gg differs from Gg lies in Opyc. For an Ogye (1%, mo, m1)
query, the challenger samples z* <—s L,,, and computes hv" <—s prPriv(sk’., z*)
in Gg while samples hv™ <s HV in Gg.

Let us fix some notations. Let i, Ty, hU;f denote the i*, 2*, hv™ in the j-th
Ogxc query, respectively, where j € [Q.]. The difference between Gg and Gy can
be characterized by the following two distributions:

s

e Gg: (m;‘ s Ly, hvj s prPriv(sk:Z-;, ) )je[Qe}’

o Gy: (x;‘ s Ly, hoj s HY )jG[Qe]'

Since {sk;};e[ny is used only in the computations of {hv}}jeiq.) in Opxe, and
{x;" }je[Qe] in Ogxe are uniformly chosen from L,;, by the £p-multi-key-multi-
extracting property of prQAHPS (cf. Definition 10), the above two distributions
are computationally indistinguishable.
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Formally, we build an adversary Bg against the Zp-multi-key-multi-extracting
property of prQAHPS by invoking A. Bg is given (pppps, po, 1745, hi j tien.je[@.])
where (po,td,,) <s Lo, ski, ..., skl, s SK, and &1 1, ...,aN.q, < L,,- Be aims
to decide whether hv; j s prPriv(sk;,x; ;) for all i € [N] and j € [Q.] (say
b=0) or hvy,...,hon,g s HYV (say b = 1). Bg will simulate Gg or Gg for A,
depending on the value of b.

o Firstly, Bg invokes (p,td,) s £, (crs, tders) <—s SimGen(p), samples H s H,
and sets pppre = (p, PPyps, crs, H). Then for each user i € [N], Bs sam-
ples secret key sk; <—s SK itself and computes the corresponding public key
pk; = a,(sk;). Bs sends (pppke, {Pki}iciny) to A. Bs also picks a challenge
bit 8 < {0,1} for A.

e Bg has the secret keys sk; of all users, thus can honestly answer Opgc queries
(using td, to decide the membership of £,) and Ocor queries made by A,
the same way as Gg and Gg.

o As for Opyc queries, when answering the j-th (j € [Q.]) Ogrnc query (ZJ*, mo,j,
my,;), Bg sets a7 as the x;+ ; in its own input, and sets hvj as the hv;x j in its
own input. Then Bs computes df := hv} + Encode(mg ;), 7/ := H(pki;,d;f)

and 7 <—s Sim(crs, tders, 777, 27 ), without knowing a witness of x7. Bg returns

cj = (x},d;, 7} ) to A, puts (i}, cj) to Qpxe and puts (77,27, 77) to Q-

In the case b = 0, hv; = hvi- j is generated by prPriv(skg;,xi;,j) =

prPriv(sk;;,x;), thus Bg perfectly simulates Gg for A; in the case b = 1,

hv; = hvi; j is uniformly random over HV, thus Bg perfectly simulates Gg.

e Finally, Bg receives a bit 3’ from A and returns 1 to its own challenger if
and only if 5’ = §.

Overall, Bg simulates Gg for A in the case b = 0 and simulates Gg for A in

the case b = 1, thus Bg successfully distinguishes b = 0 from b = 1 as long

as the probability that 5’ = 8 in Gg differs non-negligibly from that in Gg.
Zo-mk-mext

Consequently, we have Adv axtips 5, v.g. (A) = | Prs[Win] — Pro[Win]|.
This completes the proof of Claim 11. |

D Missing Details in Sect. 5 and Proof of Theorem 3
(Tighter Reduction from LWE to Multi-secret LWE)

In this section, we provide the missing details in Sect. 5, and in particular, the
formal proof of Theorem 3.

Before presenting the proof, we first specify some notations involved in this
section. For two distribution ensembles X,Y and a positive real number €, we
use the notation “X ~ Y with €” to denote | Pr[D(X) = 1] — Pr[D(Y) = 1]| < ¢
for all PPT distinguishers D. For a matrix M, we use o to denote its spectral
norm.

The rest of this section is organized as follows. In Appendix D.1, we introduce
some definitions and lemmas need in our formal proof. Then in Appendix D.2,
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we present the formal proof of Theorem 3. Finally, in Appendix D.3, we extend
Theorem 3 to Theorem 10, which addresses the almost tight reduction from LWE
to Multi-secret LWE for arbitrary modulus instead of just the prime modulus.

D.1 Additional Backgrounds on Lattices
Firstly, we recall the definition of “Lossy Sampler”.

Definition 23 (Lossy Sampler [2, Definition 3.1]). Let A be the security
parameter, n,m, £, q be integers (functions of A), and x = x(\) be a distribution
over Zq. We define the following efficient lossy sampler A s Lossy(1™,1™,1¢, ¢, x)
as: Sample B <s ngm, C s Z;‘XE, F s x"™™ and output A = C-B +F.

The following lemma shows that the output of lossy sampler is computation-
ally indistinguishable from random matrix.
Lemma 10 ([2]). Let A «s Zy*™, and let A s Lossy(1™,1™,1¢,q, x). Then,
we have: A ~ A with Advy-VE 1(A).

[4,q,x,m

The following lemma shows the decomposition of continuous Gaussian vector.

Lemma 11 ([15, Proposition 3.2]). Let F € Z™*™ be an arbitrary matric
with spectral norm og. Let 09,01 > 0 be s.t. 09 > 01-0 . Let elT s D and let
e s D 5 for ¥ = 00’1 —01?FTF. Then the random variable e = eirF +el
is distributed according to D7 .

With the results above, we can derive the following conditional min-entropy
lower bound. The proof is similar to that of [15].

Lemma 12. Let n,m, £, q be positive integers. Let s <s Zy, A s Lossy(1™,1™,
1E,q,DZ,Y), e < Dy, and e < D} such that oo > - C -+/m - 01, where C
1s the global constant from Lemma 7. Then we have:

Ho(s| (A;s' -A+e'))>Hy(s| s+e)—L-logg.

Proof. The proof is similar to that of [15, Theorem 4.1]. According to Definition
23, we know A=C-B+F, and hences' -A+e' =s" .- C.-B+s'F+el.
Furthermore, by Lemma 11, we know e = eIF + e;—, SO

s" ' C-B+s'F+e' =s"-C.B+s'F+e/F+e] =s' -C-B+(s' +e/ )F+e,.

Note that A ands” -A+e' can be reconstructed completely given C,B,F,s' -
C,s + e}, e,. Together with the fact that sT - C leaks at most £logq bits of
information about s, by Lemma 1, we have

Ho(s| (A,s' -A+e'))>Hy(s | (C,B,F,s" -C,s+e;,e))
:ﬁm(s | (s"-C,s+e1)) > ﬁoo(s |s+e)—F¢-logg. O

The following lemma states the lower bound of the so-called “noise lossiness”
of uniformly random vectors.
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Lemma 13 ([15, Lemma 5.2]). Let n be an integer, let ¢ be a modulus and

o1 be a parameter for a Gaussian. Assume that a% > @. Let s <—s Zy and

e < Dy . Then it holds that H.(s |s+ey)>n-log(oy) — 1.

D.2 Proof of Theorem 3

Now we recall Theorem 3 and present its formal proof.

Theorem 3 (LWE = Multi-secret LWE with Prime Modulus) Let
n,m,f,q €N, and q be a prime. Let 0,00,01,7,v > 0 such that o = /oo + 12,

oo > v-C-\/m-oy, Uil >4/ @ andr > /X, where C is the global constant from
Lemma 7. For any adversary A, there exists an adversary B, such that T(B)

T(A)+ Q- poly(\) with poly()) independent of T(A), and Adv&;\f\gmm]%()\)

2en - Advl[‘X\fIE’DmeLB()\) + w, where c is an integer such that m' = |2 ]

and n > (m'logq+ Llogq+ 2\ + 1)/ log(oy).

IN %

Proof of Theorem 3. We will use the multi-secret LWE with continuous
Gaussian D, defined in Definition 12 as an intermediate assumption, and show
that there exists an adversary B’ such that T(B) ~ T(B') + Q - poly’(\) ~
T(A) 4+ Q - poly(X) and

-LWE -LWE m
Adv[?l,Q,Dz,a,m],A()\) < Adv[?uq,Dao,m],B’()\) + QZT’ (9>

-LWE c
Advffw’DmeB,(A) < 2en - AdVRYEL, (V) + LG (10)

Then Theorem 3 follows directly from (9) and (10).

We already proved (9) in proof sketch in Sect. 5. It remains to show (10).
Below we present the formal proof of (10). Our target is to prove that the
Q-LWE,, ¢,p,, ,m-assumption holds, i.e.,

(A,slT ~A+e1T,...,sg~A+eg) ~ (A,u1T+e1T,...,ug+eg), (17)
based on the the LWE, 4 p, . m-assumption. Here s1,--- ;8¢ and uy,--- ,uq are
independent and uniformly random in Zg and Zg* respectively, and ey, --- ,eq
are independently sampled from D7} .

Given the matrix A <-s Zy*™ in (17), we can parse A = (Ay,..., A1),

where A; € Zg*™ for 1 < j < ¢, and Ay € Zy™™2 with my = | ] and
my = m — c|2]. Then the left part of (17) can be rewritten as
(Aa SlT “A+ e1Ta cees Sg A+ eg) = ({Aj}je[c+1], {SzT “Aj+ te}iE[Q]vjE[c-H])

= (A1, {s] “Ar+e] iciop - Acir, {s] T Acii e i)
(18)

where e; j <—s Dt for 1 < j < cand ;41 s D%
Then, we will use the standard hybrid argument to prove (17). According to
(18), the related hybrids are defined as follows.
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— Ho: (A1, {s] - A1 +e Yicigr - Acr1, {s] - Acti+ e/ oy bieq)
—H,forl1<z<e:

{A}eanize {8 - Aj el icion 1 <i<es

T T
([{AYier {uls + el bie@isets

Ao {si -Acii+ eIc+1}ie[Q]>,
where u; ; < Z;" for i € [Q], ] € [2].
= Her: ({Ashierera {uf; + e/ b seter))-

Therefore, we have that

Adv D s (N) = | Pr{B'(Ho) = 1] = Pr[B'(Heyr) = 1|
c+1 (19)
<> | Pr[B/(H._1) = 1] - Pr[B/(H.) = 1]|.

Next, we use the following two claims to show the indistinguishability of these
neighboring hybrids.
Claim 12. For each 1 < z < ¢, we have | Pr[B'(H._) = 1] = Pr[B'(H.) = 1]| <
2n - AdVI[_Z\;E,DZ,W,m],B()‘) + Q-2 for an adversary B against the \WEy 4 p, m
assumption with T(B) ~ T(B') + Q - poly’(\) ~ T(A) + Q - poly(}).
Proof. For1 < z <¢,let m,, = m—zmq, A, = (A,q1,..., Acy1) € ngm,ieg,z =
(€iz41s---,€ict1) € D;’Z}. Then we can parse A = (Ay,..., A, _1,A,,A’). In
this case, we can re-write hybrids H,_; and H, in the following way:

Hem :({Ai}iﬂzﬂb {u; +eljictariels—1,| Asy (s - Az + el Yiciq) | AL
{s{ AL+ ei,l}ie[q),
H. :({Ai}ie[z_u, {ul; +ei;}ictanier—1),
{s] - AL+eil}icial).
where w; , s Zy"* for i € [Q]. Hence, the target of this claim is to prove that

(20) and (21) are computationally indistinguishable.

To do this, we take n, m’,, £, q, Dz ~ as input and run lossy sampler Lossy(1", 1m- ,
14, q, Dy, ) to get A’Z = C-B+F, where B «s ngmz, C s ZZ”, F s Dg;mz.

According to Lemma 10, we have A/, ~ A, with Advf}:;\f\gzymm,z]()\). For (20), we
have:

(20)

Az; {uIz + eIz}iE[Q] 7A;7

(21)

T T
({{AYieten, {ul; + el Yieipietmn Ay 5T - Ax + el biclal,

AL{s] AL +ell}icia |)

(22)

Ao

({Ai}ie[z—l]» {ul; +ei;licianjel=—1, Az {si - As +ei}icia),

AL {s] - Al+el}icia ),
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with Advly e (\).

[¢,9,Dz,~,m’]
Then, accor(iing to Lemma 12, Lemma 13 and our parameter setting as the
theorem statement, it holds

Heo(si | (ALs - AL +e])) > Hy(s:i | si+ei1) — (- logg
> nlog(o1) — € -logg—1 (23)
> mqlogq + 2.

Moreover, by Lemma 2 and (23), for every i € [Q] and u; , < Z;'*, we have
A((ALs] “AL) (AL y],)) <27 (24)

In this case, through putting all ¢ € [@)] in (24) together, we have

A(({Adie—1: {ul; + el bicianjci—11,| Az {si - Az +e/.}icio | AL,
{s{ AL +ei.}icio), {Aiticp)s {ul; + e icianic-s (25)

AZy {uIz + e;z}iG[Q] 7Alzv {S;r : A/z + eiLTz}IG[Q]))S Q : 2_>\7

since every {s;};c[q) is sampled independently, and {A;};c[.—1) and A’ are in-
dependent of A ..

Then, similar to (22), we can use Lemma 10 again to change A’ back to A”.
Hence, it holds that

T T T T
({Ai}iE[z—l]v {ui; +eijticioriez—1, Az {ui. + e }icqr,

AL {s] Al +e }ic )

(26)

s

T T T T
({Az‘}ie{z—l]v {ui; +eijticioriez—1, Az {ui. +ei }icqr,

A/zv{s;rAlz+e;j;}Z€[Q] )7

with Adviy o5 (V).
Finally, through combining (20), (21) (22), (25) and (26) together, we get:

Hz—l é Hz’
with
2 AdViig D, ) (V) + Q270 <20 AdviTp, (V) + Q27
< 2n - AdvE'yp, (A + @272,

where the last inequality follows from a simple hybrid argument. More specifi-
cally, we can construct an adversary B, such that | Pr[B'(H._1) = 1]-Pr[B'(H,)

1]’ <2n- Adv[LX\ffDZ Lom),B(A) + Q- 2. This completes the proof of the claim. |
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Claim 13. H. and H.y1 are statistically indistinguishable. More specifically, the
statistical distance between H,. and H., 1 is at most Q - 27>,

Proof. The difference between H. and H.;; can be noticed more clearly from
the following descriptions:

H.: ({Ai}iem: {ul; + el tie@liel| Act1, {si - Act1 + e ci1}iciq) ) ;

Hepy: ({Ai}ie[c]u {ul; + el ic@ricie | Actr, {ui o1 + el 1 ticia) ‘) :
In this case, it suffices to prove the statistical distance between (A.11,s; A1)
and (Act1, uzcﬂ) is negligible in A, i.e.,

A((Act1s! “Acii+e), (Acyru) ) <277, (27)

for all 7 € [Q], since every {s; };c[q is sampled independently, and {A;};c[ are
independent of A.;1. Furthermore, according to Lemma 2 and the lower bound
on min-entropy Huo(s;) from the theorem statement, (27) clearly holds. As a
result, this claim follows. |
Now, by plugging Claim 12 and Claim 13 into (19), (10) is clearly set up.
Finally, taking (9) and (10) together, Theorem 3 holds. O

D.3 Almost Tight Reduction for Arbitrary Modulus

Similar to Theorem 3, we have the following theorem that addresses the almost
tight reduction from LWE to Multi-secret LWE for arbitrary modulus.

Theorem 10 (LWE = Multi-secret LWE with Arbitrary Modulus).
Let n,m,¢,q € N. Let 0,00,01,7,7 > 0 such that 0 = Voo?2+ 712, o9 > 7 -

C-vm-oy, L >4/ ) ond r > VA, where C is the global constant from

o = T

Lemma 7. For any adversary A, there exists an adversary B, such that T(B)
T(A)+Q-poly(\) with poly()) independent of T(A), and Adv®E 1A

[n,4,Dz,6,m
2¢n - Adv'[‘X\ffDmeLB()\) + w, where c is an integer such that m' = [ ]
andn > (2m’logg+Llogg+2X+1)/ log(%) for any q’s prime factor p.

IN &

The proof of Theorem 10 is almost identical to that of Theorem 3, except
that in all places where we use (the first result of) Lemma 2 in the prime mod-
ulus setting, we now use the second result of Lemma 2 to deal with composite
modulus.

E Missing Proofs in Subsect. 6.2 (Probabilistic QA-HPS
from LWE)

E.1 Proof of Theorem 4 (Approximate Correctness & Evaluation
Indistinguishability of prQAHPS,\ye)

First, we show the approximate correctness for instances in £, = La. Note that
for any sk = k € {0,1}", pk, = p = Ak and ¢ = (sTA+e’)T € La with
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witness we = (s, e € [—B, B]™), we have
prPub(pk,, c, we) — Agi(c) =s' (Ak)+¢ — (sTA+el)k=¢ —e'k,
prPriv(sk,c) — Ag(c) =c'k+¢ —c'k=¢,
where ¢’ <—s [-B’, B']. Since |¢/| < B, |e|, < B and | k||, <1, it follows that
le’ —e"k| < B’ + mB. Thus, prPub(pk,,c,w.) always lies in Balle,,, (Ask(c))
with €ypp = B’ +mB and prPriv(sk, c) lies in Ballg (Ask(c)) with €ppa = B’.

Next, we evaluate the statistical distance between the probabilistic public
evaluation and private evaluation for instances in £, = La. For any (fixed)

sk =k e {0,1}", pk, =p=Akandc = (sTA+e") € LA with witness
we = (s,e € [—B,B]m), we have

A(prPub(pk ,, ¢, we), prPriv(sk,c)) = A(sT(Ak) +¢, (s"TA+ek+¢)
() -
) A(STAR + ¢, sTAK + ek +¢) < mB/B,

where the probability is over e’ <—s [~B’, B']. Here (x) holds since s" Ak is a
common constant, and (+*) follows from the fact that |e'k| < mB (due to
lell., < B and |/k||,, < 1) and Lemma 6 (the Smudging Lemma). Therefore,
prQAHPS, e has e...n-evaluation indistinguishability with €. = mB /B’. O

E.2 Proof of Theorem 5 ({¢, %)-Key-Switching of prQAHPSy¢)

. . (L. Loy-ks . _
For any adversary A, we aim to prove € oayps 4 =

| Pr[A(ppyps, p = A, po = Ao, (sk) = Ak,| oy, (sk) = Aok ) = 1]
— Pr[A(ppups, p = A, po = Ag, a,p(sk) = Ak, | a,, (sk') = Aok |) = 1]| < 27,

where (A, Ta) s %, (Ao, Ta,) s L, sk =k s {0,1}™, sk’ =k’ < {0,1}™.

Let p be any prime factor of ¢. Since k and k’ are chosen uniformly at random
from {0, 1}, we have Hoo (k mod p) = H, (k' mod p) = m. Note that Ak € Z
leaks at most nlogq bits of information about k, but leaks nothing about k’.
Thus, according to Lemma 1, we have

(28)

H..(k mod p|Ak) > m —nlogq, Hu (k' mod p|Ak) =m

According to Lemma 2, we know that uniform matrix A is a good extractor.
Concretely, by applying Lemma 2 with € = 2=+ and by the condition m >
3nlogq+ 2(A+ 1), we have

A((A07A0k)7 (A01 ll) ‘ Ak) S 2_(A+1)7 A((A(Ja AOkl)v (A07 u) | Ak) S 2_()\+1)7
where u is uniformly chosen from Zg. Then by the triangle inequality, we have

A((Ag,| Aok ), (Ag,| Aok’ |) | Ak) < 27 (29)

Finally, (28) follows from (29) by noting that A is independent of Ay, k, k. O
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E.3 Proof of Theorem 6 (PK-Diversity of prQAHPSy¢)
For (p=A,td, =Ta) s .Z, k, k' < {0,1}", we have

ezfédAi\ll_'PS : = Pra,(sk) = Ak = Ak’ = ozp(sk/)]
<Prlk’ =k]+Pr[Ak = AK' | kK #Kk] =27+ ¢ ",

where the last equality is explained below.

e The uniformity of k and k’ over {0,1}™ implies that Pr[k’ = k] = 27™.

e Parse A = (aj,ay,...,a,) with each a; € Zj, and parse (k — k') =
(b1,bay ..., by) " € {=1,0,1}™. Note that the condition k' # k means b; €
{—1,1} for some j € [m], and the event Ak = Ak’ means > ", b; -a; = 0.
By the uniformity of a; over Z{ and by the condition that b; € {—1,1}, it
follows that . | b;-a; = b; ~aj+2£17i#j b;-a; is uniformly distributed over
Z7. Thus, the probability that »7:", b; - a; = 0 conditioned on b; € {—1,1}
is exactly ¢~™, and consequently, we get Prl[Ak = Ak’ | k' #k]=¢ ™. O

E.4 Proof of Theorem 7 (Almost Tight %-Multi-Key-Multi-
Extracting of prQAHPS¢)

We prove the theorem by defining a sequence of distributions Dg—D5 and showing
adjacent distributions indistinguishable.

Let ppyps s Setupyps, (po = Ao, td,, = Ta,) s %, sk; =k; < {0,1}™
foralli € [N], and ¢; ; <= L, with ¢/; =s/;Ag+e/; foralli € [N] and j € [Q].
The distributions are defined as follows, where the differences are highlighted.

[ ] DO = (ppHPS, AQ, {CL]',’ h’l}i’j = prPriv(ski,ci’j) = (SZ]'AO + ezj)kl + 6;-7]- }iE[N],jE[Q])v

where e} ; < [-B’, B'| for all i € [N],j € [Q].

® D; := (Ppups, Ao, {Ci 5, hvij = ijAOki + eTj i+ € i Yielnl.gelQl)-

® Dy := (pPpups, Ao, {Cij hvij = s{;Aoks + € + ¢} jYiev) jea)
where ¢€; ; <= x for all i € [N],j € [Q].

® D3 := (ppups, Ao, {Cij, hvij = s ; bi + € + ¢} jtievyje@)
where b; < Zy for all i € [N].

[ ] D4 = (ppHPS7A07{ Cij s Z:In, h?)i’j s Zq }iE[N]’jE[Q])A

® D5 := (ppups; Ao, { Cij s Ly, v}ie[N],je[Q])~

By definition, Advgatoey, o(A) = | Pr[A(Do) = 1] — Pr[A(D;) = 1]|.
We prove adjacent distributions indistinguishable via the following claims.

Claim 14. | Pr[A(Dg) = 1] — Pr[A(D;) = 1]| < A(Do,D1) < NQ-mB/B'.
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Proof. Let us first fix all random variables except €] ; < [-B’, B'] for all i €
[N],7 € [Q], and analyze A(Dg, D1):

A(Dg,Dy) = A({e?jk‘ + e;j}iE[N],jE[Q]v {eg,j}iE[N],je[Q]) (30)
< Z'LG[N],]G[Q] A(e k + ez NE ;,]) (31)
< NQ-mB/B, (32)

where (30) holds since all other terms in Dy and Dy are fixed values and are iden-
tical in Dg and D1, (31) follows from a hybrid argument, and (32) follows from the
fact that |e] k;| < mB (due to [e; ]|, < B and |[kil|, < 1), €} ; = [-B', B']
and Lemma 6 (the Smudging Lemma).

Then by an averaging argument over all random variables, we still have

A(Dy,D1) < NQ-mB/B'. |
Claim 15. |Pr[A(Dy) = 1] — Pr[A(D;) = 1]| < A(Dy,D2) < NQ - B/B'.

Proof. The proof is similar to that of Claim 14. Firstly, let us fix all random
variables except €] ; «—s [-B’, B'] for all i € [N], j € [Q] and analyze A(Dy, D2):
A(Dy1,D2) = A({e] ;}ieinyjeiqn { €y + €ijtiein)ieq))

< Zze NLjell Ae; , €y +e; ;) <NQ B/B,
which follows from similar arguments as those in the proof of Claim 14 (with

one difference that |€; ;| < B for any fixed €; ; s x).
Then Claim 15 follows from an averaging argument. |

Claim 16. | Pr[A(Dg) = 1] — Pr[A(Ds) = 1]| < A(Ds,D3) < N -27*.

Proof. Let p be any prime factor of ¢. Since each k; is chosen uniformly at
random from {0,1}™, we have H(k; mod p) = m > 2nlogq + 2A. According
to Lemma 2, uniform matrix Ay is a good extractor. Then it follows that

A(D2,D3) < A((Ao, {Aoki fie(ny)s (Ao, { bi }iciny)) (33)
< 2 ieiv) A((Ag, Agk;), (Ao, by )) (34)
<N-27%, (35)

where (33) holds since Dy (resp., D3) can be constructed from (Aq, {Aok;}icn])
(resp., (Ag,{ b; }ie[N])) along with {s”, i
from a hybrid argument, and (35) holds by applying Lemma 2 with e = 2. |

€ij» € tielN].jelq)s (34) follows

Claim 17. |Pr[A(Ds) = 1] — PrlA(Ds) = 1]| < 2en - Advyp, s () +

NQ(m+tc+2)
2
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Proof. In Dg, for all i € [N] and j € [Q], we have ¢; = s/;Aq + €], and
hv; ; = szjbi + €, + €; ;. For the ease of our analysis, for each i € [N], we use

the following notations:

T T T

C%L1 S%L1 e%L1

i, Qxm 5i,2 QxXn €i2 Qxm

Ci = . € Zq 5 S, = . € Zq 5 E7 = . € Zq 3

T T T
Ci.Q 5i.Q €i.Q
hv; 1 €1 €1
hv; 2 €i,2 Po
hv,; .= : € Z?, €; = : € Z?, e, = :’ € ZqQ.

hvi,q €i.Q €0

Then for all i € [N], we have C; = S;Ap + E; and hv; = S;b; +¢€; + €., i.e.,
(hv;|C;) = S;(bi|Ag) + (&[E;) + (e]0),

where S; <s ZqQX", b; < Zj, E; s XX € s x¥ and e} < [-B’, B']9.
In Dy, for all i € [N] and j € [Q], we have ¢; j <= Z;* and hv; j s Z,. By
using the above notations, for all i € [N], we have

(hv;|C;) s Z@* (M),
Therefore, it suffices to show

D3 : (Ao, {Si(bi]Ag) + (€]E;) }icn)

. (36)
~ Ds: (Ao, { Ui }ieinvy)

where Ag <—s Zy*™, and S; <—s ZqQX”, b; s Z7, (&]|E;) < Y @*(m+1) — DZQﬁ(m'H)

and U; < ZqQX(m+1) for each i € [N]. We will prove (36) based on the
LWEM’DZ,7 ~m-assumption.

Firstly, we note that if all b;’s are the same, i.e., by =bg = --- = by s Z,
then the problem of distinguishing (36) is just the (NQ)-LWE,, 4.y ,m+1 problem.
Since we set x = Dz, by the almost tight reduction from LWE to multi-
secret LWE (Theorem 3), we know that | Pr[A(D3) = 1] — Pr[A(Ds) = 1]| <

NQ-LWE N 2 .
Adv[ng,xmﬂ]ﬁé (A) < 2¢n- Adv[LX\fEDZwm]’BI (N + %, and Claim 17 fol-
lows.

However, by, - ,by in (36) are independently chosen, so the problem of

distinguishing (36) is not exactly the same as (but very close to) the (NQ)-
LWE,, ¢.x,m+1 problem. Nevertheless, for the problem of distinguishing (36), we
can basically use the same techniques as in the proof of Theorem 3 to show that
| Pr[A(Ds) = 1] — Pr[A(Ds) = 1]| < 2en - AdVEYEp, s (N) + FoECE2)
Below we give a proof sketch.
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Similar to the proof of Theorem 3 , we first introduce an intermediate problem
of distinguishing the following D} and D/, with errors sampled according to the
continuous Gaussian Dy, (recall that o = /a2 + 72 for r > V/A):

D5 : (Ao, {Si(bilAo) + (&|E:)}icny)

, ~ (37)
Dy (Ao, { Ui + (&Ei)}icvy),

Qo

where Ag s Z2X™, and S; < Z@*", b; s Z7, (&|E;) s D& and

U, s Z? X(mHD) - for each i € [N]. Then we will prove the claim by showing

that there exists an adversary Bj such that T(By) ~ T(B;) + NQ - poly’()\) ~
T(A) + NQ - poly(X) and

| PrlA(D3) = 1] — Pr[A(D4) = 1]| < | Pr[B}(D}) = 1] — Pr[B{(D}) = 1]| + 3™,
(38)
| Pr[B}(D}) = 1] — Pr[B;(D}) = 1]| < 2en- Advy'Fp, s (V) + Y42 (39)

The proof of (38) is almost identical to that of (9) in the proof of Theorem 3,
by using the randomized rounding technique due to Peikert [42] (i.e., Lemma 8),
thus we omit it here.

Next we turn to the proof of (39). That is, we aim to prove (37) based on
the LWEy 4 p, . m-assumption, and determine the security loss factor. Its proof
is almost identical to that of (10) in the proof of Theorem 3, with only the first
step being slightly different, as shown below.

In the first step, we break Ag € Z*™ into (Ag,1|Ag,1) € ZI*™ XZZX(mfm/)
and E; € D™ into (B 1|Bi1) € D™ x DZ*™ ™) for each i € [N],
where the block Ag; contains the first m’ columns of Ag. Then we change
AOJ into a lossy one AOJ = CB + F, where C < ZQXZ,B s ng(mfm/) and

F ¢ ng(m_m/) follows the error distribution Dgfy(m_m/). This change is indis-
tinguishable due to the n-secret LWEy ¢ p, . m—m-assumption. Therefore,

D} : (Ao, {Si(bi\AO) + (EiEi)}ie[N])

((A0,1|A0,1), { (Si(bi|Ap,1) + (€E;q1)) ’(SiAO,l + Ei,l)}ie[N]>

Qe

((A0,1|A0,1), { (Si(b;i|Ap1) + (&i]E;1)) ’(SiAO,l + Ei,l)}ie[N]>

but it incurs a loss factor of n since hybrid arguments yield Advﬁ:;\f\gz’wmfm,] (A <
n- AdVI[_X,\ffDZ,,,m—m/](A) <n- AdVI[_X,\f;E,DZm@ (\). Now given a lossy Ag 1, for each
i € [N], the information of S; leaked by S; A 1 is bounded. Then for each i € [N,

(

since (b;|Ag 1) is uniformly distributed over Zg ™™ +1), by taking it as extrac-

tor, we can extract the remaining entropy of S; to obtain S;(b;|Ag 1) 'é Ui,
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where U; < Zqu(m,H) . So we have

(40,

2 ((AO,1

Aoa), { (Si(b;]Apq1) + (€]E; 1)) ‘(SiAO,l + EiJ)}iE[N])

Ao1) L (Ui, + (&IEs ‘ S;Aq + By .
0,1) {( a1+ (e 1)) ( 0,1+ ,1)}i6[N]>
Next, we change the lossy AOJ back to uniform Ag 1, and have

((A0,1|A0,1)7 {( U1 + (§i|Ei,1)) ‘ (SiAO,l + Ei,l)}ie[N])

C

£ ((A071|‘,§071)7 {( U1 + (Ei|Ei,1)) ‘ (SiAO,l + Ei’l)}iE[N]> .

Then we have loss factor n again. ~ _
In the second step, we break Ay = (Ag 1]|Ao,1) further into (Ag 1|Ag2]|Ao2) €

ngm/ X ngm' X ng(m_le) and El = (Ei11|EZ‘,1) into (Ei71|Ei72|Ei’2) S
DExm’ x DExm’ x DYX(m=2m) o1 each i € [N], where the block Ag s con-

tains the second m’ columns of Ay. Then we change 13072 to a lossy one AOQ
and have

((A0,1|A0,1), {( Uiy + (&[E;i1)) ’ (SiAg:1 + Ei’l)}ie[N])

((A0,1|A0,2\A0,2), {( U1 + (&|E;n)) ‘ (SiAo2 + E;2) ‘ (SiAo2 + E;2) }z‘e[N])

Qo

((A0,1|A0,2\A0,2)7 {( U1 + (&]E;n)) ‘ (SiAo2 + E;2) ‘ (SiAO,2 +E;») }ie[N])

with a lossy factor n. With a similar argument, the uniform A2 can extract

the remaining entropy of S; for each ¢ € [N] so that S;Aq 2 X U, 2, where

U, s Z9*™ . So
((A0,1|A0,2\A0,2), {(Uix + @ilBi)|(SiAo2 + Eiz) |(SiAoyz + Biz) }iem)
2 ((A0,1|AO,Q\AO,2), {( Ui + ('éi\Ei,l))(( Uis +Ei,2,)((s“&0,2 +E1,2)}i€m) .
Changing lossy Ao back to uniform Ag, yields
((A0,1|AO,2\AO,2), {(Uia + @lE0)|(Uia +Eio)|(Sihos + Eio) }iem)
< ((AO,1|A0,2\AO,2), (Ui + @1B)|(Usa + Buo)|(S.B02 + Bo) }iem>
with a price of another loss factor n.
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Overall, with at most ¢ ~ % steps, we can prove (37) with a loss factor of
2¢n, and thus obtain (39).
Finally, taking (38) and (39) together, Claim 17 holds. |

Claim 18. | Pr[A(D4) = 1]-Pr[A(Ds) = 1]| < AdVZS, yo(A) < 2en-AdVE D, s (V)
+ NQ(mjc+1)
Attt

Proof. Note that all hv; ;’s are uniformly chosen from Z, both in D4 and Ds.
The only difference between Dy and Ds is the ¢; ;’s (i € [N], j € [Q]), which
are chosen from Zg" = X in D4 and from £,, = La, in D5. Thus, Dy and
D5 are computationally indistinguishable by the multi-fold SMP for %, and
| PrlA(Dy) = 1] — Pr[A(Ds) = 1]| < Adv_';fony‘gé’NQ()\) for an adversary B5. Then
by Lemma 9 (since % is the distribution specified in Subsect. 6.1), Claim 18
follows. |

Finally, by taking Claims 14-18 together, Theorem 7 follows. a

E.5 Proof of Theorem 8 (€.4-{-%,-Z)-OT-Extracting of prQAHPS,\y¢)

i €ei~ (L0, L)-otext | _
By definition, we have € oafps 4 =

y N c' e EA N
Pr (C yho ) s -A(ppHPSvpo =Ag,p= AvaPU(Sk:) = AOk) :
|h’U* - Ask:(c*)‘ S Eext

where (A, Ta) <s.Z, (A, Ta,) s % and sk =k <s {0,1}™.
In the case c* ¢ La, ei;&‘,ﬁfﬁéﬁmm = 0, then the theorem trivially holds.

Next, we prove the theorem in the case c* € La. To this end, we first claim that
in the view of A, Ag,(c*) + ¢’ with e’ <—s [—B’, B'] is statistically close to the
uniform distribution over Zg, i.e.,

A(Agi(c®) + €, u | (Ag, A, Apk)) <27 + mB/B/, (40)
where u s Z,. Assuming that the claim (40) holds, Theorem 8 follows due to

Rt < Pr((ef ho®) s A(-++) ¢ [ho* — (Ag(e*) + )| < euu + B']
<274+ mB/B' +Pr [(c* hv*) «=s A(--+) : |W" —u| < €0e + B']
=24+ mB/B' +Pr [(c*, hv*) s A(-++) : u€E [W" — o — B, hv" + €0 + B']]
=22+ mB/B' + (260 + 2B +1)/q.
It remains to prove (40). Since c* €~/3A, we can write ¢* = (s* ' A +e*)T
for some s* € Zyy \ {0} and e* € [-B, B]™. By the triangle inequality, we have
A(Agi(c*) + ¢ u | (Ao, A, Agk)) = A((s* A +e" Nk +¢,u | (Ag, A, Agk))
<A(s*TAk+e* k4 ¢ s TAk+ ¢ | (Ag, A, Agk)) (41)
+ A(s* Ak + ¢ u | (Ag, A, Agk)). (42)
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Next, we analyze the two statistical distances in (41) and (42) separately. The
analysis of the statistical distance in (41) is as follows

A(s* Ak +e* 'k +¢/,s* TAk+ ¢ | (Ag, A, Agk))

<A Ak +e* k4 e s Ak +¢ | (Ag, A, Agk, s* Ak )) (43)
<mB/B, (44)

where (43) holds since s* ' Ak+e* "k+¢’ (resp., s* ' Ak+¢’) can be constructed
with e* "k+¢’ (resp., €/) and s* | Ak, and (44) follows from the fact that |e* "k| <
mB (due to |le*|| . < B and ||k||_, < 1) and Lemma 6 (the Smudging Lemma).
The analysis of the statistical distance in (42) is as follows

A(s* Ak + ¢/, u | (Ag, A, Agk))
<A TAK+/ u— € | (Ag, A, Ak, €)) (45)
= A(s*TAk,u— ¢ | (Ag, A, Agk,¢)) (46)
— A(s*TAk, s*Tu | (Ag, A, Agk)) (47)
< A( Ak, u | (Ag, A, Agk)) (48)
<2 (49)

where u < Zj. Here (45) holds since s*T Ak + ¢’ (resp., u) can be constructed
with s* T Ak (resp., u — ¢’) and ¢/, (46) holds since u is uniformly distributed
over Z4 and €’ is independent of other variables, (47) holds due to the uniformity
of u and the fact that s* # 0, and (48) holds since s*T Ak (resp., S*Tu) can
be constructed from Ak (resp., u) along with s*. The justification of (49) is as
follows. Let p be any prime factor of ¢. Since k is chosen uniformly at random
from {0,1}™, we have H. (k mod p) = m. Note that Aok € Zj leaks at most
nlogq bits of information about k. Thus, according to Lemma 1 and by the
condition m > 3nlogq + 2\, we have

Ijloo(k mod p | (Ag, Agk)) > m —nlogq > 2nlogq + 2.

According to Lemma 2, we know that uniform matrix A is a good extractor.
Concretely, by applying Lemma 2 with € = 27, we have

A((A’Ak)v (Aru) | (A07A0k)) < 27)\

Thus (49) holds. Finally, by bounding the statistical distances in (41) and (42)
with (44) and (49), we obtain (40) and complete the proof of Theorem 8. O

F Proof of Theorem 9 (Security of Compye)

We prove the three security properties for Compwe as follows.
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Parameter Indistinguishability. The public parameter ppcyt in the binding

mode is X := (g(T) = (ST%',-eT)' The public parameter ppcyt in the hiding mode

18 X s Zég+1)xm, which can be equivalently set by X := (ji) with X s Zszm
and u s Z;’;. By the LWE,, 42 y,m assumption, (ST%J) is computationally in-

distinguishable from (%), thus we have AdvEyi"(A) < Advi'e | 1 s(N).

Statistical Binding for M under BSetup. For any public parameter in the binding

mode X = (sTi)i-eT)’ we show that it is impossible to have m # m’ € M and
R,R’ € R such that Com(X,m;R) = Com(X,m’;R’), thus &pq4ing = 0.
__ Suppose towards a contradiction that there exist m # m’ € M and R,R’ €
R such that Com(X, m; R) = X-R+(, o) = X-R'+(, o) = Com(X, m’; R/).
Then
0

X (R~ R) = (o)
By multiplying (—s',1) to the both sides of the above equation, we obtain
e’ - (RF —R)=g¢q-(m—m’)", which further implies that

HeT~(R'—R)Hoo: Hq~(m—m’)THoo. (50)

However, on the left-hand side of (50), |e|., < B (since x is B-bounded) and
IR' -~ R| < 2B (since R,R' € R = [-B,B"™*™), 50 |le” - (R" —R)|__ <
2mBB. On the right-hand side, llg- (m— m’)—'—HC>O =q-||(m- m’)THOo >q
(since m # m’ € M = [~ B, B]™). According to the condition ¢ > 2mBB, (50)
is impossible to hold, which yields a contradiction.

Statistical Hiding for M under HSetup. Let mg, m; be any pair of messages in
M ={0,1}". We aim to prove that

A((X,X-R+ (q‘fjlg)), (X, X R+ (q‘gq)» < Epiging = M - 272, (51)

Com(X,mq;R) Com(X,m;R)

where the probability is over X <s ZgZH) xm (the public parameter in the hiding
mode) and R s R = {0,1}"*™.

Let us parse R = {0,1}™*™ as R = (ry,...,r;,) with each r; € {0,1}™.
Due to the uniformity of R, each r; is uniformly distributed over {0, 1}™, hence
H., (r; mod p) = m for any prime factor p of ¢?. According to Lemma 2, we know
that uniform matrix X is a good extractor. Concretely, by applying Lemma 2
with e = 27(A*1) and by the condition m > 4(n + 1) log g + 2(\ + 1), we have

A((Xv X ri)a (Xa uz)) < 27(/\+1)

for each i € [m], where u; <s ZZ;L ! By a simple hybrid argument, it yields that

A((X7X ' R)a (XvU)) <m: 2_(>\+1)a
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(n+1)xm

where U < Zqz . Hence no matter for m = mg or m = m;, we have

A((Xa X R + (q.t?{r))7 (Xa U)) S m - 2_(>\+1)- (52)
Finally, (51) follows from (52) by the triangle inequality.
This completes the proof of Theorem 9. O

G  Full Details of QA-NIZK from LWE in Subsect. 6.4

In this section, we present full details of Subsect. 6.4 and show how to build
tag-based QA-NIZK for gap language based on the LWE assumptions, in order
to serve as building blocks for our SIG and PKE constructions together with our
LWE-based prQAHPS, e and CMTwe schemes.

We will follow the generic transformation proposed by Libert et al. in [34,
Subsect. 4.2] that compiles any trapdoor X-protocol for gap language into tag-
based QA-NIZK for the same gap language, with the help of correlation in-
tractable (CI) hash function and lossy PKE. Moreover, the transformation is
tightness-preserving, i.e., the resulting tag-based QA-NIZK has tight zero-knowledge
and tight USS as long as the building blocks are tightly secure. Given the fact
that there are already CI hash and lossy PKE from LWE (see Appendix G.1
for their LWE-based instantiations), all we need to do is to instantiate trapdoor
X-protocol for gap language from LWE.

The roadmap of this section is as follows. In Appendix G.1, we recall the def-
initions of the building blocks including trapdoor X-protocol, CI hash and lossy
PKE, and provide the instantiations of CI hash and lossy PKE based on LWE.
In Appendix G.2, we provide additional lattice backgrounds. In Appendix G.3,
we present the instantiations of trapdoor X-protocol based on LWE. Finally, in
Appendix G.4, we recall the generic transformation in [34, Subsect. 4.2] for com-
pleteness, and describe how to compile our LWE-based trapdoor X-protocols
into tag-based QA-NIZK schemes for gap languages.

G.1 Building Blocks: Definitions and Instantiations

In this subsection, we present the formal definitions of the building blocks of
the generic transformation proposed in [34, Subsect. 4.2], including trapdoor
X-protocol, correlation intractable (CI) hash function, lossy PKE, pseudoran-
dom function (PRF) and one-time signature (OTS). We also recall the existing
LWE-based instantiations for all the building blocks except trapdoor X-protocol,
whose instantiations will be given in Appendix G.3.

Building Block 1 — Trapdoor X -Protocol for Gap Language: Syntax and Security
Requirements.

Definition 24 (Trapdoor Y-Protocol for Gap Language [34]). LetGL, =

(Lp, Zp) be a gap language parameterized by language parameter p, and let td, de-
note some trapdoor information for GL,. A trapdoor X -protocol for gap language
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GL, consists of PPT algorithms X = (X.CRSGen, X.Prove;, X.Proves, X.Vrfy,
X.Sim, X TrapGen, X'.BadChallenge).

crs +—s X.CRSGen(p) : Taking as input a language parameter p, the CRS
generation algorithm outputs a common reference string (CRS) crs, which
implicitly defines a challenge space CH.

3-Move Protocol. The 3-move protocol is executed between a “prover” and
a “verifier”. The prover and the verifier both take a CRS crs and an instance
x € L, as input. The prover also takes as input a witness w of x.

e (a,st) s X.Provey(crs,xz,w): The prover invokes X.Prove; to get a mes-
sage a and a state st. Then the prover keeps st as its own state informa-
tion and sends a to the verifier.

o ch < CH: After receiving a, the verifier chooses ch <—s CH uniformly at
random as the challenge and sends ch to the prover.

o 7z s Y.Provesg(crs, z,w, a, st,ch): After obtaining ch, the prover invokes
X .Provey to get a message z and sends z to the verifier.

e 0/1 « X.Vrfy(crs,x,a,ch,z): After getting z, the verifier invokes X .Nrfy
to obtain a decision bit.

(3,2) +—s X.Sim(crs, z, ch): Taking as input crs, an instance x and a challenge
ch € CH, the simulation algorithm outputs a simulated (3,z). Here (3,ch,z)
serves as a simulated transcript.

(crs,tds;) <—s X.TrapGen(p, td,): Taking as input a language parameter p and
a trapdoor information td, for the gap language GL,, the trapdoor CRS gen-
eration algorithm outputs a crs and a trapdoor tdyx for the scheme.

ch +s X .BadChallenge(crs, tds, x,a): Taking as input crs, a trapdoor tdy,
an instance x and a first message a, the bad challenge algorithm outputs a
challenge ch.

The following properties are required:

Completeness: For all x € L, with witness w and all crs <—s X.CRSGen(p),
it holds that

(a,st) «s X.Prove;(crs, z,w),
Pr ch s CH, : X.Vrfy(ers,x,a,ch,z) = 1| > 1 — negl()).
z <—s X .Provey(crs, z, w, a, st, ch)

Special Soundness: For any x ¢ L,, any crs € X.CRSGen(p) and any first
message a, there is at most one challenge ch € CH such that X NVrfy(crs, x, a,
ch,z) = 1 for some third message z. Moreover, we define a “bad challenge
function” f with f(crs,z,a) := ch if there exists such a unique ch and
flers,z,a) := L otherwise. Note that f might not be efficiently computable.

Special Zero-Knowledge: For all v € L, with wilness w, all crs <s
X .CRSGen(p) and all ch € CH, it holds that

A((a,2), (3,2)) < negl(A),

where the probability is over (a,st) < X.Prove;(crs, z,w), z < X.Proves(crs,
x,w,a,st,ch)) and (3,z) + X.Sim(crs, x,ch).
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e Perfect CRS Indistinguishability: The crs generated by crs <—s X.CRSGen(p)
is identically distributed as the crs generated by (crs, tdx) <—s X.TrapGen(p, td,).

e Correctness of X' .BadChallenge: For allx ¢ Ep, all (crs, tds;) € TrapGen(p, td,,)
and all first messages a, it holds that X.BadChallenge(crs, tdx;, x,a) = f(crs, x, a)

if f(crs,x,a) # L. Here f is the bad challenge function.

Building Block 2 — Correlation Intractable Hash: Syntax, Security Requirements,
and LWE-based Construction.

Definition 25 (Searchable Relation). A relation R C X x Y is searchable
in time T if there exists a function f: X — Y which is computable in time T
and satisfies that, if there exists y s.t. (z,y) € R, then f(x) =vy.

Definition 26 (Somewhere Statistically Correlation Intractable Hash
[16]). Given a relation ensemble R = {R C X x Y}, a keyed hash family
H={h: KxX — Y} with key space K is somewhere statistically correlation in-
tractable (CI) w.r.t. R if there exist PPT algorithms CIH = (CIH.Gen, CIH.StGen)
defined as follows:

— k <—s CIH.Gen: It outputs a hashing key k € K.
— k <5 CIH.StGen(aux): It takes an auziliary string aux as input and outputs
a hashing key k € K.

For any relation R € R, there exists an auxiliary string auxg with the following
two properties:

e Key Indistinguishability: For any PPT algorithm A, it holds that

AdvEy 4 () :=| Pr[k < CIH.Gen : A(k, auxg) = 1]
— Pr[k +s CIH.StGen(auxg) : A(k, auxg) = 1]| < negl(}).

e Statistical Correlation Intractability: It requires that
Pr [k s CIH.StGen(auxg) : 3@ € X s.t. (z,h(k,2)) € R] <2720,

In [43], Peikert and Shiehian proposed a CI-Hash for any searchable relation
defined by functions f of bounded depth (in the sense of Definition 25) based
on the standard LWE assumption. We summarize the result in the following
theorem.

Theorem 11 ([43]). Assuming the hardness of LWWE,,_1 ¢ y.m+1 for a poly(n)-
bounded x and a sufficiently large ¢ = mP D the CI-Hash scheme proposed in
[43] supports arbitrary input length, and its output length is exactly m = n[logq].
It is somewhere statistically correlation intractable for the class of functions with
output length m that can be implemented by depth-d Boolean circuits, and each
circuit serves as the auziliary input for itself. Concretely, for any PPT adversary
A, there exists a PPT adversary BB such that

AdViCnldH,A()‘) < Advl[_7\:vfl,q,x7m+l],3()‘)'
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With the help of fully homomorphic encryption (FHE) scheme, the CTH func-
tion can be constructed to support statistically correlation intractable function
which is implemented by circuits of any polynomial size. In this case, the secu-
rity of CIH is tightly reduced to the LWE assumption and CPA security of FHE,
which can be further tightly reduced to the LWE assumption.

Building Block 3 — Lossy PKE: Syntax, Security Requirements, and LWE-based
Construction.

Definition 27 (R-Lossy PKE with Efficient Opening [34, 18]). Let R C
Kx x Ty be an efficiently computable binary relation. An R-lossy PKFE scheme R-
LPKE = (Gen, LGen, Enc, Dec, Opener, LOpener) consists of PPT algorithms and
is associated with message space M, tag space Ty, initialization value space Ky
and randomness space Rypke. The randomness distribution over R pke used for
encryption is denoted by DR, oye-

— (pk, sk, tk) <s Gen(K): The key generation algorithm takes as input an ini-
tialization value K € KCy, and outputs an injective public key pk, a decryption
key sk and a trapdoor key tk.

— (pk, sk, tk) <s LGen(K): The lossy key generation algorithm takes as input
an initialization value K € Iy, and outputs a lossy public key pk, a lossy
secret key sk and a trapdoor key tk.

— ¢ +s Enc(pk,t,m): The encryption algorithm takes as input a public key pk,
a tag t € Ty and a message m € M, and outputs a ciphertext c.

— m//L « Dec(sk,t,c): The decryption algorithm takes as input a decryption
key sk, a tagt € Ty and a ciphertext ¢, and outputs m' € M or L.

— 1’ s Opener(pk,tk,t,c,m’): The opening algorithm takes as input a public
key pk, a trapdoor key tk, a tag t € Ty, a ciphertext ¢ and a message m’,
and outputs a randomness r' € RLpKE.

— 1’ +—s LOpener(sk,t,c,m’): The lossy opening algorithm takes as input a se-
cret key sk, a tag t € Ty, a ciphertext ¢ and a message m’, and outputs a
randommness v’ € RiLpkE.-

The following properties should be satisfied:

e Decryption Correctness under Injective Tags: For any initialization
value K and any tag t such that (K,t) € R, and any m € M, it holds that

dr € Rupke, S-t.

Pr | (pk, sk,tk) <s Gen(K) : Dec(sk, t, Enc(pk, t.m: 7)) £ m

< negl()).

o Key Indistinguishability: There are two requirements. One is the indistin-
guishability of public/trapdoor key pairs outputted by the normal algorithm
Gen and the lossy algorithm LGen. The other is the indistinguishability of
public/secret key pairs output by LGen under different initialization values.

(i) For any initialization value K € KCy, and any PPT A, it holds that
AdVi bke 4(N) = | Pr((pk, sk, tk) s Gen(K) : A(pk, tk) = 1]
— Pr[(pk, sk, tk) s LGen(K) : A(pk,tk) = 1]| < negl(}).
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(i) For any distinct values K, K' € Ky, and any PPT A, it holds that
AdviBke a(N) = | Pr((pk, sk, tk) s LGen(K) : A(pk, sk) = 1]
— Pr[(pk, sk, tk) s LGen(K') : A(pk, sk) = 1]| < negl(}).

e Lossiness under Lossy Tags: For any value K € Ky and tag t € Ty such
that (K, t) ¢ R, any (pk, sk, tk) <s Gen(K), and any mg, my € M, it holds

A(co, 1) < negl(N),

where the probability is over ¢y < Enc(pk,t, mg) and ¢; < Enc(pk,t,mq).

o Efficient Opening via Opener under Lossy Tags: Let Dg .. be the
randomness distribution over Ripke, from which the random coins r used by
Enc are sampled. For any public key pk, tag t, message m and ciphertext c,
let Dpk.m,c,t denote the probability distribution on Ripke with support

Spk,m.et = {7 € Ripke | Enc(pk,t,m;7) = c},
and such that, for any ¥ € Spi m.c.t, we have

Dpkm.ct(T) = Pr r=7 | Enc(pk,t,m;r) =c|.
phameal) = _Br [r=7 | Enclph,tymsr) =
For any K € Ky, any keys (pk, sk, tk) <s Gen(K) and (pk, sk,tk) <s LGen(K),
any tag t € Ty such that (K,t) ¢ R, any messages mg,my € M, and any
7 $=s DR o, let ¢ = Enc(pk,t,mo; ). Then it holds that

A(r,7) < negl(\),

where ' <—s Opener(pk, tk,t,c,m1) and 7 follows the distribution Dpk m, ci-

e Efficient Opening via LOpener under Lossy Keys: For any K € K,
any (pk, sk,tk) <—s LGen(K), any tag t € T, any messages mg,m; € M,
and any v <s DR e, let ¢ = Enc(pk,t,mo;r). Then it holds that

A7) < negl(V),
where 7’ <—s LOpener(sk,t,c,m1) and 7 follows the distribution Dk m, c.t-

In [34], Libert et al. proposed a R-LPKE scheme with security tightly reduced
to the multi-secret LWE assumption. We summarize the result in the following
theorem.

Theorem 12 ([34]). Let ¢ = poly()\) be a prime modulus, M = {0,1}" be the
message space, n. = ng+2(N), m = 2n[logq]+O(N\) and o = O(m)-A. Then the
R-LPKE scheme proposed in [34] is a lossy PKE scheme with message space M =
{0,1}™0. Concretely, for any PPT adversary A, there exists a PPT adversary B

s.t. AdViR ke 4 (V) < Advﬁf;LT\L’X’Eq’Dme]’B(A) and AdviTpke 4(N) < 2720,
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Building Block 4 — Pseudorandom Function: Syntax, Security Requirements, and
LWE-based Construction.

Definition 28 (Pseudorandom Function). Let PRF : K x X — Y be a
Sfunction with key space IC, input space X and output space Y. PRF is a pseudo-
random function, if for any PPT adversary A, it holds that

AdvBie 4(A) i= | Pr[APRFUS) = 1] — Pr[A70) = 1]] < negl()),

where K <s K, [ is uniformly chosen from the set of all functions mapping X
to )Y, and A has oracle access to either PRF(K,-) or f(-).

As suggested by Libert et al. [34], the Key-homomorphic PRF scheme in
[13] is a good choice, and the pseudorandomness of PRF is based on the LWE
assumption with security loss factor linear to the input length of the PRF. We
conclude as follows.

Theorem 13 ([34, 13]). Let ¢ = O(y/n/a) and m = [nlogq]. If the PRF
scheme proposed in [13] supports £-bit input, then for any PPT adversary A,
there exists a PPT adversary B such that

AdvPie 4(A) < £+ Adve (\).

[n,q,x,m],B

Building Block 5 — One-Time Signature: Syntazx, Security Requirements, and
LWE-based Construction.

The syntax of one-time signature (OTS) is the same as signature defined in
Definition 13. Below we define the strong one-time security for one-time signature
in the Multi-User setting (strong MU-OT).

Definition 29 (Strong MU-OT Security for One-Time Signature). A
signature scheme OTS = (Setup, Gen, Sign, Vrfy) is strongly MU-OT secure, if for
any PPT adversary A and any polynomial N, it holds that AdvgTs 4 y(A) =
Pr[Expgteia v = 1] < negl()), where Expgts 4 v is defined in Fig. 9.

EXP?)VT?A, N'
ppgic s Setup
For i € [N]: (vki, sigk:) <s Gen(ppgc) Osiex(i,m): Jat most one query per user i
Qsion := 0 //Record the signing queries o s Sign(sigks, m)
(i* € [n],m",0") s A% ) (ppgic, {vki}iern)) Qsiox 1= Qsiox U {(4,m,0)}
It ((i*,m*,a*) ¢ Osion) A (Vrfy(vki*,m*,o*) =1): Return o
Return 1;

Else: Return 0

r-ot

Fig. 9. The MU-OT security experiment EXPSOtTS,A,N for OTS.

In [35], Libert et al. presented a one-time signature with strong MU-OT
security, which is tightly reduced to the Short Integer Solution (SIS) assumption.
We recall the definition of SIS and conclude their OTS as follows.
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Definition 30 (SIS Assumption). The Short Integer Solution SIS, 4 m.g as-
sumption holds if for any PPT adversary A, it holds that

A s Zym, ~ A.-x=0modgq

x€Zm s A(A) T Ax£0 A x| < p] S "eE)

AV, gy a(A) == Pr
Theorem 14 ([35]). The OTS scheme proposed in [35] is strongly MU-OT se-
cure based on the SIS assumption. Let n,m,q € N be public parameters of OTS
such that m > 4nlogq. Let o be the discrete Gaussian parameter in OTS, and
let B =m(1+ 20). The message space of OTS is M = {0,1}™. Then for any
PPT adversary A and any polynomial N, there exists a PPT adversary B such

that AdVETE s x (V) < AdVE, 0 a1 5(N).

G.2 Additional Backgrounds on Lattices

Lemma 14 ([36, Theorem 4.6]). LetV be a subset of Z™ in which all ele-
ments have s norms less than T, ¢ be a real number such that ¢ = w(T+/logm)
and V' be a distribution over V. Then, there exists a real number M such that
the distributions of the following algorithms A and F has statistical distance at

w(log m)

27whoem)
most i

— A: sample v <=V, z <—s Dgm ¢ and output (z,v) with probability

. D m (z) .
min (7M-Dzzmi,v(z) ) 1)»

— F:sample v <V, z < Dgm . and output (z,v) with probability 1/M.

w(log m)

Moreover, the probability that A outputs something is at least H_T

More concretely, if ( = oT for any positive «, then M = 612/0““1/(2“2), the
above statistical distance is at most 27190 /M, and the probability that A outputs
something is at least (1 —27190) /M.

G.3 Trapdoor X-protocol from LWE

In order to construct tag-based QA-NIZK schemes for gap languages, in this
subsection, we will first construct trapdoor X-protocols for the same gap lan-
guages based on the LWE assumptions, then in next subsection (Appendix G.4),
we show how to compile them into tag-based QA-NIZK schemes via the generic
transformation proposed in [34, Subsect. 4.2].

The Gap Language. As discussed in Subsect. 6.4, we note that the gap
languages needed in our generic SIG and PKE constructions are different.

For the SIG construction in Subsect. 4.1, the gap language is the QEEJ(,QAN'ZK) =

(EE)(,)ANIZK)7£~£)9ANIZK)) defined in Fig. 1, which is determined by the gap lan-
guage distribution .Z, the pr-QA-HPS scheme prQAHPS and the commitment
scheme CMT. We make the gap language concrete by instantiating with our
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LWE-based .Z in Subsect. 6.1, prQAHPSyg in Subsect. 6.2 and CMTweg in Sub-
sect. 6.3. Let ppywe = (n.m, ¢, q,0,7,x,B,B,B',B'.(,(') be the LWE-related
public parameters that serve as implicit input to all algorithms, where B < B
and B’ < B’. More precisely, let p = A € Zy*™ be a language parameter output
by ., which is generated by (A, Ta) s TrapGen(n,q,m) (cf. Lemma 3), and

let ppeyr =X € Zg’;*”m be a parameter generated by BSetup. Then according

to Fig. 1, p’ = (A, X) and the gap language QEI(J(,QANIZK) = (LS,QAN'ZK),ZESAN'ZK))

is instantiated as follows:

3 (s€Z},ec[-B,B"™, c'=sT-A+te’
LA — {(c,vk,d) Re {0,1}™" ke {0,1}™, st. Avk=X-R+ () } (53)
€[-B,B) ANd=c' k+¢
H(SGZ"ee[B,k} c'=s"-A+te
LFANHO — {(c,vk,d) Re[-B B}mxm kel B,B™, st. Avk=X R+ () } (54)
e e-B,B)) ANd=c' k+¢

We set td, := Ta as the trapdoor information of the gap language QES?ANIZK),

where T 5 is generated along with A by TrapGen(n, g, m).
For the PKE construction in Subsect. 4.2, the gap language is exactly the
GL, = (L,,L,) generated by Z, as defined in Subsect. 6.1, i.e., p = A and

={cezr|Isez}\{0},ec[-B,B|", st.c' =s' -A+e'}, (55)
Ep ={cez]'|Isez;\{0}ec [-B,B]™, st.c’ =s' ‘A+e'} (56)
(QANIZK)

Next, we will construct trapdoor X-protocols for the gap language gﬁ

= (EE)(,QANIZK), E;,QANIZK)) and for the gap language GL, = (£,, Ep) based on the

LWE assumptions, respectively, serving as building blocks for our SIG and PKE
constructions. Our constructions are inspired by the trapdoor X-protocol for
ACPS ciphertexts [4] constructed in [34, Sect. 5], by observing that both the
gap languages QEESANIZK) and GL, are defined with linear equations, i.e., the
instance is linear in the witness, and parts of the witness are bounded.

The Trapdoor Y-protocol for QL (QANIZK) " e syntax of trapdoor X-protocol
is shown in Definition 24. Below we construct an LWE-based trapdoor X-protocol
Y = (X.CRSGen, X.Prove;, X .Provey, X Vrfy, X.Sim, X.TrapGen, X'.BadChallenge)

for the gap language QCEJ(,QAN'ZK) = (CEJ(,QANIZK), Z(p(,QANIZK)) specified by (53) and
(54), with challenge set CH = {0,1}.

e crs <—s X .CRSGen(p): On input of language parameter p’ = (A, X), return
crs := (A, X).

e (a,st) <—s X.Provey(crs,x, w): Parse crs = (A, X) and = = (c, vk, d). Choose

Sp <—s Z , €9 <3 Dzm)c, Ry s DZ’"XW,C; ko s DZm7C7 66 s DZ,C’~
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Compute

c(—)r = s(—)r A+ eg— mod ¢q, vky:=X-Rp+ (Q'goT) mod ¢,

do:=c" ko + e}, mod q.

Return a := (cg, vkg,dp) and st := (sg, €9, Ro, ko, €{)-

e z s Y.Provey(crs, z,w, a,st,ch € {0,1}): Parse w = (s,e,R,k,¢’) and st =
(s0, €0, Ro, ko, €p). Compute

Smiz := S0 +ch-smod q, €., :=eg+ch-emod g,

R,.i» = Ro+ch-Rmod ¢%, kpmiz := ko + ch -k mod g,
iz = €0+ ch - e’ mod q.

Return z := (Spiz, €miz, Rmiz, Kmix, €1y, ) With probability 8 and abort oth-
. s . — min [~ Pzrclemia)

erwise, where the probability 6 is defined by 6 := min (M~Dzm,<,ch.e(emm)
Danan,c(Rmiz) Dzm&(kmiz) DZ,C’(e;niz)

M-Dymxm ¢ chr(Rmiz) " M-Dzm ¢ chic(Kmiz) J\/II'DZ,C’,ch-e’(e;niz)71) with M :=
el2vmB/(+mB?/(2¢*) gnd M' = 6123//4/4-3’2/(24'2).

e 0/1 « X Vrfy(crs,z,a,ch,z): Parsecrs = (A, X), z = (c,vk,d), a = (co, vko, dp)
and z = (Smix, €miz, Rmiz, Kmiz, €y ). Check if

”emixHoo < 3/27 ”Rmim”oo < B/?, Hkmim”oc < B/?, ‘e;niz| < B//27
and check if

T T _ T T
¢y +ch-c =s,,.-A+e,,;, modg,

vko + ch - vk = X - Rypix + (qikOT ) mod ¢?,

miz

doy+ch-d=c' -kpip + €., mod q.
If all these checks pass, return 1; otherwise, return 0.
e (crs, tdx) s X.TrapGen(p',td,): Oninput of language parameter p’ = (A, X)

and trapdoor information td, = Ta for QEE;?AMZK), return crs := (A, X)
and tdy, := T4.

e ch + Y .BadChallenge(crs,tdsy, = Ta,x,a): Parsex = (c, vk, d) and a = (cg, vko, dp).

Invoke (s,e) ¢ Invert(co, Ta) (cf. Lemma 4) and if |le|| . < B/2 then re-
turn ch := 0.

Invoke (s, e) <s Invert(co + ¢, Ta) and if |le], < B/2 then return ch := 1.
Otherwise, return ch := .

e (3,Z) s X.Sim(crs, x, ch): Parse crs = (A, X) and z = (c, vk, d). Choose

~ ~ ~/
Smiz <8 227 €ir <8 Dzm_(, Rmiz <3 DZvnanVC, kmiz s DZm7C7 iz <3 DZ,C’-
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Compute

~T = ( Spiz - A+ emm) —ch-c" mod q,

vkzo (X Ronis + ( )) — ch - vk mod ¢,

do = (¢ Kppiz + émm) —ch-dmod g.

Return a := (&, ;\Igo, czo) and Z := (Smiz, €mix, f{mm,f{mm, €l ) With prob—

ability 6 and abort otherwise, where the probability 6 is defined by 6
1/(M3M') with M := e!2VmB/CtmB* /() ang M/ = 12B'/¢+B%/(2¢7),

Theorem 15 (Trapdoor X -protocol for QCS,QANIZK)). Let ¢ = /mB-w(y/logm),
(' =w(B), B=2-(Cvm w(iogh) + B), B' = 2- (¢ -w(VIogA) + B) and

q > 5mB. Then the above construction is a trapdoor X-protocol for the gap
language QE(QANIZK) (E(QANIZK) E(QANIZK)) specified by (53) and (54).

Proof of Theorem 15. By the choices of B = 2. ((ym - w(y/log) + B)
and B’ =2- (¢’ - (\/log ) + B'), according to Lemma 5, we know that Dzm ¢

and Dyzmxm ¢ are (— — B) = ¢(/m - w(y/log A)-bounded and Dz ¢ is (% - B’
= (' - w(y/log A)-bounded, except with negligible probability.

Completeness. For any instance x = (c,vk,d) € ﬁff?ANIZK) with witness w =
(s,e,R,k,¢’), any proof a = (co,vko,do),z = (Smizs€miz, Rmiz, Kmizs i)
and state st = (s, e, Ro, Ko, €)) generated honestly by prover, we know that
€y s Dzm ¢, Ry <=5 Dgmxm ¢, ko ¢=s Dzm ¢ and ey s Dy 7. The above analy-
sis shows that ey, Ro and kg are all (f — B)-bounded and e}, is (— B’)-bounded
except with negligible probability. Hence for any challenge ch € {0, 1}, it holds
that [[emizll,, < lleollo + llelle < B/2, [Rmizll < [[Roll + IRl < B/2,
[kmizlloe < [lkollo + [kl < B/2 and [e;,;,| < leg| + |€'] < B'/2, except with
negligible probability. Meanwhile, we have

cg +ch-c =(sj +ch-s")A+(eg' +ch-e)=s/,. A—f—emm mod g,
vko + ch - vk = X(Ro +ch - R) + (4o 1aer) = X Rumio + (7 ) mod ¢,

mix

do+ch-d=c'(kg+ch-k)+ (ef+ch-e)=c'  kpiz + e, mod gq.

Therefore, the verification passes except with negligible probability.

Special Soundness. Special soundness requires that for any x ¢ LOANIZK) nd
any first message a, there exists at most one challenge ch € {0,1} such that
Y Vrfy(crs,z,a,ch,z) = 1 for some third message z. Suppose, toward contra-
diction, there exist z = (c,vk,d) ¢ E;?ANIZK) and a = (cg, vko,dp) such that
Y.Vrfy(crs, z,a,ch,z2M) = 1 for both ch = 0 and ch = 1 for some z(?) =
(S(O) e R() k(O) (O)T) and z1 = (s (1) e(l). R() kD (')). That

max? max’ max’? maix’ mz ) maix? T max’? mz.r
< B2,

is, for both ch = 0 and ch = 1 it holds that ‘ R

mix
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wr|| < BJ2. |y < Br/2 and

cg +0-¢c’ = sggzx—r A —&—eiﬁ?w mod g, (57)
o +1cT =5l A el modg, (58)
vko +0-vk =X R+ (, k@;) mod ¢2, (59)
vko +1-vk =X Ry} 4 (, km;) mod ¢, (60)
do+0-d =cT -k}, + ¢, mod g, (61)
do+1-d=c’ k§2l+eﬁnzz mod q. (62)

By subtracting (57) from (58), (59) from (60), and (61) from (62) respectively,
we have

c = (SSL) — sl ) A+ ( ) —el )—r mod g,

mix mix

k=X -(RY RO )4 (.(km °© ;7) mod ¢2,

mix mix

d=c’ k" — k(O)x) @D~ ® ) mod .

mixr mix mrx

Note that ‘ g) - ef,gzg; < ’ egzgj + ’ el < B, HRS‘L Rfﬁfl S
1) ) e (0) .
HRmm + HRmm I < B Hkmu - kmia o S ’kmm I kmmﬁ I S B
and |e/§7:’lb’)LZ - m2x| < |6 o | + |€ 0 ) | < B/ As a result ( 512:6 - sf’r?,zx’ egzz
gzz,Rgzm Rgz,kgzx kfgzx, ’5,21 - /7(77,2&0) constitutes a witness for z =

(c,vk,d) € E (QANIZK) " which yields a contradiction.

Correctness of X.BadChallenge. For any z = (c,vk,d) ¢ EE;?ANIZK) and any
a = (cg,vko, dp), if the bad challenge function f(crs,x,a) # L, we aim to prove
that X'.BadChallenge(crs,tds, z,a) = f(crs,z,a). Suppose that f(crs,x,a) = ch
for some ch € {0,1}, then by the definition of f, ch is the unique challenge
such that X .Vrfy(crs,x,a, ch,z) =1 for some z= (snmmemm7 Roniz, Kmizs €hiz)-
Thus |emizll, < B/2and ¢j +ch-c¢" =s/, -A+e], . Notethat ¢ > 5mB,
50 |lemizll < vVmB/2 < q/(10y/m). According to Lemma 4, it must hold that
Invert(Ta, co+ch-c) = (Spiz, €miz). Consequently, X.BadChallenge(crs, tdx, z, a)
outputs ch, the same as f(crs,z,a). The correctness of 3.BadChallenge follows.

Special Zero-Knowledge. We aim to bound the statistical distance between the
real proof (a = (co,vko,do) Z = (Smizs €miz, RmizsKmiz,€he)) and the sim-

ulated proof (3 = (co,vko,do) Z = (Smiz, €miz, Rmix,kmm,é;nm)) for any in-

c EpgANlZK)

stance z = (c, vk, d) with witness w = (s, e, R, k, ¢/).
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Note that both the real proof and the simulated proof satisfy the verification
equations, i.e.,
cg +ch-c'=s). -A+el, modyg,
vko +ch-vk =X -Rie + (q_kof ) mod ¢2,
do+ch-d=c" -kpiy + €., mod q.

Therefore, in the real proof (a,z), a = (co, vko, dy) is completely determined by
z = (Smiz, €mizs Rmizs Kmiz, €imie), € = (A, X), z = (c,vk,d) and ch, and in
the simulated proof (3,%), 3 = (60,%0,620) is completely determined by z =
(gmixaémiw;Rmim7kmiajyé;nim)7 crs = (A, X), z = (c,vk,d) and ch in the same
way as the real proof.

So the difference between the real proof and the simulated proof lies in the
distribution of z and z, where z = (Syz, €miz, Rmiz, Kmiz, € is generated by
first sampling

mia)
mix

n

Sp <3 Zq,

€p s DZ’",Q Ry s DZMX”",O kg s DZm7<, 66 s DZ7</,
then computing

Smiz := Sg +ch-smod q, ez :=eg+ ch-emod g,

R,z := Ro+ch- R mod ¢, Kmiz := ko + ch -k mod ¢,

/ Y /
€miz ‘= €9 T ch- ¢ mod g,

while Z = (Smixs €miz, Rmizs Kmiz, €1, ) 18 sampled directly via
~ ~ ® 1. ~/
Smiz <3 227 €mix <5 Dzmyg, Rz <5 DZ"”“”,C» Koiz s Dzm’g, €z 8 DZ,C“

Moreover, recall that the real proof (a,z) is outputted with probability 6, while
the simulated proof (3,2z) is outputted with probability . Our analysis is as
follows.

— Firstly, 8jniz = so + ch - s in z and S, in Z are both uniform over Zj.

— Secondly, note that ||ch-e|| < v/mB and ¢ = /mB - w(v/logm), Lemma
14 shows that e,,;, = ey + ch - e in z — when output with probability
DZm’,C(emiz)

M-Dzm ¢ ch.c(€miz)’
1/M — have statistical distance at most 2700/M.

— Similarly, note that ||ch - R|| < /m, ||ch - k|| < v/m, |ch-¢/'| < B', { = /mB-
w(v/logm) and ¢’ = w(B’), Lemma 14 shows that R,,: (resp., Kiz, T€SP.,

, Dymxm (Rmiz)

miz M-Dymxm ¢ g (Rmiz)’

(resp., min (41\/1.5;:’24’5:1”(1:;—”), 1>, resp., min (M,Dizjlff*:f’(”e);nl) , 1)) — and

Rnie (resp., Kyniz, T€Sp., €l i) In Z — when output with probability 1/M

(resp., 1/M, resp., 1/M’) — have statistical distance at most 27190 /M (resp.,

27100/M | resp., 27100 /M),

min ( 1) — and €,,;; in Z — when output with probability

e

) in z — when output with probability min(
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Overall, z = (Spmix, €miz, Rmiz, Kmiz, €mi) — When output with probability 6 =
min ( Dzm ¢(emiz) Dymxm (Rmix) . Dzm c(kmiz) Dy cr(eh,i) 1)
M-Dzm ¢ ch-e(€mic) M-Dymxm ¢ g (Bmic) M-Dzm ¢ chx(Kmic) M’ Dy s ep.er(€,:,)°
—and z = (émm,émm,f{,,m,f{mm,é;nm) — when output with probability 6 =
1/(M3M'’) — have statistical distance at most 27100 . (3/M + 1/M").
This completes the proof of special zero-knowledge.

Perfect CRS Indistinguishability. On input of language parameter p’ = (A, X),
both crs <—s X.CRSGen(p’) and (crs, tdx) <—s X.TrapGen(p', td, ) simply set crs :=
(A, X). So perfect CRS indistinguishability trivially holds. ad

The Trapdoor Y-protocol for G£,. For the gap language GL, = (EP,ZP)

defined in Subsect. 6.1 and specified by (55) and (56), the LWE-based trapdoor
(QANIZK)
o’

to prove the instance c satisfies ¢’ = sT - A + e with witness (s,e). As a
result, crs := A; Y.Prove; outputs a := ¢y and st := (sg,ep); X.Proves outputs

z := (Symiz, ©miz) With probability # = min (Mf:"f—(:’”(;)), 1); X Vrfy only

checks ||leyiz||, < B/2and ¢] +ch-c” =s . -A+e] . modg; X.Sim outputs
3:=¢p and Z = (Smiz, €miz) with probability 6 = 1/M.

Similarly, we have the following theorem. Its proof is a simplified version of
that for Theorem 15, thus we omit it.

JY-protocol is just a simplified version of that for GL£ , since it only needs

Theorem 16 (Trapdoor Y-protocol for GL,). Let ( = /mB -w(y/logm),
B =2-(¢y/m-w(\/logX) + B) and ¢ > 5mB. Then the above construction is a
trapdoor X-protocol for the gap language GL, = (Lp,fp) defined in Subsect. 6.1
and specified by (55) and (56).

G.4 Generic QA-NIZK Transformation and QA-NIZK from LWE

In this subsection, we will use the generic QA-NIZK transformation in [34, Sub-
sect. 4.2] to convert the LWE-based trapdoor X-protocols proposed in the previ-
ous subsection (Appendix G.3) to LWE-based QA-NIZK schemes, which in turn
serve as building blocks for our SIG and PKE constructions in Sect. 4.

To this end, we will first recall the generic QA-NIZK transformation in [34,
Subsect. 4.2] for completeness, then describe how to compile our LWE-based
trapdoor X-protocols proposed in the previous subsection (Appendix G.3) into
LWE-based QA-NIZK schemes via the generic transformation.

The Generic QA-NIZK Transformation in [34, Subsect. 4.2]. The
generic transformation proposed by Libert et al. in [34, Subsect. 4.2] is able
to compile any trapdoor Y-protocol for gap language into tag-based QA-NIZK
for the same gap language, with the help of correlation intractable (CI) hash
function and lossy PKE. Moreover, the transformation is tightness-preserving,
i.e., the resulting tag-based QA-NIZK has tight zero-knowledge and tight USS
as long as the building blocks are tightly secure.
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We recall the generic transformation for completeness. To construct a tag-
based QA-NIZK scheme for a gap language GL, = (£,,L,), the underlying
building blocks are as follows.

e A trapdoor X-protocol X' = (X.CRSGen, X.Prove;, X.Proves, X Vrfy, 3.Sim,
X .TrapGen, X .BadChallenge) for the same gap language GL, = (L), Ep)

e A pseudorandom function PRF : KC x {0, 1}* — {0,1}* with key space K and
input space {0,1}¢. PRF define a relation Rpgrr : K x {0,1}* x {0,1}* —
{0,1} with K = {0,1}*, where Rpre(K,t4,t.) = 1 iff t. # PRF(K,t,). (The
syntax, security requirements and specific construction of PRF are recalled
in Definition 28.)

e An Rpgre-lossy PKE scheme Rpre-LPKE = (LPKE.Gen, LPKE.LGen, LPKE.Enc,
LPKE.Dec, LPKE.Opener, LPKE.LOpener) for the relation Rprg with tag space
T ={0,1}* x {0,1}*, randomness space R|pkg, message space M, cipher-
text space CT and randomness distribution Dg, . over Ripke. (The syntax,
security requirements and specific construction of lossy PKE are recalled in
Definition 27.)

e A somewhere correlation intractable (CI) hash CIH = (CIH.Gen, CIH.StGen)
which is associate with efficiently computable keyed hash family H = {h :
K x X x CT* x {0,1}* x {0,1}¢ — {0,1}*}. (The syntax, security require-
ments and specific construction of CI hash are recalled in Definition 26.)

e A one-time signature scheme OTS = (OTS.Setup, OTS.Gen, OTS.Sign, OTS.Vrfy)
with verification key space VI = {0,1}¢. (The syntax is the same as signa-
ture, see Definition 13. The security requirements and specific construction
of one-time signature are recalled in Definition 29)

The generic construction of tag-based QA-NIZK scheme QANIZK = (CRSGen,
Prove, Vrfyyzk, SimGen, Sim) for the gap language GL, = (EP,ZP) proposed in
[34, Subsect. 4.2] is presented in Fig. 10.

In [34], Libert et al. proved the tightness-preserving of the transformation,
i.e., the resulting tag-based QA-NIZK scheme has tight zero-knowledge and tight
USS as long as the building blocks are tightly secure. Formally, we recall the
following theorem from [34].

Theorem 17 ([34]). The ZK and USS of the generic tag-based QA-NIZK con-
struction for the gap language GL, = (E,,,EP) proposed in Fig. 10 can be tightly
reduced to the security and property of the underlying building blocks: (1) The
security of the trapdoor X -protocol; (2) The pseudorandomness of PRF; (3) The
security of CIH; (4) The key indistinguishability of R-LPKE; (5) The strong
MU-OT security of OTS.

Concretely, if the trapdoor X-protocol has special zero-knowledge with statis-
tical distance at most €, then the advantage of zero-knowledge for any (even all
powerful) adversary A’ is given by AdVg(AmzK,A/()\) < ey + 277N Meanwhile,
the advantage of USS for any PPT adversary A is given by

Advganizk,4(A) < Advgre's, o(A) + Advilr%?l__lPKE,Bg(A) + AdVi(?IdH,Bg()‘)
+ AdVE ke 5, (V) + 2+ AdvBe 5. (M) +27 90,
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crs <—s CRSGen(p):
crs’ < X.CRSGen(p), (pk, sk, tk) <—s LPKE.LGen(0*).
k <—s CIH.Gen, ppg,g s OTS.Setup.
Return crs := (crs’, pk, k, ppgig)-
m s Prove(crs, 7, z, w): 0/1 « Vrfyyz(crs, 7,2, m):
Parse crs := (crs’, pk, k, ppgg)- Parse crs = (crs’, pk, k, ppsig)-
(vk, sigk) <—s OTS.Gen(ppgc)- Parse m = ((t.,vk), (a,z),0).
te < {0,137 If OTS.Vrfy(vk, (z,t.,a,2z,7),0) # 1:
For all i € [\]: Return 0.
(af, st;) <—s X.Provey (crs’, z, w). ch == h(k, (z,a,t.,vk)) € {0,1}*.
i s DRy oye- Parse ch = (chy,...,chy) € {0,1}*.
a; s LPKE.Enc(pk, (t¢, vk), a};r;). Parse a = (a1, -+ ,ay).
a’ = (a}, - ,a)). Parse z = (z’,a’,r).
ri=(ry, o ,Ta). Parse 2’ = (z},--- ,Z)).
a:=(ag, - ,ax). Parse a’ = (a}, -+ ,a)).
ch = h(k, (z,a,t.,vk)) € {0,1}*. Parse r = (ry,---,7)).
Parse ch = (chy,...,chy) € {0,1}* If for all ¢ € [A]:
For all i € [A]: a; = LPKE.Enc(pk, (t., vk),al; r;)
z} <—s X .Proves(st;, al, ch;). and X.Vrfy(crs', x,al,ch;,z) =1
z' = (74, -+ ,2)). Return 1;
z:= (z/,a’,r). Else: Return 0.
o s OTS.Sign(sigk, (z,t.,a,z,7)).
Return 7 := ((t¢, vk), (a,2),0).
(crs, tders) s SimGen(p): m <—s Sim(crs, tdes = sk, T, x):
crs’ +s X.CRSGen(p). Parse crs = (crs', pk, k, ppsic)-
(pk, sk, tk) +—s LPKE.LGen(0%). (vk, sigk) <—s OTS.Gen(ppg)c)-
k < CIH.Gen. t. +s {0, 1})‘.
ppsig s OTS.Setup. For all ¢ € [\]:
crs := (crs’, pk, k, ppgig)- 7.0 5 DR pre-
tdes = sk. a; +s LPKE.Enc(pk, (t¢, vk),0;7;0).
Return (crs, tdeys). a:=(ag, - ,ay).
ch := h(k, (z,a,t.,vk)) € {0,1}*.
Parse ch = (chy,...,chy) € {0,1}*.
For all i € [A]:
(a},2;) s X.Sim(crs', z, ch;).
r; <—s LPKE.LOpener(sk, (t., vk), a;,a}).
a’ = (a}, - ,a)).
o= (2 2.
ro=(ry, -, 7).
z:= (z/,a’,r).
o s OTS.Sign(sigk, (z,t., a,z,7)).
Return 7 := ((t., vk), (a,2),0).

Fig. 10. The generic construction of QANIZK = (CRSGen, Prove, Vrfyy,z«, SimGen, Sim)

for the gap language GL, = (CP,EP) from trapdoor X-protocol, Rpre-LPKE, CIH and
OTS, proposed in [34, Subsect. 4.2].
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where @ is the number of oracle queries by A and PPT algorithms By,--- ,Bs
run in about the same time as A.

QA-NIZK from LWE. Finally, by compiling the LWE-based trapdoor X-
protocols proposed in Appendix G.3 with the help of the instantiations of other
building blocks in Appendix G.1 via the generic transformation proposed by
Libert et al. in [34, Subsect. 4.2], we are able to obtain a tag-based QA-NIZK
scheme for the gap language QES?ANIZK) = (E((,QANIZK),EESANIZK)) specified by
(53) and (54) and a tag-based QA-NIZK scheme for the gap language GL, =
(EP,Z,,) specified by (55) and (56) based on the LWE assumptions, serving
as building blocks for our SIG and PKE constructions. Formally, we have the
following corollary.

Corollary 1 (Almost Tight Security of LWE-based QA-NIZK). Given
the instantiations of the building blocks in Appendix G.1 and the instantiations of
trapdoor X -protocol in Appendix G.3, we obtain a specific tag-based QA-NIZK
scheme for the gap language QEESANIZK) = (E((?ANIZK),E;?ANIZK)) specified by
(53) and (54) and a specific tag-based QA-NIZK scheme for the gap language
GL, = (L,, Ep) specified by (55) and (56), both of which have almost tight zero-
knowledge and USS based on the LWE assumption.

Concretely, the advantage of zero-knowledge for any (even all powerful) ad-
versary A’ is given by AdvakANIZK,A’ () < 279N Meanwhile, the advantage of
USS for any PPT adversary A is given by

AdVUQS’zN'ZK’AO\) < Adv[sflfqmﬁ]ﬁl (A) + 202 - Advl[_x\,/qE%m],Bz()‘) + 2_9(”7

where PPT algorithms By and By run in about the same time as A.
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