2,270 research outputs found

    Drum Transcription via Classification of Bar-level Rhythmic Patterns

    Get PDF
    acceptedMatthias Mauch is supported by a Royal Academy of Engineering Research Fellowshi

    A Corpus-based Study Of Rhythm Patterns

    Get PDF
    We present a corpus-based study of musical rhythm, based on a collection of 4.8 million bar-length drum patterns extracted from 48,176 pieces of symbolic music. Approaches to the analysis of rhythm in music information retrieval to date have focussed on low-level features for retrieval or on the detection of tempo, beats and drums in audio recordings. Musicological approaches are usually concerned with the description or implementation of manmade music theories. In this paper, we present a quantitative bottom-up approach to the study of rhythm that relies upon well-understood statistical methods from natural language processing. We adapt these methods to our corpus of music, based on the realisation that—unlike words—barlength drum patterns can be systematically decomposed into sub-patterns both in time and by instrument. We show that, in some respects, our rhythm corpus behaves like natural language corpora, particularly in the sparsity of vocabulary. The same methods that detect word collocations allow us to quantify and rank idiomatic combinations of drum patterns. In other respects, our corpus has properties absent from language corpora, in particular, the high amount of repetition and strong mutual information rates between drum instruments. Our findings may be of direct interest to musicians and musicologists, and can inform the design of ground truth corpora and computational models of musical rhythm. 1

    Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study

    Get PDF
    Most of the research conducted on information technologies applied to music has been largely limited to a few mainstream styles of the so-called `Western' music. The resulting tools often do not generalize properly or cannot be easily extended to other music traditions. So, culture-specific approaches have been recently proposed as a way to build richer and more general computational models for music. This thesis work aims at contributing to the computer-aided study of rhythm, with the focus on percussion music and in the search of appropriate solutions from a culture specifc perspective by considering the Afro-Uruguayan candombe drumming as a case study. This is mainly motivated by its challenging rhythmic characteristics, troublesome for most of the existing analysis methods. In this way, it attempts to push ahead the boundaries of current music technologies. The thesis o ers an overview of the historical, social and cultural context in which candombe drumming is embedded, along with a description of the rhythm. One of the specific contributions of the thesis is the creation of annotated datasets of candombe drumming suitable for computational rhythm analysis. Performances were purposely recorded, and received annotations of metrical information, location of onsets, and sections. A dataset of annotated recordings for beat and downbeat tracking was publicly released, and an audio-visual dataset of performances was obtained, which serves both documentary and research purposes. Part of the dissertation focused on the discovery and analysis of rhythmic patterns from audio recordings. A representation in the form of a map of rhythmic patterns based on spectral features was devised. The type of analyses that can be conducted with the proposed methods is illustrated with some experiments. The dissertation also systematically approached (to the best of our knowledge, for the first time) the study and characterization of the micro-rhythmical properties of candombe drumming. The ndings suggest that micro-timing is a structural component of the rhythm, producing a sort of characteristic "swing". The rest of the dissertation was devoted to the automatic inference and tracking of the metric structure from audio recordings. A supervised Bayesian scheme for rhythmic pattern tracking was proposed, of which a software implementation was publicly released. The results give additional evidence of the generalizability of the Bayesian approach to complex rhythms from diferent music traditions. Finally, the downbeat detection task was formulated as a data compression problem. This resulted in a novel method that proved to be e ective for a large part of the dataset and opens up some interesting threads for future research.La mayoría de la investigación realizada en tecnologías de la información aplicadas a la música se ha limitado en gran medida a algunos estilos particulares de la así llamada música `occidental'. Las herramientas resultantes a menudo no generalizan adecuadamente o no se pueden extender fácilmente a otras tradiciones musicales. Por lo tanto, recientemente se han propuesto enfoques culturalmente específicos como forma de construir modelos computacionales más ricos y más generales. Esta tesis tiene como objetivo contribuir al estudio del ritmo asistido por computadora, desde una perspectiva cultural específica, considerando el candombe Afro-Uruguayo como caso de estudio. Esto está motivado principalmente por sus características rítmicas, problemáticas para la mayoría de los métodos de análisis existentes. Así , intenta superar los límites actuales de estas tecnologías. La tesis ofrece una visión general del contexto histórico, social y cultural en el que el candombe está integrado, junto con una descripción de su ritmo. Una de las contribuciones específicas de la tesis es la creación de conjuntos de datos adecuados para el análisis computacional del ritmo. Se llevaron adelante sesiones de grabación y se generaron anotaciones de información métrica, ubicación de eventos y secciones. Se disponibilizó públicamente un conjunto de grabaciones anotadas para el seguimiento de pulso e inicio de compás, y se generó un registro audiovisual que sirve tanto para fines documentales como de investigación. Parte de la tesis se centró en descubrir y analizar patrones rítmicos a partir de grabaciones de audio. Se diseñó una representación en forma de mapa de patrones rítmicos basada en características espectrales. El tipo de análisis que se puede realizar con los métodos propuestos se ilustra con algunos experimentos. La tesis también abordó de forma sistemática (y por primera vez) el estudio y la caracterización de las propiedades micro rítmicas del candombe. Los resultados sugieren que las micro desviaciones temporales son un componente estructural del ritmo, dando lugar a una especie de "swing" característico. El resto de la tesis se dedicó a la inferencia automática de la estructura métrica a partir de grabaciones de audio. Se propuso un esquema Bayesiano supervisado para el seguimiento de patrones rítmicos, del cual se disponibilizó públicamente una implementación de software. Los resultados dan evidencia adicional de la capacidad de generalización del enfoque Bayesiano a ritmos complejos. Por último, la detección de inicio de compás se formuló como un problema de compresión de datos. Esto resultó en un método novedoso que demostró ser efectivo para una buena parte de los datos y abre varias líneas de investigación

    A New Way of Moving: Developing a Solo Drumset Practice Informed by Embodied Music Cognition

    Get PDF
    This research examines how insights drawn from the field of Embodied Music Cognition can be repurposed to instigate creative development within the practice of an improvising drummer. Following a process- driven practice-led research model, I correlate academic research to aspects of pedagogical and professional practice, generating original theoretical insight and embodied knowledge in two primary areas: first, I arrive at an understanding of sticking cells as embodied knowledge encoded with specific rhythmic forms; second, I develop an original taxonomy for classifying types of individual and combined movement cycles as applied to the drumset. I combine these two as variable parameters within an original generative process entitled somatic parameter layering; which I use to furnish musical outputs that are found within a series of original recorded works, embedded throughout this dissertation. Through analysis of these works, I identify five strategic implementations of somatic parameter layering: Hide/Reveal, Modulation Obfuscation, Unison/Interlace, Fragmentation, and Expansion/Contraction. I then repurpose the parameters of sticking cells and movement cycles into an analytical model for investigating drumset activity, which is tested on an excerpt drawn from a live performance by American jazz drummer Bill Stewart, revealing his manipulation of movement as a parameter for both idea generation and development. The creative works of this research are situated within a historically emergent community of Australian improvising musicians, whom I refer to as Antripodean improvisers. I present an outline of the key artists working in the idiom and provide analysis of representative works to build a profile of the improvisational logic underpinning their shared practice. I explain how the professional requirements of interacting with these musicians have provided a primary motivation for undertaking the research project

    An review of automatic drum transcription

    Get PDF
    In Western popular music, drums and percussion are an important means to emphasize and shape the rhythm, often defining the musical style. If computers were able to analyze the drum part in recorded music, it would enable a variety of rhythm-related music processing tasks. Especially the detection and classification of drum sound events by computational methods is considered to be an important and challenging research problem in the broader field of Music Information Retrieval. Over the last two decades, several authors have attempted to tackle this problem under the umbrella term Automatic Drum Transcription(ADT).This paper presents a comprehensive review of ADT research, including a thorough discussion of the task-specific challenges, categorization of existing techniques, and evaluation of several state-of-the-art systems. To provide more insights on the practice of ADT systems, we focus on two families of ADT techniques, namely methods based on Nonnegative Matrix Factorization and Recurrent Neural Networks. We explain the methods’ technical details and drum-specific variations and evaluate these approaches on publicly available datasets with a consistent experimental setup. Finally, the open issues and under-explored areas in ADT research are identified and discussed, providing future directions in this fiel

    Automated Rhythmic Transformation of Drum Recordings

    Get PDF
    Within the creative industries, music information retrieval techniques are now being applied in a variety of music creation and production applications. Audio artists incorporate techniques from music informatics and machine learning (e.g., beat and metre detection) for generative content creation and manipulation systems within the music production setting. Here musicians, desiring a certain sound or aesthetic influenced by the style of artists they admire, may change or replace the rhythmic pattern and sound characteristics (i.e., timbre) of drums in their recordings with those from an idealised recording (e.g., in processes of redrumming and mashup creation). Automated transformation systems for rhythm and timbre can be powerful tools for music producers, allowing them to quickly and easily adjust the different elements of a drum recording to fit the overall style of a song. The aim of this thesis is to develop systems for automated transformation of rhythmic patterns of drum recordings using a subset of techniques from deep learning called deep generative models (DGM) for neural audio synthesis. DGMs such as autoencoders and generative adversarial networks have been shown to be effective for transforming musical signals in a variety of genres as well as for learning the underlying structure of datasets for generation of new audio examples. To this end, modular deep learning-based systems are presented in this thesis with evaluations which measure the extent of the rhythmic modifications generated by different modes of transformation, which include audio style transfer, drum translation and latent space manipulation. The evaluation results underscore both the strengths and constraints of DGMs for transformation of rhythmic patterns as well as neural synthesis of drum sounds within a variety of musical genres. New audio style transfer (AST) functions were specifically designed for mashup-oriented drum recording transformation. The designed loss objectives lowered the computational demands of the AST algorithm and offered rhythmic transformation capabilities which adhere to a larger rhythmic structure of the input to generate music that is both creative and realistic. To extend the transformation possibilities of DGMs, systems based on adversarial autoencoders (AAE) were proposed for drum translation and continuous rhythmic transformation of bar-length patterns. The evaluations which investigated the lower dimensional representations of the latent space of the proposed system based on AAEs with a Gaussian mixture prior (AAE-GM) highlighted the importance of the structure of the disentangled latent distributions of AAE-GM. Furthermore, the proposed system demonstrated improved performance, as evidenced by higher reconstruction metrics, when compared to traditional autoencoder models. This implies that the system can more accurately recreate complex drum sounds, ensuring that the produced rhythmic transformation maintains richness of the source material. For music producers, this means heightened fidelity in drum synthesis and the potential for more expressive and varied drum tracks, enhancing the creativity in music production. This work also enhances neural drum synthesis by introducing a new, diverse dataset of kick, snare, and hi-hat drum samples, along with multiple drum loop datasets for model training and evaluation. Overall, the work in this thesis increased the profile of the field and hopefully will attract more attention and resources to the area, which will help drive future research and development of neural rhythmic transformation systems

    Analyzing the Parameters of Flow in Rap Music

    Get PDF
    A dissertation describing analytical methods for engaging with "flow," i.e. a rapper's delivery of the lyrics
    corecore