1,670 research outputs found

    Yield Enhancement of Digital Microfluidics-Based Biochips Using Space Redundancy and Local Reconfiguration

    Full text link
    As microfluidics-based biochips become more complex, manufacturing yield will have significant influence on production volume and product cost. We propose an interstitial redundancy approach to enhance the yield of biochips that are based on droplet-based microfluidics. In this design method, spare cells are placed in the interstitial sites within the microfluidic array, and they replace neighboring faulty cells via local reconfiguration. The proposed design method is evaluated using a set of concurrent real-life bioassays.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    Bottom-up assembly of functional intracellular synthetic organelles by droplet-based microfluidics

    No full text
    Bottom-up synthetic biology has directed most efforts toward the construction of artificial compartmentalized systems that recreate living cell functions in their mechanical, morphological, or metabolic characteristics. However, bottom-up synthetic biology also offers great potential to study subcellular structures like organelles. Because of their intricate and complex structure, these key elements of eukaryotic life forms remain poorly understood. Here, the controlled assembly of lipid enclosed, organelle-like architectures is explored by droplet-based microfluidics. Three types of giant unilamellar vesicles (GUVs)-based synthetic organelles (SOs) functioning within natural living cells are procedured: (A) synthetic peroxisomes supporting cellular stress-management, mimicking an organelle innate to the host cell by using analogous enzymatic modules; (B) synthetic endoplasmic reticulum (ER) as intracellular light-responsive calcium stores involved in intercellular calcium signalling, mimicking an organelle innate to the host cell but utilizing a fundamentally different mechanism; and (C) synthetic magnetosomes providing eukaryotic cells with a magnetotactic sense, mimicking an organelle that is not natural to the host cell but transplanting its functionality from other branches of the phylogenetic tree. Microfluidic assembly of functional SOs paves the way for high-throughput generation of versatile intracellular structures implantable into living cells. This in-droplet SO design may support or expand cellular functionalities in translational nanomedicine

    Dynamics of soft interfaces in droplet-based microfluidics

    Get PDF
    Diese Doktorarbeit untersucht die verschiedenen dynamischen Prozesse, welche sich an der TropfenoberflĂ€che abspielen, und der Methoden, die fĂŒr deren Untersuchung verwendet wurden. Das Ziel dieser Arbeit ist es, die entscheidenden Eigenschaften, die einen Einfluss auf das mechanische Verhalten der GrenzflĂ€che haben, zu identifizieren. Wir verwenden die hydrodynamisch erzwungene Deformation eines Tropfens in einem Mikrokanal, um die mechanischen Eigenschaften der OberflĂ€che zu untersuchen. Diese Methode wird auf drei verschiedene FĂ€lle angewendet. Als erstes verfolgen wir die zeitliche Entwicklung einer GrenzflĂ€chenverformung, um die Dynamik der Tensidadsorption an einer OberflĂ€che zu untersuchen. Dabei kalibrieren wir die Tropfenverformung als Funktion von TropfengrĂ¶ĂŸe und OberflĂ€chenspannung. Diese Technik wird auf den Fall eines perfluorierten Tensids, welches von industriellem und wissenschaftlichem Interesse ist, angewendet. Wir zeigen die Möglichkeit von Messungen der dynamischen OberflĂ€chenspannung auf Zeitskalen von zehn Millisekunden und gewinnen daraus kinetische Eigenschaften der MolekĂŒle. Wir vergleichen die Dynamik, welche mit der klassischen Pendant-Drop-Methode gemessen werden kann mit denen der Mikrofluidik. Es zeigt sich, dass die Adsorption fĂŒr den Pendant Drop von der Di usion begrenzt wird, wĂ€hrend in der Mikrofluidik die Anbindung an die OberflĂ€che der langsamere Prozess ist. Der Unterschied entsteht durch das Flussprofil in der Mikrofluidik, welches konvektiven Transport induziert. Danach untersuchen wir die Verformung unter verschiedenen rĂ€umlichen BeschrĂ€nkungen im mikrofluidischen Kanal. Die Tropfenverformung wird mit einer zweidimensionalen numerischen Simulationen und mit einem dreidimensionalen Modell eines Rotationsellipsoids verglichen. In beiden FĂ€llen wird eine qualitative Übereinstimmung festgestellt, jedoch existieren auch spĂŒrbare Abweichungen vom Experiment. Die Abweichungen vom zweidimensionalen Modell ist erklĂ€rbar mit dem sinkenden Einfluss der viskosen Spannungen mit der Kanalhöhe, hervorgerufen durch BeitrĂ€ge von Deformationen außerhalb der Beobachtungsebene, welche von dem Modell nicht wiedergegeben werden. Die Abweichungen vom dreidimensionalen Modell kommen von den rĂ€umlichen BeschrĂ€nkungen, welche die Tropfenform von einem Rotationsellipsoid abweichend verformt. Die Untersuchung zeigt die Schwierigkeiten bei der Beschreibung von viskosen KrĂ€fte fĂŒr Abmessungen, die zu groß sind um als zweidimensional betrachtet zu werden, aber wo die Wechselwirkungen mit den KanalwĂ€nden nicht vernachlĂ€ssigbar sind. Wir diskutieren ebenfalls den Fall der trĂ€gen Relaxation des Tropfens bei Reynoldszahlen von Re 10, fĂŒr welchen Oszillationen der TropfenoberflĂ€che beobachtet werden. Wir zeigen, dass die Oszillationen als hydrodynamische Analogie zu einer hookeschen Feder beschrieben werden können, wobei die OberflĂ€chenspannung als Federkonstante fungiert und die DĂ€mpfung durch die ViskositĂ€t der FlĂŒssigkeit bestimmt wird. Die Methode liefert korrekte Ergebnisse sowohl fĂŒr reine GrenzflĂ€chen als auch fĂŒr GrenzflĂ€chen mit Tensiden, was zu einer zusĂ€tzliche Möglichkeit fĂŒhrt, die OberflĂ€chenspannung aus der Frequenz der Verformungen zu bestimmen. Die viskose Relaxation wurde auch hierbei von den KanalwĂ€nden beeinflusst. Als letztes wenden wir die Methode der mikrofluidischen Tensiometrie auf die Kinetik einer Polymerisationsreaktion auf der TropfenoberflĂ€che an. Der Einfluss der Reagenzkonzentration auf die Reaktionszeit wird untersucht, ebenso wie der E ekt der Gegenwart von TensidmolekĂŒlen. Erste Ergebnisse dieser Untersuchung zeigen, dass die Deformation einer komplexen GrenzflĂ€che nicht mehr allein durch die OberflĂ€chenspannung beschrieben werden kann. Vielmehr muss die Beschreibung der mechanischen Eigenschaften der GrenzflĂ€che notwendigerweise die Entstehung der ViskoelastizitĂ€t an der OberflĂ€che mit in Betracht ziehen. Diese Erkenntnis erö net neue Möglichkeiten, mit Hilfe von Mikrofluidik die mechanischen Eigenschaften von komplexen GrenzflĂ€chen, wie zum Beispiel kolloidbesetzte GrenzflĂ€chen oder Membranen, zu charakterisieren

    Development of Gel Droplet Microfluidic System for High Throughput Microbial Screening

    Get PDF
    Over the last few decades, droplet based microfluidics has received great attention and it is growing rapidly with interdisciplinary fields, such as biomedical, physics, chemical engineering, tissue engineering and even therapeutic area. Droplet based microfluidics offers uncountable potential in its applications ranging from a developing analytical system to precise controlling of the content inside the droplet. One of the most highlighted advantages of droplet based microfluidics is the capability of cell screening in high throughput manner, which results in significant reductions in cost and discovering new medicine or curing technology Nowadays, culturing encapsulated cell in 3D environment has been required and performed. Although conventional 2D culturing has simplicity of platform but because 3D environment has the capability of providing high throughput biological assays and an environment similar to native biological complexes, it was chosen for this study. Furthermore, the field of biomedical or biomaterials prefer to improve that 3D environment to be much closer to genuine systems. From this respect, hydrogels have been proven and replaced as a useful platform for 3D cell culture applications in microfluidics and cell laden hydrogel droplet is one of the most popular application with their flexibility similar to natural tissue and mild gelation method. In this thesis, we studied two different types of hydrogel droplets and developed a strategy for the microbial co-culture platform from the ‘platform’ perspective. This thesis focuses on the microfabrication to pattern silicon wafer ii mold for the mass production and creating polydimethylsiloxane (PDMS) devices. With this transparent hydrophobic material, hydrogel droplet generation, on-chip cross linking and manipulation could be possible

    Multiplexed combinatorial drug screening using droplet-based microfluidics

    Get PDF
    The therapy of most cancers has greatly benefited from the use of targeted drugs. However, their effects are often short-lived since many tumors develop resistance against these drugs. Resistance of tumor cells against drugs can be adaptive or acquired and is often caused by genetic or non-genetic heterogeneity between tumor cells. A potential solution to overcome drug resistance is the use of drug combinations addressing multiple targets at once. Finding potent drug combinations against heterogeneous tumors is challenging. One reason is the high number of possible combinations. Another reason is the possibility of inter-patient heterogeneity in drug responses, making patient tailored treatments necessary. These require screens on patient material, which would drastically benefit from miniaturization, as it is the case in droplet-based microfluidics. However, drug screens in droplets against primary tumor cells have so far only been performed at a modest chemical complexity (55 treatment conditions) and with low content readouts. In this thesis we aimed at developing a droplet-based microfluidic workflow that allows the generation of high numbers of drug combinations in picolitre-sized droplets and their multiplexed analysis. To this end, we have established a pipeline to produce up to 420 drug combinations in droplets. We were able to significantly increase the number of possible combinations by building a microfluidic setup that comprises valve and micro-titer plate based injection of drugs into microfluidic devices for droplet generation Furthermore, we integrated a DNA-based barcoding approach to encode each treatment condition, enabling their multiplexed analyses since all droplets can be stored and processed together, which highly increases the throughput. With the established approach we can perform barcoding of each cells’ transcriptome according to the drugs it was exposed to in the droplet. Thereby, the effects of drug combinations on gene expression can be studied in a highly multiplexed way using RNA-Sequencing. We applied the developed approach to run combinatorial drug screens in droplets and analysed the effects of in total 630 drug combinations on gene expression in K562 cells. The low number of cells needed (max. 2 million cells) for such screens, could enable their application directly on tumor biopsies, thus paving the way for personalized therapy approaches. Since the established workflow is compatible with single cell readouts, we also envision its application to analyse drug resistances in heterogeneous tumor samples on the single cell level

    Development of Gel Droplet Microfluidic System for High Throughput Microbial Screening

    Get PDF
    Over the last few decades, droplet based microfluidics has received great attention and it is growing rapidly with interdisciplinary fields, such as biomedical, physics, chemical engineering, tissue engineering and even therapeutic area. Droplet based microfluidics offers uncountable potential in its applications ranging from a developing analytical system to precise controlling of the content inside the droplet. One of the most highlighted advantages of droplet based microfluidics is the capability of cell screening in high throughput manner, which results in significant reductions in cost and discovering new medicine or curing technology Nowadays, culturing encapsulated cell in 3D environment has been required and performed. Although conventional 2D culturing has simplicity of platform but because 3D environment has the capability of providing high throughput biological assays and an environment similar to native biological complexes, it was chosen for this study. Furthermore, the field of biomedical or biomaterials prefer to improve that 3D environment to be much closer to genuine systems. From this respect, hydrogels have been proven and replaced as a useful platform for 3D cell culture applications in microfluidics and cell laden hydrogel droplet is one of the most popular application with their flexibility similar to natural tissue and mild gelation method. In this thesis, we studied two different types of hydrogel droplets and developed a strategy for the microbial co-culture platform from the ‘platform’ perspective. This thesis focuses on the microfabrication to pattern silicon wafer ii mold for the mass production and creating polydimethylsiloxane (PDMS) devices. With this transparent hydrophobic material, hydrogel droplet generation, on-chip cross linking and manipulation could be possible

    Double emulsions with controlled morphology by microgel scaffolding

    Get PDF
    Double emulsions are valuable structures that consist of drops nested inside bigger drops; they can be formed with exquisite control through the use of droplet based microfluidics, allowing their size, composition, and monodispersity to be tailored. However, only little control can be exerted on the morphology of double emulsions in their equilibrium state, because they are deformable and subject to thermal fluctuations. To introduce such control, we use droplet based microfluidics to form oil in water in oil double emulsion drops and arrest their shape by loading them with monodisperse microgel particles. These particles push the inner oil drop to the edge of the aqueous shell drop such that the double emulsions adopt a uniform arrested, anisotropic shape. This approach circumvents the need for ultrafast polymerization or geometric confinement to lock such non spherical and anisotropic droplet morphologies. To demonstrate the utility of this technique, we apply it to synthesize anisotropic and non spherical polyacrylate polyacrylamide microparticles with controlled size and shap

    Droplet breakup driven by shear thinning solutions in a microfluidic T-Junction

    Get PDF
    Droplet-based microfluidics turned out to be an efficient and adjustable platform for digital analysis, encapsulation of cells, drug formulation, and polymerase chain reaction. Typically, for most biomedical applications, the handling of complex, non-Newtonian fluids is involved, e.g. synovial and salivary fluids, collagen, and gel scaffolds. In this study we investigate the problem of droplet formation occurring in a microfluidic T-shaped junction, when the continuous phase is made of shear thinning liquids. At first, we review in detail the breakup process providing extensive, side-by-side comparisons between Newtonian and non-Newtonian liquids over unexplored ranges of flow conditions and viscous responses. The non-Newtonian liquid carrying the droplets is made of Xanthan solutions, a stiff rod-like polysaccharide displaying a marked shear thinning rheology. By defining an effective Capillary number, a simple yet effective methodology is used to account for the shear-dependent viscous response occurring at the breakup. The droplet size can be predicted over a wide range of flow conditions simply by knowing the rheology of the bulk continuous phase. Experimental results are complemented with numerical simulations of purely shear thinning fluids using Lattice Boltzmann models. The good agreement between the experimental and numerical data confirm the validity of the proposed rescaling with the effective Capillary number.Comment: Manuscript: 11 pages 5 figures, 65 References. Textual Supplemental Material: 6 pages 3 figure. Video Supplemental Materials: 2 movie
    • 

    corecore