30 research outputs found

    Informative Collision Warnings: Effect of Modality and Driver Age

    Get PDF
    Research has revealed that when drivers are presented with an informative tactile collision warning, they are able to produce faster braking reaction times (BRTs) which may potentially reduce the likelihood and severity of rear-end collisions. To expand on this research, we investigated the effectiveness of unimodal (tactile) and multisensory (audiotactile) informative collision warnings for younger and older drivers. In line with our previous results, driver BRTs were significantly faster when they were presented with an informative signal as compared to a non-informative signal and a control condition in which no warnings were presented. The results also revealed that the unimodal informative warning was just as effective as the multisensory warning. Intriguingly, older drivers exhibited faster BRTs than younger drivers, and were significantly faster following the presentation of multisensory warning signals. Finally, this study identifies the need to compare new configurations of informative tactile collision warning signals

    Vibrotactile Stimuli Parameters on Detection Reaction Times

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Signaling system designers are leveraging the tactile modality to create alarms, alerts, and warnings. The purpose of this research was to map detection reaction times (RT) toward tactile stimuli with various parameter manipulations. We employed a 3 (wave form) × 3 (inter-pulse interval) × 3 (envelope) within subjects design. The dependent measure was detection RT. Twenty participants (15 female) responded to 270 tactile stimuli. ANOVAs indicated three two-way interactions. Generally, shorter inter-pulse intervals led to quicker RT and the fade-in envelope led to longer RT, when compared to envelopes starting at the maximum amplitude. Square and sinusoidal waves tended to prompt quicker RT than the noise wave. The strength of these relationships, however, depended upon the presence of the other parameters. Designers can use the results of this study to effectively and appropriately assign tactile parameter manipulations to signals that require varied levels of response urgencies

    Body sway affects visual attention while viewing a ship navigation simulation video

    Get PDF
    東京海洋大学修士学位論文 平成27年度(2015) 海運ロジスティクス 修士第2384号指導教員:下野孝一全文公表年月日: 2016-06-23東京海洋大学201

    DSRC-based rear-end collision warning system – An error-component safety distance model and field test

    Get PDF
    Dedicated short-range communication (DSRC) technology can provide drivers with information about other vehicles that are beyond the normal range of vision and enables the development of driving support systems such as the rear-end collision warning system (ReCWS). However, technology constraints such as communication delays and GPS error affect the accuracy of a DSRC-based ReCWS. This paper proposes a ReCWS design that explicitly represents functional specifications of DSRC technology, including transmission delay specifications that describe the information transmission process and an error-component safety distance specification used to represent the effect of GPS error and the information propagation delay. We propose three collision warning strategies each with different deceleration requirements. The system is assembled with off-the-shelf DSRC and mobile technology that can be readily installed into test vehicles. To test the effectiveness of the proposed ReCWS, we ran a variety of controlled scenarios on a test track. The results show a high degree of warning accuracy. These field test results also provide calibrated system parameter values for future studies and designs of DSRC-based ReCWSs

    Digital haptics improve speed of visual search performance in a dual-task setting.

    Get PDF
    Dashboard-mounted touchscreen tablets are now common in vehicles. Screen/phone use in cars likely shifts drivers' attention away from the road and contributes to risk of accidents. Nevertheless, vision is subject to multisensory influences from other senses. Haptics may help maintain or even increase visual attention to the road, while still allowing for reliable dashboard control. Here, we provide a proof-of-concept for the effectiveness of digital haptic technologies (hereafter digital haptics), which use ultrasonic vibrations on a tablet screen to render haptic perceptions. Healthy human participants (N = 25) completed a divided-attention paradigm. The primary task was a centrally-presented visual conjunction search task, and the secondary task entailed control of laterally-presented sliders on the tablet. Sliders were presented visually, haptically, or visuo-haptically and were vertical, horizontal or circular. We reasoned that the primary task would be performed best when the secondary task was haptic-only. Reaction times (RTs) on the visual search task were fastest when the tablet task was haptic-only. This was not due to a speed-accuracy trade-off; there was no evidence for modulation of VST accuracy according to modality of the tablet task. These results provide the first quantitative support for introducing digital haptics into vehicle and similar contexts

    Situation-Aware Left-Turning Connected and Automated Vehicle Operation at Signalized Intersections

    Get PDF
    One challenging aspect of the Connected and Automated Vehicle (CAV) operation in mixed traffic is the development of a situation-awareness module for CAVs. While operating on public roads, CAVs need to assess their surroundings, especially the intentions of non-CAVs. Generally, CAVs demonstrate a defensive driving behavior, and CAVs expect other non-autonomous entities on the road will follow the traffic rules or common driving behavior. However, the presence of aggressive human drivers in the surrounding environment, who may not follow traffic rules and behave abruptly, can lead to serious safety consequences. In this paper, we have addressed the CAV and non-CAV interaction by evaluating a situation-awareness module for left-turning CAV operations in an urban area. Existing literature does not consider the intent of the following vehicle for a CAVs left-turning movement, and existing CAV controllers do not assess the following non-CAVs intents. Based on our simulation study, the situation-aware CAV controller module reduces up to 27% of the abrupt braking of the following non-CAVs for scenarios with different opposing through movement compared to the base scenario with the autonomous vehicle, without considering the following vehicles intent. The analysis shows that the average travel time reductions for the opposite through traffic volumes of 600, 800, and 1000 vehicle/hour/lane are 58%, 52%, and 62%, respectively, for the aggressive human driver following the CAV if the following vehicles intent is considered by a CAV in making a left turn at an intersection

    Information Architecture in Vehicle Infotainment Displays

    Get PDF
    abstract: This study exmaines the effect of in-vehicle infotainment display depth on driving performance. More features are being built into infotainment displays, allowing drivers to complete a greater number of secondary tasks while driving. However, the complexity of completing these tasks can take attention away from the primary task of driving, which may present safety risks. Tasks become more time consuming as the items drivers wish to select are buried deeper in a menu’s structure. Therefore, this study aims to examine how deeper display structures impact driving performance compared to more shallow structures. Procedure. Participants complete a lead car following task, where they follow a lead car and attempt to maintain a time headway (TH) of 2 seconds behind the lead car at all times, while avoiding any collisions. Participants experience five conditions where they are given tasks to complete with an in-vehicle infotainment system. There are five conditions, each involving one of five displays with different structures: one-layer vertical, one-layer horizontal, two-layer vertical, two-layer horizontal, and three-layer. Brake Reaction Time (BRT), Mean Time Headway (MTH), Time Headway Variability (THV), and Time to Task Completion (TTC) are measured for each of the five conditions. Results. There is a significant difference in MTH, THV, and TTC for the three-layer condition. There is a significant difference in BRT for the two-layer horizontal condition. There is a significant difference between one- and two-layer displays for all variables, BRT, MTH, THV, and TTC. There is also a significant difference between one- and three-layer displays for TTC. Conclusions. Deeper displays negatively impact driving performance and make tasks more time consuming to complete while driving. One-layer displays appear to be optimal, although they may not be practical for in-vehicle displays.Dissertation/ThesisMasters Thesis Human Systems Engineering 201

    Young Adult Drivers: Simulated Behaviour in a Car-following Situation

    Get PDF
    This paper provides a description of driver testing in a simulator. As young drivers are more susceptible to collisions, this was done to determine how young drivers behaved in simulated road situations on a motorway. One of the traffic safety concerns is the failure to keep a proper distance from the vehicle in front, which may result in a rearend collision. The tests simulated car-following situations in which the preceding vehicle performed emergency braking. The experiments were conducted for two scenario variants using different distances from the vehicle in front. The drivers could perform the following emergency manoeuvres: braking with steering away or only braking. The driver response times were compared and analysed statistically. The results were used to determine the emergency manoeuvres performed by the drivers in the simulated road situations. The study reveals that the vehicle surroundings may have a considerable influence on the type of emergency manoeuvres and the driver response time. </p
    corecore