1,188 research outputs found
HAPTIC AND VISUAL SIMULATION OF BONE DISSECTION
Marco AgusIn bone dissection virtual simulation, force restitution represents the key to realistically mimicking a patient– specific operating environment. The force is rendered using haptic devices controlled by parametrized mathematical models that represent the bone–burr contact. This dissertation presents and discusses a haptic simulation of a bone cutting burr, that it is being developed as a component of a training system for temporal bone surgery. A physically based model was used to describe the burr– bone interaction, including haptic forces evaluation, bone erosion process and resulting debris. The model was experimentally validated and calibrated by employing a custom experimental set–up consisting of a force–controlled robot arm holding a high–speed rotating tool and a contact force measuring apparatus. Psychophysical testing was also carried out to assess individual reaction to the haptic environment. The results suggest that the simulator is capable of rendering the basic material differences required for bone burring tasks. The current implementation, directly operating on a voxel discretization of patientspecific 3D CT and MR imaging data, is efficient enough to provide real–time haptic and visual feedback on a low–end multi–processing PC platform. 
Computer- and robot-assisted Medical Intervention
Medical robotics includes assistive devices used by the physician in order to
make his/her diagnostic or therapeutic practices easier and more efficient.
This chapter focuses on such systems. It introduces the general field of
Computer-Assisted Medical Interventions, its aims, its different components and
describes the place of robots in that context. The evolutions in terms of
general design and control paradigms in the development of medical robots are
presented and issues specific to that application domain are discussed. A view
of existing systems, on-going developments and future trends is given. A
case-study is detailed. Other types of robotic help in the medical environment
(such as for assisting a handicapped person, for rehabilitation of a patient or
for replacement of some damaged/suppressed limbs or organs) are out of the
scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00
Force Sensing for Multi-Legged Walking Robots: Theory and Experiments Part 2: Force Control of Legged Vehicles
Force, impedance and trajectory learning for contact tooling and haptic identification
Humans can skilfully use tools and interact with the environment by adapting their movement trajectory, contact force, and impedance. Motivated by the human versatility, we develop here a robot controller that concurrently adapts feedforward force, impedance, and reference trajectory when interacting with an unknown environment. In particular, the robot's reference trajectory is adapted to limit the interaction force and maintain it at a desired level, while feedforward force and impedance adaptation compensates for the interaction with the environment. An analysis of the interaction dynamics using Lyapunov theory yields the conditions for convergence of the closed-loop interaction mediated by this controller. Simulations exhibit adaptive properties similar to human motor adaptation. The implementation of this controller for typical interaction tasks including drilling, cutting, and haptic exploration shows that this controller can outperform conventional controllers in contact tooling
Optimal control of the heave motion of marine cable subsea-unit systems
One of the key problems associated with subsea operations involving tethered subsea units is the motions of support vessels on the ocean surface which can be transmitted to the subsea unit through the cable and increase the tension. In this paper, a theoretical approach for heave compensation is developed. After proper modelling of each element of the system, which includes the cable/subsea-unit, the onboard winch, control theory is applied to design an optimal control law. Numerical simulations are carried out, and it is found that the proposed active control scheme appears to be a promising solution to the problem of heave compensation
Biomimetic Manipulator Control Design for Bimanual Tasks in the Natural Environment
As robots become more prolific in the human environment, it is important that safe operational
procedures are introduced at the same time; typical robot control methods are
often very stiff to maintain good positional tracking, but this makes contact (purposeful
or accidental) with the robot dangerous. In addition, if robots are to work cooperatively
with humans, natural interaction between agents will make tasks easier to perform with
less effort and learning time. Stability of the robot is particularly important in this
situation, especially as outside forces are likely to affect the manipulator when in a close
working environment; for example, a user leaning on the arm, or task-related disturbance
at the end-effector.
Recent research has discovered the mechanisms of how humans adapt the applied force
and impedance during tasks. Studies have been performed to apply this adaptation to
robots, with promising results showing an improvement in tracking and effort reduction
over other adaptive methods. The basic algorithm is straightforward to implement,
and allows the robot to be compliant most of the time and only stiff when required by
the task. This allows the robot to work in an environment close to humans, but also
suggests that it could create a natural work interaction with a human. In addition, no
force sensor is needed, which means the algorithm can be implemented on almost any
robot.
This work develops a stable control method for bimanual robot tasks, which could also
be applied to robot-human interactive tasks. A dynamic model of the Baxter robot is
created and verified, which is then used for controller simulations. The biomimetic control
algorithm forms the basis of the controller, which is developed into a hybrid control
system to improve both task-space and joint-space control when the manipulator is disturbed
in the natural environment. Fuzzy systems are implemented to remove the need
for repetitive and time consuming parameter tuning, and also allows the controller to
actively improve performance during the task. Experimental simulations are performed,
and demonstrate how the hybrid task/joint-space controller performs better than either
of the component parts under the same conditions. The fuzzy tuning method is then applied
to the hybrid controller, which is shown to slightly improve performance as well as
automating the gain tuning process. In summary, a novel biomimetic hybrid controller
is presented, with a fuzzy mechanism to avoid the gain tuning process, finalised with a
demonstration of task-suitability in a bimanual-type situation.EPSR
Nonterrestrial utilization of materials: Automated space manufacturing facility
Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility
Robots and tools for remodeling bone
The field of robotic surgery has progressed from small teams of researchers repurposing industrial robots, to a competitive and highly innovative subsection of the medical device industry. Surgical robots allow surgeons to perform tasks with greater ease, accuracy, or safety, and fall under one of four levels of autonomy; active, semi-active, passive, and remote manipulator. The increased accuracy afforded by surgical robots has allowed for cementless hip arthroplasty, improved postoperative alignment following knee arthroplasty, and reduced duration of intraoperative fluoroscopy among other benefits. Cutting of bone has historically used tools such as hand saws and drills, with other elaborate cutting tools now used routinely to remodel bone. Improvements in cutting accuracy and additional options for safety and monitoring during surgery give robotic surgeries some advantages over conventional techniques. This article aims to provide an overview of current robots and tools with a common target tissue of bone, proposes a new process for defining the level of autonomy for a surgical robot, and examines future directions in robotic surgery
High-Speed Vision and Force Feedback for Motion-Controlled Industrial Manipulators
Over the last decades, both force sensors and cameras have emerged as useful sensors for different applications in robotics. This thesis considers a number of dynamic visual tracking and control problems, as well as the integration of these techniques with contact force control. Different topics ranging from basic theory to system implementation and applications are treated. A new interface developed for external sensor control is presented, designed by making non-intrusive extensions to a standard industrial robot control system. The structure of these extensions are presented, the system properties are modeled and experimentally verified, and results from force-controlled stub grinding and deburring experiments are presented. A novel system for force-controlled drilling using a standard industrial robot is also demonstrated. The solution is based on the use of force feedback to control the contact forces and the sliding motions of the pressure foot, which would otherwise occur during the drilling phase. Basic methods for feature-based tracking and servoing are presented, together with an extension for constrained motion estimation based on a dual quaternion pose parametrization. A method for multi-camera real-time rigid body tracking with time constraints is also presented, based on an optimal selection of the measured features. The developed tracking methods are used as the basis for two different approaches to vision/force control, which are illustrated in experiments. Intensity-based techniques for tracking and vision-based control are also developed. A dynamic visual tracking technique based directly on the image intensity measurements is presented, together with new stability-based methods suitable for dynamic tracking and feedback problems. The stability-based methods outperform the previous methods in many situations, as shown in simulations and experiments
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 324)
This bibliography lists 200 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance
- …
