5 research outputs found

    CLOTH3D: Clothed 3D Humans

    Full text link
    This work presents CLOTH3D, the first big scale synthetic dataset of 3D clothed human sequences. CLOTH3D contains a large variability on garment type, topology, shape, size, tightness and fabric. Clothes are simulated on top of thousands of different pose sequences and body shapes, generating realistic cloth dynamics. We provide the dataset with a generative model for cloth generation. We propose a Conditional Variational Auto-Encoder (CVAE) based on graph convolutions (GCVAE) to learn garment latent spaces. This allows for realistic generation of 3D garments on top of SMPL model for any pose and shape

    Building High-fidelity Human Body Models from User-generated Data

    Get PDF

    Deep deformable models for 3D human body

    Get PDF
    Deformable models are powerful tools for modelling the 3D shape variations for a class of objects. However, currently the application and performance of deformable models for human body are restricted due to the limitations in current 3D datasets, annotations, and the model formulation itself. In this thesis, we address the issue by making the following contributions in the field of 3D human body modelling, monocular reconstruction and data collection/annotation. Firstly, we propose a deep mesh convolutional network based deformable model for 3D human body. We demonstrate the merit of this model in the task of monocular human mesh recovery. While outperforming current state of the art models in mesh recovery accuracy, the model is also light weighted and more flexible as it can be trained end-to-end and fine-tuned for a specific task. A second contribution is a bone level skinned model of 3D human mesh, in which bone modelling and identity-specific variation modelling are decoupled. Such formulation allows the use of mesh convolutional networks for capturing detailed identity specific variations, while explicitly controlling and modelling the pose variations through linear blend skinning with built-in motion constraints. This formulation not only significantly increases the accuracy in 3D human mesh reconstruction, but also facilitates accurate in the wild character animation and retargetting. Finally we present a large scale dataset of over 1.3 million 3D human body scans in daily clothing. The dataset contains over 12 hours of 4D recordings at 30 FPS, consisting of 7566 dynamic sequences of 3D meshes from 4205 subjects. We propose a fast and accurate sequence registration pipeline which facilitates markerless motion capture and automatic dense annotation for the raw scans, leading to automatic synthetic image and annotation generation that boosts the performance for tasks such as monocular human mesh reconstruction.Open Acces

    Towards Geometric Understanding of Motion

    Get PDF
    The motion of the world is inherently dependent on the spatial structure of the world and its geometry. Therefore, classical optical flow methods try to model this geometry to solve for the motion. However, recent deep learning methods take a completely different approach. They try to predict optical flow by learning from labelled data. Although deep networks have shown state-of-the-art performance on classification problems in computer vision, they have not been as effective in solving optical flow. The key reason is that deep learning methods do not explicitly model the structure of the world in a neural network, and instead expect the network to learn about the structure from data. We hypothesize that it is difficult for a network to learn about motion without any constraint on the structure of the world. Therefore, we explore several approaches to explicitly model the geometry of the world and its spatial structure in deep neural networks. The spatial structure in images can be captured by representing it at multiple scales. To represent multiple scales of images in deep neural nets, we introduce a Spatial Pyramid Network (SpyNet). Such a network can leverage global information for estimating large motions and local information for estimating small motions. We show that SpyNet significantly improves over previous optical flow networks while also being the smallest and fastest neural network for motion estimation. SPyNet achieves a 97% reduction in model parameters over previous methods and is more accurate. The spatial structure of the world extends to people and their motion. Humans have a very well-defined structure, and this information is useful in estimating optical flow for humans. To leverage this information, we create a synthetic dataset for human optical flow using a statistical human body model and motion capture sequences. We use this dataset to train deep networks and see significant improvement in the ability of the networks to estimate human optical flow. The structure and geometry of the world affects the motion. Therefore, learning about the structure of the scene together with the motion can benefit both problems. To facilitate this, we introduce Competitive Collaboration, where several neural networks are constrained by geometry and can jointly learn about structure and motion in the scene without any labels. To this end, we show that jointly learning single view depth prediction, camera motion, optical flow and motion segmentation using Competitive Collaboration achieves state-of-the-art results among unsupervised approaches. Our findings provide support for our hypothesis that explicit constraints on structure and geometry of the world lead to better methods for motion estimation
    corecore