17,804 research outputs found

    Formation of Wormholes by Dark Matter in the Galaxy Dragonfly 44

    Full text link
    Recently, ultra diffuse galaxy (UDG) of Dragonfly 44 in the Coma Cluster was observed and observations of the rotational speed suggest that its mass is almost same as the mass of the Milky Way. On the other hand, interestingly, the galaxy emits only 1 \% of the light emitted by the Milky Way. Then, astronomers reported that Dragonfly 44 may be made almost entirely of dark matter. In this study we try to show that the dark matter that constitutes Dragonfly 44 can form the wormhole or not. Two possible dark matter profiles are used, namely, ultra diffuse galaxy King's model and generalized Navarro-Frenk-White (NFW) dark matter profile. We have shown that King's model dark matter profile does not manage to provide wormhole whereas generalized Navarro-Frenk-White (NFW) dark matter profile is managed to find wormholes.Comment: 8 pages, two columns. Accepted for publication in Canadian Journal of Physic

    Structural Analysis of a Dragonfly Wing

    Get PDF
    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned for carrying these loads, is however not fully understood. To study this we made a three-dimensional scan of a dragonfly (Sympetrum vulgatum) fore- and hindwing with a micro-CT scanner. The scans contain the complete venation pattern including thickness variations throughout both wings. We subsequently approximated the forewing architecture with an efficient three-dimensional beam and shell model. We then determined the wing’s natural vibration modes and the wing deformation resulting from analytical estimates of 8 load cases containing aerodynamic and inertial loads (using the finite element solver Abaqus). Based on our computations we find that the inertial loads are 1.5 to 3 times higher than aerodynamic pressure loads. We further find that wing deformation is smaller during the downstroke than during the upstroke, due to structural asymmetry. The natural vibration mode analysis revealed that the structural natural frequency of a dragonfly wing in vacuum is 154 Hz, which is approximately 4.8 times higher than the natural flapping frequency of dragonflies in hovering flight (32.3 Hz). This insight in the structural properties of dragonfly wings could inspire the design of more effective wings for insect-sized flapping micro air vehicles: The passive shape of aeroelastically tailored wings inspired by dragonflies can in principle be designed more precisely compared to sail like wings —which can make the dragonfly-like wings more aerodynamically effective

    Sustainable control of Anopheles mosquito population

    Get PDF
    Despite the widespread use of insecticides, community engagement programmes and preventive measures mosquito borne diseases are growing and new tools to prevent the spread of disease are urgently needed. An alternative control measure for the eradication of Anopheles mosquitoes is suggested by the use of a Sustainable Control Model, which demonstrates the capability of Odonata, a natural beneficial predator, to exercise control over Anopheles mosquitoes in less than 140 days

    Future Prospects: Deep Imaging of Galaxy Outskirts using Telescopes Large and Small

    Full text link
    The Universe is almost totally unexplored at low surface brightness levels. In spite of great progress in the construction of large telescopes and improvements in the sensitivity of detectors, the limiting surface brightness of imaging observations has remained static for about forty years. Recent technical advances have at last begun to erode the barriers preventing progress. In this Chapter we describe the technical challenges to low surface brightness imaging, describe some solutions, and highlight some relevant observations that have been undertaken recently with both large and small telescopes. Our main focus will be on discoveries made with the Dragonfly Telephoto Array (Dragonfly), which is a new telescope concept designed to probe the Universe down to hitherto unprecedented low surface brightness levels. We conclude by arguing that these discoveries are probably only scratching the surface of interesting phenomena that are observable when the Universe is explored at low surface brightness levels.Comment: 27 pages, 10 figures, Invited review, Book chapter in "Outskirts of Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library, Springer, in pres

    Network unfairness in dragonfly topologies

    Get PDF
    Dragonfly networks arrange network routers in a two-level hierarchy, providing a competitive cost-performance solution for large systems. Non-minimal adaptive routing (adaptive misrouting) is employed to fully exploit the path diversity and increase the performance under adversarial traffic patterns. Network fairness issues arise in the dragonfly for several combinations of traffic pattern, global misrouting and traffic prioritization policy. Such unfairness prevents a balanced use of the resources across the network nodes and degrades severely the performance of any application running on an affected node. This paper reviews the main causes behind network unfairness in dragonflies, including a new adversarial traffic pattern which can easily occur in actual systems and congests all the global output links of a single router. A solution for the observed unfairness is evaluated using age-based arbitration. Results show that age-based arbitration mitigates fairness issues, especially when using in-transit adaptive routing. However, when using source adaptive routing, the saturation of the new traffic pattern interferes with the mechanisms employed to detect remote congestion, and the problem grows with the network size. This makes source adaptive routing in dragonflies based on remote notifications prone to reduced performance, even when using age-based arbitration.Peer ReviewedPostprint (author's final draft
    • 

    corecore