5 research outputs found

    Doubly Orthogonal Wavelet Packets for Multi-Users Indoor Visible Light Communication Systems

    Get PDF
    Visible Light Communication (VLC) is a data communication technology that modulates the intensity of the light to transmit the information mostly by means of Light Emitting Diodes (LEDs). The data rate is mainly throttled by the limited bandwidth of the LEDs. To combat, Multi-carrier Code Division Multiple Access (MC-CDMA) is a favorable technique for achieving higher data rates along with reduced Inter-Symbol Interference (ISI) and easy access to multi-users at the cost of slightly reduced compromised spectral efficiency and Multiple Access Interference (MAI). In this article, a multi-user VLC system is designed using a Discrete Wavelet Transform (DWT) that eradicates the use of cyclic prefix due to the good orthogonality and time-frequency localization properties of wavelets. Moreover, the design also comprises suitable signature codes, which are generated by employing double orthogonality depending upon Walsh codes and Wavelet Packets. The proposed multi-user system is simulated in MATLAB software and its overall performance is assessed using line-of-sight (LoS) and non-line-of-sight (NLoS) configurations. Furthermore, two sub-optimum multi-users detection schemes such as zero forcing (ZF) and minimum-mean-square-error (MMSE) are also used at the receiver. The simulated results illustrate that the doubly orthogonal signature waveform-based DWT-MC-CDMA with MMSE detection scheme outperforms the Walsh code-based multi-user system

    Optical Wireless Data Center Networks

    Get PDF
    Bandwidth and computation-intensive Big Data applications in disciplines like social media, bio- and nano-informatics, Internet-of-Things (IoT), and real-time analytics, are pushing existing access and core (backbone) networks as well as Data Center Networks (DCNs) to their limits. Next generation DCNs must support continuously increasing network traffic while satisfying minimum performance requirements of latency, reliability, flexibility and scalability. Therefore, a larger number of cables (i.e., copper-cables and fiber optics) may be required in conventional wired DCNs. In addition to limiting the possible topologies, large number of cables may result into design and development problems related to wire ducting and maintenance, heat dissipation, and power consumption. To address the cabling complexity in wired DCNs, we propose OWCells, a class of optical wireless cellular data center network architectures in which fixed line of sight (LOS) optical wireless communication (OWC) links are used to connect the racks arranged in regular polygonal topologies. We present the OWCell DCN architecture, develop its theoretical underpinnings, and investigate routing protocols and OWC transceiver design. To realize a fully wireless DCN, servers in racks must also be connected using OWC links. There is, however, a difficulty of connecting multiple adjacent network components, such as servers in a rack, using point-to-point LOS links. To overcome this problem, we propose and validate the feasibility of an FSO-Bus to connect multiple adjacent network components using NLOS point-to-point OWC links. Finally, to complete the design of the OWC transceiver, we develop a new class of strictly and rearrangeably non-blocking multicast optical switches in which multicast is performed efficiently at the physical optical (lower) layer rather than upper layers (e.g., application layer). Advisors: Jitender S. Deogun and Dennis R. Alexande

    Wireless optical backhauling for optical attocell networks

    Get PDF
    The backhaul of tens and hundreds of light fidelity (LiFi)-enabled luminaires constitutes a major challenge. The problem of backhauling for optical attocell networks has been approached by a number of wired solutions such as in-building power line communication (PLC), Ethernet and optical fiber. In this work, an alternative solution is proposed based on wireless optical communication in visible light (VL) and infrared (IR) bands. The proposed solution is thoroughly elaborated using a system level methodology. For a multi-user optical attocell network based on direct current biased optical orthogonal frequency division multiplexing (DCO-OFDM) and decode-and-forward (DF) relaying, detailed modeling and analysis of signal-to-interference-plus- noise (SINR) and end-to-end sum rate are presented, taking into account the effects of inter-backhaul and backhaul-to-access interferences. Inspired by concepts developed for radio frequency (RF) cellular networks, full-reuse visible light (FR-VL) and in-band visible light (IB-VL) bandwidth allocation policies are proposed to realize backhauling in the VL band. The transmission power is opportunistically minimized to enhance the backhaul power efficiency. For a two-tier FR-VL network, there is a technological challenge due to the limited capacity of the bottleneck backhaul link. The IR band is employed to add an extra degree of freedom for the backhaul capacity. For the IR backhaul system, a power-bandwidth tradeoff formulation is presented and closed form analytical expressions are derived for the corresponding power control coefficients. The sum rate performance of the network is studied using extensive Monte Carlo simulations. In addition, the effect of imperfect alignment in backhaul links is studied by using Monte Carlo simulation techniques. The emission semi-angle of backhaul LEDs is identified as a determining factor for the network performance. With the assumption that the access and backhaul systems share the same propagation medium, a large semi-angle of backhaul LEDs results in a substantial degradation in performance especially under FR-VL backhauling. However, it is shown both theoretically and by simulations that by choosing a sufficiently small semi-angle value, the adverse effect of the backhaul interference is entirely eliminated. By employing a narrow light beam in the back-haul system, the application of wireless optical backhauling is extended to multi-tier optical attocell networks. As a result of multi-hop backhauling with a tree topology, new challenges arise concerning optimal scheduling of finite bandwidth and power resources of the bottleneck backhaul link, i.e., optimal bandwidth sharing and opportunistic power minimization. To tackle the former challenge, optimal user-based and cell-based scheduling algorithms are developed. The latter challenge is addressed by introducing novel adaptive power control (APC) and fixed power control (FPC) schemes. The proposed bandwidth scheduling policies and power control schemes are supported by an analysis of their corresponding power control coefficients. Furthermore, another possible application of wireless optical backhauling for indoor networks is in downlink base station (BS) cooperation. More specifically, novel cooperative transmission schemes of non-orthogonal DF (NDF) and joint transmission with DF (JDF) in conjunction with fractional frequency reuse (FFR) partitioning are proposed for an optical attocell downlink. Their performance gains over baseline scenarios are assessed using Monte Carlo simulations
    corecore