7 research outputs found

    User Association in Cell-less 5G Networks Exploiting Particle Swarm Optimisation

    Get PDF
    In heterogeneous networks (HetNets), users can by default associate with the macro base stations (BSs) while the small cell BSs are underloaded. Biasing user association is a simple and realistic approach to balance the load in HetNets, as well as creating a cell-less architecture where a user does not connect to the closest base station. Most of the existing research focuses on the static biasing scheme which is not the optimal strategy to improve the system performance. In this paper, the biasing factors are generated dynamically by the algorithm of particle swarm optimisation (PSO) with the objective of balancing the load and maximising the cell spectral efficiency (CSE). This work studies two different interference cases: the first case is when each tier uses different radio resources (typical when multiple radio access technologies are used) and a user receives interference only from same-tier base stations, whereas the second interference case is when all tiers use the same radio resources and a user receives interference from the same-tier and other tier BSs. The simulation results show that the dynamic biasing using PSO outperforms the static biasing in terms of balancing the load and maximising the CSE

    On Distributed Dynamic-TDD Schemes for Base Stations with Decoupled Uplink-Downlink Transmissions

    Get PDF

    Downlink and uplink decoupling in two-tier heterogeneous networks with multi-antenna base stations

    Get PDF
    In order to improve the uplink performance of future cellular networks, the idea to decouple the downlink (DL) and uplink (UL) association has recently been shown to provide significant gain in terms of both coverage and rate performance. However, all the work is limited to SISO network. Therefore, to study the gain provided by the DL and UL decoupling in multi-antenna base stations (BSs) setup, we study a two tier heterogeneous network consisting of multi-antenna BSs, and single antenna user equipments (UEs). We use maximal ratio combining (MRC) as a linear receiver at the BSs and using tools from stochastic geometry, we derive tractable expressions for both signal to interference ratio (SIR) coverage probability and rate coverage probability. We observe that as the disparity in the beamforming gain of both tiers increases, the gain in term of SIR coverage probability provided by the decoupled association over non-decoupled association decreases. We further observe that when there is asymmetry in the number of antennas of both tier, then we need further biasing towards femto-tier on the top of decoupled association to balance the load and get optimal rate coverage probability

    Downlink and Uplink Decoupling in Two-Tier Heterogeneous Networks With Multi- Antenna Base Stations

    No full text

    Heterogeneous Cellular Networks Mixed with LoS and NLoS Transmissions

    Get PDF
    In the last decades, the rapid increase of user traffc demand for better user experience has pushed the traditional macrocell-only networks being evolving to modern heterogeneous networks(HetNets) with a multi-tier structure. The dense deployment of small-cell base stations (BSs) implies short distances between BSs and users. It is therefore likely that users will see line-of-sight (LoS) links from its serving BS and even nearby interfering BSs, which has not been considered in performance analysis for multi-tier HetNets yet. In this thesis, the dense multi-tier HetNet with LoS and non-line-of-sight (NLoS) transmissions based on a multi-slope path loss model is analyzed. The spatial locations of BSs of any given network tier and those of mobile users are modeled as independent spatial Poisson point processes (PPPs). The expressions of downlink coverage probability are divided for a multi-tier HetNet, based on that the calculations of the area spectral effciency (ASE) and energy effciency (EE) are further proposed. The results demonstrate that in an extremely dense HetNet, both the ASE and EE of the HetNet will drop quickly with further increase of the small-cell density due to the dominance of LoS interfering small-cell links. Following that, the investigation is moved to the probabilistic events of LoS and NLoS transmissions. Four transmission scenarios are simulated with different path loss models, including a linear LoS probability function, a suburban area, a millimetre wave transmission and a 3D path loss model. Accordingly, a user-centric BS clustering strategy is proposed for a non-coherent joint transmissions (JTs) in dense small-cell networks, based on the idea of grouping the BSs with their LoS probabilities to such user above a predefined threshold. The proposed BS clustering strategy is evaluated in the above four transmission environments. Our simulation results show that the coverage probability and spectrum effciency (SE) achieved by the proposed user-centric BS clustering strategy achieve a rapid growth rate with the increasing BS density, and even at extremely high BS densities in all four considered environments. Lastly, following the proposed BS clustering strategy above, a further developed clustering strategy called multi-BS multi-user-equipment (UE) clustering is proposed to allow multiple BSs to serve multiple UEs simultaneously. The main idea of this clustering strategy is to boost network performance in terms of coverage probability and SE at high BS density without sacrificing the ASE. Utilizing stochastic geometry, the closed form expressions of the network performance in terms of coverage probability, SE, ASE and EE are derived in a downlink small-cell network. The results show that the proposed clustering strategy achieves high coverage probability and linear increasing SE and ASE in ultra dense networks at same time
    corecore