33 research outputs found

    Design and analysis of scheduling algorithms for next generation broadband wireless access systems

    Get PDF
    Efficient utilization of network resources is a key goal for emerging Broadband Wireless Access Systems (BWAS). This is a complex goal to achieve due to the heterogeneous service nature and diverse Quality of Service (QoS) requirements of various applications that BWAS support. Packet scheduling is an important activity that affects BWAS QoS outcomes. This thesis proposes a new packet scheduling mechanism that improves QoS in mobile wireless networks which exploit IP as a transport technology for data transfer between BWAS base stations and mobile users at the radio transmission layer. In order to improve BWAS QoS the new packet algorithm makes changes at both the IP and the radio layers. The new packet scheduling algorithm exploits handoff priority scheduling principles and takes into account buffer occupancy and channel conditions. The packet scheduling mechanism also incorporates the concept of fairness. The algorithm also offers an opportunity to maximize the carriers’ revenue at various traffic situations. Performance results were obtained by computer simulation and compared to the well-known algorithms. Results show that by exploiting the new packet scheduling algorithm, the transport system is able to provide a low handoff packet drop rate, low packet forwarding rate, low packet delay, ensure fairness amongst the users of different services and generates higher revenue for the telecom carriers. Furthermore this research proposes a new and novel measure named “satisfaction factor to measure the efficacy of various scheduling schemes and finally this s research also proposes four performance measurements metric for NodeB’s of Next Generation Wireless Network

    Analisis handoff pada jaringan high speed downlink access (HSDPA) BERDASARKAN TAHNIK PENJADWALAN

    Get PDF
    ABSTRAKSI: 3G/UMTS (3rd Generation/Universal Mobile Telecommunications System), didedikasikan tidak hanya untuk memberikan layanan voice ataupun data, tetapi juga mampu mengalokasikan pada kebutuhan user akan video dan gambar (multimedia). Namun, kecepatan pengiriman data (bit rate) yang masih kurang memadai dianggap sebagai kendala utama. Berbagai solusi berusaha dimunculkan untuk mengatasi masalah bit rate yang minimum, seperti W-CDMA (Wideband Code Division Multiple Access). Sistem W-CDMA ini mampu mengakomodasikan bit rate hingga 384 kbps (kilo bit per second).Terobosan terbaru yang dikeluarkan oleh forum UMTS pada awal tahun 2005 adalah disetujuinya penggunaan HSPA (High Speed Packet Access) berdasarkan standard 3GPP (3rd Generation Partnership Project). HSPA tersebut digolongkan menjadi dua link, yaitu HSDPA (High Speed Downlink Packet Access) dan HSUPA (High Speed Uplink Packet Access). Kedua jenis sistem ini bekerja pada core network yang sama dengan jaringan 3G/UMTS. Kelebihan dari sistem HSDPA adalah bit rate yang tinggi (hingga 14.4 Mbps) serta kemampuan untuk diakses oleh lebih banyak user. Hal ini tak lain karena digunakannya berbagai teknik tambahan pada node-B, seperti Adaptive Modulation and Coding (AMC), penjadwalan trafik, serta kanal HSDSCH. Kondisi pada saat user bergerak dari satu sel dan masuk ke sel yang baru disebut peristiwa handoff.Tugas Akhir ini mensimulasikan pengaruh dari tiga macam teknik penjadwalan, diantaranya Mobility supported low dropping probability, Maximum signal interference ratio, dan Proportional Fairness pada jaringan HSDPA, menggunakan Matlab 7.0. Dan membandingkan hasilnya berdasarkan parameter Downlink_troughput, delay antrian, dan Persentasehandoff_dropping. Dari hasil simulasi yang didapat, penjadwalan Max-SIR memiliki Downlink_throughput yang terkecil dibandingkan dengan penjadwalan LDROP ataupun Proportional Fair. Namun dengan trade-off pada parameter delay antrian dan Persentasehandoff_dropping yang lebih tinggi. Sedangkan Proportional Fair adalah penjadwalan yang memiliki nilai parameter Downlink_throughput, delay antrian, dan Persentasehandoff_dropping berada diantara LDROP dan max-SIR.Kata Kunci : HSDPA, penjadwalan trafik,handoff,downlink_ throughput, delay antrian, persentase handoff_dropping.ABSTRACT: 3G/UMTS (3rd Generation/Universal Mobile Telecommunications System), dedicated not only to give voice and data service, but also able to allocate user needs of video and picture (multimedia). But, less adequate bit rate is still considered as main constraint. Many solutions have been introduced to solve that minimum bit rate, such as W-CDMA (Wideband Code Division Multiple Access). This W-CDMA system is able to accommodate bit rate until 384 kbps (kilo bit per second).New improvement that had been released by UMTS forum in the early year of 2005 was the HSPA (High Speed Packet Access) impementation based on 3GPP (3rd Generation Partnership Project) standard. HSPA can be classified into two link, there are HSDPA (High Speed Downlink Packet Access) and HSUPA (High Speed Uplink Packet Access). Both of them work with the same core network as 3G/UMTS. The excess of this HSDPA system is a high bit rate (until 14.4 Mbps) also ability to be accessed by many user. It is because of use of several additional techniques, such as Adaptive Modulation and Coding (AMC), traffic scheduling, and HS-DSCH. Handoff is a condition where user is moving from a previous base station to cuurent base station.This final project simulated the effect of three kind of traffic scheduling, there are Mobility supported low dropping probability, Maximum signal interference ratio, and Proportional Fairness on HSDPA network using Mathlab 7.0. And comparing result based some parameters, e.g. Downlink_throughput, queue delay, and Pecentagehandoff_dropping. From the result of simulation, obtained that Max-SIR scheduling give smaller Downlink_throughput than LDROP or Proportional Fair scheduling. But with trade off on queue delay and Percentagehandoff_dropping which is highest of all. While Proportional Fair give average value of downlink_throughput, queue delay and Percentagehandoff_dropping among LDROP and Max-SIR.Keyword: HSDPA, traffic schedulling. Throughput, queue delay, fairness

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Multi-layer traffic control for wireless networks

    Get PDF
    Le reti Wireless LAN, così come definite dallo standard IEEE 802.11, garantiscono connettività senza fili nei cosiddetti “hot-spot” (aeroporti, hotel, etc.), nei campus universitari, nelle intranet aziendali e nelle abitazioni. In tali scenari, le WLAN sono denotate come “ad infrastruttura” nel senso che la copertura della rete è basata sulla presenza di un “Access Point” che fornisce alle stazioni mobili l’accesso alla rete cablata. Esiste un ulteriore approccio (chiamato “ad-hoc”) in cui le stazioni mobili appartenenti alla WLAN comunicano tra di loro senza l’ausilio dell’Access Point. Le Wireless LAN tipicamente sono connesse alla rete di trasporto (che essa sia Internet o una Intranet aziendale) usando un’infrastruttura cablata. Le reti wireless Mesh ad infrastruttura (WIMN) rappresentano un’alternativa valida e meno costosa alla classica infrastruttura cablata. A testimonianza di quanto appena affermato vi è la comparsa e la crescita sul mercato di diverse aziende specializzate nella fornitura di infrastrutture di trasporto wireless e il lancio di varie attività di standardizzazione (tra cui spicca il gruppo 802.11s). La facilità di utilizzo, di messa in opera di una rete wireless e i costi veramente ridotti hanno rappresentato fattori critici per lo straordinario successo di tale tecnologia. Di conseguenza possiamo affermare che la tecnologia wireless ha modificato lo stile di vita degli utenti, il modo di lavorare, il modo di passare il tempo libero (video conferenze, scambio foto, condivisione di brani musicali, giochi in rete, messaggistica istantanea ecc.). D’altro canto, lo sforzo per garantire lo sviluppo di reti capaci di supportare servizi dati ubiqui a velocità di trasferimento elevate è strettamente legato a numerose sfide tecniche tra cui: il supporto per l’handover tra differenti tecnologie (WLAN/3G), la certezza di accesso e autenticazione sicure, la fatturazione e l’accounting unificati, la garanzia di QoS ecc. L’attività di ricerca svolta nell’arco del Dottorato si è focalizzata sulla definizione di meccanismi multi-layer per il controllo del traffico in reti wireless. In particolare, nuove soluzioni di controllo del traffico sono state realizzate a differenti livelli della pila protocollare (dallo strato data-link allo strato applicativo) in modo da fornire: funzionalità avanzate (autenticazione sicura, differenziazione di servizio, handover trasparente) e livelli soddisfacenti di Qualità del Servizio. La maggior parte delle soluzioni proposte in questo lavoro di tesi sono state implementate in test-bed reali. Questo lavoro riporta i risultati della mia attività di ricerca ed è organizzato nel seguente modo: ogni capitolo presenta, ad uno specifico strato della pila protocollare, un meccanismo di controllo del traffico con l’obiettivo di risolvere le problematiche presentate precedentemente. I Capitoli 1 e 2 fanno riferimento allo strato di Trasporto ed investigano il problema del mantenimento della fairness per le connessioni TCP. L’unfairness TCP conduce ad una significativa degradazione delle performance implicando livelli non soddisfacenti di QoS. Questi capitoli descrivono l’attività di ricerca in cui ho impiegato il maggior impegno durante gli studi del dottorato. Nel capitolo 1 viene presentato uno studio simulativo delle problematiche di unfairness TCP e vengono introdotti due possibili soluzioni basate su rate-control. Nel Capitolo 2 viene derivato un modello analitico per la fairness TCP e si propone uno strumento per la personalizzazione delle politiche di fairness. Il capitolo 3 si focalizza sullo strato Applicativo e riporta diverse soluzioni di controllo del traffico in grado di garantire autenticazione sicura in scenari di roaming tra provider wireless. Queste soluzioni rappresentano parte integrante del framework UniWireless, un testbed nazionale sviluppato nell’ambito del progetto TWELVE. Il capitolo 4 descrive, nuovamente a strato Applicativo, una soluzione (basata su SIP) per la gestione della mobilità degli utenti in scenari di rete eterogenei ovvero quando diverse tecnologie di accesso radio sono presenti (802.11/WiFi, Bluetooth, 2.5G/3G). Infine il Capitolo 5 fa riferimento allo strato Data-Link presentando uno studio preliminare di un approccio per il routing e il load-balancing in reti Mesh infrastrutturate.Wireless LANs, as they have been defined by the IEEE 802.11 standard, are shared media enabling connectivity in the so-called “hot-spots” (airports, hotel lounges, etc.), university campuses, enterprise intranets, as well as “in-home” for home internet access. With reference to the above scenarios, WLANs are commonly denoted as “infra-structured” in the sense that WLAN coverage is based on “Access Points” which provide the mobile stations with access to the wired network. In addition to this approach, there exists also an “ad-hoc” mode to organize WLANs where mobile stations talk to each other without the need of Access Points. Wireless LANs are typically connected to the wired backbones (Internet or corporate intranets) using a wired infrastructure. Wireless Infrastructure Mesh Networks (WIMN) may represent a viable and cost-effective alternative to this traditional wired approach. This is witnessed by the emergence and growth of many companies specialized in the provisioning of wireless infrastructure solutions, as well as the launch of standardization activities (such as 802.11s). The easiness of deploying and using a wireless network, and the low deployment costs have been critical factors in the extraordinary success of such technology. As a logical consequence, the wireless technology has allowed end users being connected everywhere – every time and it has changed several things in people’s lifestyle, such as the way people work, or how they live their leisure time (videoconferencing, instant photo or music sharing, network gaming, etc.). On the other side, the effort to develop networks capable of supporting ubiquitous data services with very high data rates in strategic locations is linked with many technical challenges including seamless vertical handovers across WLAN and 3G radio technologies, security, 3G-based authentication, unified accounting and billing, consistent QoS and service provisioning, etc. My PhD research activity have been focused on multi-layer traffic control for Wireless LANs. In particular, specific new traffic control solutions have been designed at different layers of the protocol stack (from the link layer to the application layer) in order to guarantee i) advanced features (secure authentication, service differentiation, seamless handover) and ii) satisfactory level of perceived QoS. Most of the proposed solutions have been also implemented in real testbeds. This dissertation presents the results of my research activity and is organized as follows: each Chapter presents, at a specific layer of the protocol stack, a traffic control mechanism in order to address the introduced above issues. Chapter 1 and Charter 2 refer to the Transport Layer, and they investigate the problem of maintaining fairness for TCP connections. TCP unfairness may result in significant degradation of performance leading to users perceiving unsatisfactory Quality of Service. These Chapters describe the research activity in which I spent the most significant effort. Chapter 1 proposes a simulative study of the TCP fairness issues and two different solutions based on Rate Control mechanism. Chapter 2 illustrates an analytical model of the TCP fairness and derives a framework allowing wireless network providers to customize fairness policies. Chapter 3 focuses on the Application Layer and it presents new traffic control solutions able to guarantee secure authentication in wireless inter-provider roaming scenarios. These solutions are an integral part of the UniWireless framework, a nationwide distributed Open Access testbed that has been jointly realized by different research units within the TWELVE national project. Chapter 4 describes again an Application Layer solution, based on Session Initiation Protocol to manage user mobility and provide seamless mobile multimedia services in a heterogeneous scenario where different radio access technologies are used (802.11/WiFi, Bluetooth, 2.5G/3G networks). Finally Chapter 5 refers to the Data Link Layer and presents a preliminary study of a general approach for routing and load balancing in Wireless Infrastructure Mesh Network. The key idea is to dynamically select routes among a set of slowly changing alternative network paths, where paths are created through the reuse of classical 802.1Q multiple spanning tree mechanisms

    LTE Optimization and Resource Management in Wireless Heterogeneous Networks

    Get PDF
    Mobile communication technology is evolving with a great pace. The development of the Long Term Evolution (LTE) mobile system by 3GPP is one of the milestones in this direction. This work highlights a few areas in the LTE radio access network where the proposed innovative mechanisms can substantially improve overall LTE system performance. In order to further extend the capacity of LTE networks, an integration with the non-3GPP networks (e.g., WLAN, WiMAX etc.) is also proposed in this work. Moreover, it is discussed how bandwidth resources should be managed in such heterogeneous networks. The work has purposed a comprehensive system architecture as an overlay of the 3GPP defined SAE architecture, effective resource management mechanisms as well as a Linear Programming based analytical solution for the optimal network resource allocation problem. In addition, alternative computationally efficient heuristic based algorithms have also been designed to achieve near-optimal performance

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modied our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the eld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore