47 research outputs found

    Resource allocation in future green wireless networks : applications and challenges

    Get PDF
    Over the past few years, green radio communication has been an emerging topic since the footprint from the Information and Communication Technologies (ICT) is predicted to increase 7.3% annually and then exceed 14% of the global footprint by 2040. Moreover, the explosive progress of ICT, e.g., the fifth generation (5G) networks, has resulted in expectations of achieving 10-fold longer device battery lifetime, and 1000-fold higher global mobile data traffic over the fourth generation (4G) networks. Therefore, the demands for increasing the data rate and the lifetime while reducing the footprint in the next-generation wireless networks call for more efficient utilization of energy and other resources. To overcome this challenge, the concepts of small-cell, energy harvesting, and wireless information and power transfer networks can be evaluated as promising solutions for re-greening the world. In this dissertation, the technical contributions in terms of saving economical cost, protecting the environment, and guaranteeing human health are provided. More specifically, novel communication scenarios are proposed to minimize energy consumption and hence save economic costs. Further, energy harvesting (EH) techniques are applied to exploit available green resources in order to reduce carbon footprint and then protect the environment. In locations where implemented user devices might not harvest energy directly from natural resources, base stations could harvest-and-store green energy and then use such energy to power the devices wirelessly. However, wireless power transfer (WPT) techniques should be used in a wise manner to avoid electromagnetic pollution and then guarantee human health. To achieve all these aspects simultaneously, this thesis proposes promising schemes to optimally manage and allocate resources in future networks. Given this direction, in the first part, Chapter 2 mainly studies a transmission power minimization scheme for a two-tier heterogeneous network (HetNet) over frequency selective fading channels. In addition, the HetNet backhaul connection is unable to support a sufficient throughput for signaling an information exchange between two tiers. A novel idea is introduced in which the time reversal (TR) beamforming technique is used at a femtocell while zero-forcing-based beamforming is deployed at a macrocell. Thus, a downlink power minimizationscheme is proposed, and optimal closed-form solutions are provided. In the second part, Chapters 3, 4, and 5 concentrate on EH and wireless information and power transfer (WIPT) using RF signals. More specifically, Chapter 3 presents an overview of the recent progress in green radio communications and discusses potential technologies for some emerging topics on the platforms of EH and WPT. Chapter 4 develops a new integrated information and energy receiver architecture based on the direct use of alternating current (AC) for computation. It is shown that the proposed approach enhances not only the computational ability but also the energy efficiency over the conventional one. Furthermore, Chapter 5 proposes a novel resource allocation scheme in simultaneous wireless information and power transfer (SWIPT) networks where three crucial issues: power-efficient improvement, user-fairness guarantee, and non-ideal channel reciprocity effect mitigation, are jointly addressed. Hence, novel methods to derive optimal and suboptimal solutions are provided. In the third part, Chapters 6, 7, and 8 focus on simultaneous lightwave information and power transfer (SLIPT) for indoor applications, as a complementary technology to RF SWIPT. In this research, Chapter 6 investigates a hybrid RF/visible light communication (VLC) ultrasmall cell network where optical transmitters deliver information and power using the visible light, whereas an RF access point works as a complementary power transfer system. Thus, a novel resource allocation scheme exploiting RF and visible light for power transfer is devised. Chapter 7 proposes the use of lightwave power transfer to enable future sustainable Federated Learning (FL)-based wireless networks. FL is a new data privacy protection technique for training shared machine learning models in a distributed approach. However, the involvement of energy-constrained mobile devices in the construction of the shared learning models may significantly reduce their lifetime. The proposed approach can support the FL-based wireless network to overcome the issue of limited energy at mobile devices. Chapter 8 introduces a novel framework for collaborative RF and lightwave power transfer for wireless communication networks. The constraints on the transmission power set by safety regulations result in significant challenges to enhance the power transfer performance. Thus, the study of technologies complementary to conventional RF SWIPT is essential. To cope with this isue, this chapter proposes a novel collaborative RF and lightwave power transfer technology for next-generation wireless networks

    Location-specific Spectrum Sharing in Heterogeneous Networks

    Get PDF
    The popularity of wireless mobile communication with enormous production of smart devices and applications increases the number of users in the wireless network. This increase of mobile users in the wireless network results insatiable demand for additional bandwidth. To improve network capacity of mobile operators efficient use of spectrum is critical. To improve the system capacity of operators and to provide flexible use of spectrum, we investigate a localized spectrum sharing between operators located at the same geographical area. We provide a coordination mechanism for operators to form a common spectrum pool and to use it dynamically. The coordination between the operators is modeled using a game theoretical approach in a non-cooperative basis. We study the spectrum sharing at localized and non-localized level, where at localized level operators agree on spectrum sharing at small scale. In localized spectrum sharing operators share their spectrum at smaller areas, when compared to non-localized spectrum sharing. Through numerical simulation, we analyze the performance of localized and non-localized spectrum sharing in comparison to the default orthogonal spectrum sharing mechanism. From the simulation results, we conclude that localized spectrum sharing outperforms non-localized spectrum sharing. Thus, spectrum sharing at smaller areas provides a better performance improvement than spectrum sharing at larger geographical areas

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Efficient radio resource management in next generation wireless networks

    Get PDF
    The current decade has witnessed a phenomenal growth in mobile wireless communication networks and subscribers. In 2015, mobile wireless devices and connections were reported to have grown to about 7.9 billion, exceeding human population. The explosive growth in mobile wireless communication network subscribers has created a huge demand for wireless network capacity, ubiquitous wireless network coverage, and enhanced Quality of Service (QoS). These demands have led to several challenging problems for wireless communication networks operators and designers. The Next Generation Wireless Networks (NGWNs) will support high mobility communications, such as communication in high-speed rails. Mobile users in such high mobility environment demand reliable QoS, however, such users are plagued with a poor signal-tonoise ratio, due to the high vehicular penetration loss, increased transmission outage and handover information overhead, leading to poor QoS provisioning for the networks' mobile users. Providing a reliable QoS for high mobility users remains one of the unique challenges for NGWNs. The increased wireless network capacity and coverage of NGWNs means that mobile communication users at the cell-edge should have enhanced network performance. However, due to path loss (path attenuation), interference, and radio background noise, mobile communication users at the cell-edge can experience relatively poor transmission channel qualities and subsequently forced to transmit at a low bit transmission rate, even when the wireless communication networks can support high bit transmission rate. Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed. The performance of proposed ATMA CAC scheme is investigated and compare it with the traditional CAC scheme. The ATMA scheme exploits the mobility events in the highspeed mobility communication environment and the calls (new and handoff calls) generation pattern to enhance the QoS (new call blocking and handoff call dropping probabilities) of the mobile users. The numbers of new and handoff calls in wireless communication networks are dynamic random processes that can be effectively modeled by the Continuous Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed

    Survey of Large-Scale MIMO Systems

    Full text link

    Computational efficiency maximization for UAV-assisted MEC network with energy harvesting in disaster scenarios

    Get PDF
    Wireless networks are expected to provide unlimited connectivity to an increasing number of heterogeneous devices. Future wireless networks (sixth-generation (6G)) will accomplish this in three-dimensional (3D) space by combining terrestrial and aerial networks. However, effective resource optimization and standardization in future wireless networks are challenging because of massive resource-constrained devices, diverse quality-of-service (QoS) requirements, and a high density of heterogeneous devices. Recently, unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) networks are considered a potential candidate to provide effective and efficient solutions for disaster management in terms of disaster monitoring, forecasting, in-time response, and situation awareness. However, the limited size of end-user devices comes with the limitation of battery lives and computational capacities. Therefore, offloading, energy consumption and computational efficiency are significant challenges for uninterrupted communication in UAV-assisted MEC networks. In this thesis, we consider a UAV-assisted MEC network with energy harvesting (EH). To achieve this, we mathematically formulate a mixed integer non-linear programming problem to maximize the computational efficiency of UAV-assisted MEC networks with EH under disaster situations. A power splitting architecture splits the source power for communication and EH. We jointly optimize user association, the transmission power of UE, task offloading time, and UAV’s optimal location. To solve this optimization problem, we divide it into three stages. In the first stage, we adopt k-means clustering to determine the optimal locations of the UAVs. In the second stage, we determine user association. In the third stage, we determine the optimal power of UE and offloading time using the optimal UAV location from the first stage and the user association indicator from the second stage, followed by linearization and the use of interior-point method to solve the resulting linear optimization problem. Simulation results for offloading, no-offloading, offloading with EH, and no-offloading no-EH scenarios are presented with a varying number of UAVs and UEs. The results show the proposed EH solution’s effectiveness in offloading scenarios compared to no-offloading scenarios in terms of computational efficiency, bits computed, and energy consumptio
    corecore