946 research outputs found

    Massive MIMO for Next Generation Wireless Systems

    Full text link
    Multi-user Multiple-Input Multiple-Output (MIMO) offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned with roughly equal numbers of service-antennas and terminals and frequency division duplex operation, is not a scalable technology. Massive MIMO (also known as "Large-Scale Antenna Systems", "Very Large MIMO", "Hyper MIMO", "Full-Dimension MIMO" & "ARGOS") makes a clean break with current practice through the use of a large excess of service-antennas over active terminals and time division duplex operation. Extra antennas help by focusing energy into ever-smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include the extensive use of inexpensive low-power components, reduced latency, simplification of the media access control (MAC) layer, and robustness to intentional jamming. The anticipated throughput depend on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly-joined terminals, the exploitation of extra degrees of freedom provided by the excess of service-antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This paper presents an overview of the massive MIMO concept and contemporary research.Comment: Final manuscript, to appear in IEEE Communications Magazin

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Scalable Cell-Free Massive MIMO Systems

    Get PDF
    Imagine a coverage area with many wireless access points that cooperate to jointly serve the users, instead of creating autonomous cells. Such a cell-free network operation can potentially resolve many of the interference issues that appear in current cellular networks. This ambition was previously called Network MIMO (multiple-input multiple-output) and has recently reappeared under the name Cell-Free Massive MIMO. The main challenge is to achieve the benefits of cell-free operation in a practically feasible way, with computational complexity and fronthaul requirements that are scalable to large networks with many users. We propose a new framework for scalable Cell-Free Massive MIMO systems by exploiting the dynamic cooperation cluster concept from the Network MIMO literature. We provide a novel algorithm for joint initial access, pilot assignment, and cluster formation that is proved to be scalable. Moreover, we adapt the standard channel estimation, precoding, and combining methods to become scalable. A new uplink and downlink duality is proved and used to heuristically design the precoding vectors on the basis of the combining vectors. Interestingly, the proposed scalable precoding and combining outperform conventional maximum ratio processing and also performs closely to the best unscalable alternatives.Comment: To appear in IEEE Transactions on Communications, 14 pages, 6 figure

    A survey and tutorial of electromagnetic radiation and reduction in mobile communication systems

    Get PDF
    This paper provides a survey and tutorial of electromagnetic (EM) radiation exposure and reduction in mobile communication systems. EM radiation exposure has received a fair share of interest in the literature; however, this work is one of the first to compile the most interesting results and ideas related to EM exposure in mobile communication systems and present possible ways of reducing it. We provide a comprehensive survey of existing literature and also offer a tutorial on the dosimetry, metrics, international projects as well as guidelines and limits on the exposure from EM radiation in mobile communication systems. Based on this survey and given that EM radiation exposure is closely linked with specific absorption rate (SAR) and transmit power usage, we propose possible techniques for reducing EM radiation exposure in mobile communication systems by exploring known concepts related to SAR and transmit power reduction in mobile systems. Thus, this paper serves as an introductory guide to EM radiation exposure in mobile communication systems and provides insights toward the design of future low-EM exposure mobile communication networks

    A New Look at Cell-Free Massive MIMO: Making It Practical With Dynamic Cooperation

    Get PDF
    This paper takes a new look at Cell-free Massive MIMO (multiple-input multiple-output) through the lens of the dynamic cooperation cluster framework from the Network MIMO literature. The purpose is to identify and address scalability issues that appear in prior work. We provide distributed algorithms for initial access, pilot assignment, cluster formation, precoding, and combining that are scalable in the sense of being implementable with arbitrarily many users. Interestingly, the suggested precoding and combining outperform conjugate beamforming and matched filtering, respectively, while also being fully distributed.Comment: To appear at the 2019 IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2019), 6 pages, 5 figure

    Decentralized Massive MIMO Processing Exploring Daisy-chain Architecture and Recursive Algorithms

    Full text link
    Algorithms for Massive MIMO uplink detection and downlink precoding typically rely on a centralized approach, by which baseband data from all antenna modules are routed to a central node in order to be processed. In the case of Massive MIMO, where hundreds or thousands of antennas are expected in the base-station, said routing becomes a bottleneck since interconnection throughput is limited. This paper presents a fully decentralized architecture and an algorithm for Massive MIMO uplink detection and downlink precoding based on the Stochastic Gradient Descent (SGD) method, which does not require a central node for these tasks. Through a recursive approach and very low complexity operations, the proposed algorithm provides a good trade-off between performance, interconnection throughput and latency. Further, our proposed solution achieves significantly lower interconnection data-rate than other architectures, enabling future scalability.Comment: Manuscript accepted for publication in IEEE Transactions on Signal Processin
    corecore